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ABSTRACT

We prove that assosymmetric algebras under the Jordan product are Lie triple
algebras. A Lie triple algebra is called special if it is isomorphic to a subalgebra
of the plus-algebra of some assosymmetric algebra. We establish that the
Glennie identity of degree 8 is valid for special Lie triple algebras, but not for
all Lie triple algebras.
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1. Introduction

An associative algebra under anti-commutator satis�es three remarkable polynomial identities: commu-
tativity, Jordan identity and Glennie identity of degree 8. These identities are independent. It is not clear
whether these identities form base of identities for special Jordan algebras [17].

In our paper, we establish analogues of these results for assosymmetric algebras. Assosymetric
algebras play in the theory of Lie triple algebras the same role as associative algebras in the theory of
Jordan algebras. Let us call algebra plus-assosymmetric if it is isomorphic to a subalgebra of the plus-
algebra of an assosymmetric algebra. We prove that any assosymmetric algebra under Jordan product
satis�es three polynomial identities: commutativity, Lie triple identity and Glennie identity of degree
8. In a class of plus-assosymmetric algebras, these identities are independent. Lie triple identity is a
consequence of Jordan identity, but these identities are not equivalent.

To formulate our results, we need to introduce some notations and remind some de�nitions. LetK be
a �eld of characteristic p ≥ 0. We will suppose that p 6= 2, 3, if otherwise is not stated. For an algebra A
notation,A = (A, ·)will mean that a vector space A over a �eld K has multiplication ·, i.e., A is endowed
by bilinear map (a, b) 7→ a · b.

De�nition 1.1. For an algebraAwithmultiplication · its plus-algebra is de�ned as algebraA(+) = (A, ⋆),
where a ⋆ b = a · b + b · a is anti-commutator.

De�nition 1.2. Similarly minus-algebra A(−) = (A, [ , ]) of A is an algebra with vector space A and
multiplication given by commutator [a, b] = a · b − b · a.

For a class of algebras C denote by C(±) class of algebras of a form A(±), where A ∈ C.
Let F = K〈t1, t2, . . .〉 be the free algebra of non-associative non-commutative polynomials with

countable number of generators t1, t2, . . . . Sometimes we will restrict the number of generators and
we consider F as an absolute free algebra with generators t1, t2, . . . , tk. The algebra F sometimes is called
absolute free algebra, sometimes free magmatic algebra. For an algebra A = (A, ·) with multiplication ·

and a polynomial f = f (t1, . . . , tk) ∈ F say that f = 0 is a polynomial identity of A if f (a1, . . . , ak) = 0
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2 A. DZHUMADIL’DAEV

for any substitution ti := ai ∈ A, 1 ≤ u ≤ k. Here we calculate f (a1, . . . , ak) in terms of multiplication ·.
A variety of algebras is de�ned as a class of algebras that satisfy polynomial identities. For variety of
algebras generated by polynomial identities f1 = 0, . . . fs = 0, we use notation Var(f1, . . . , fk). If
C = Var(f1, . . . , fs) is a variety, denote by FC a free algebra in this class, then FC is isomorphic to a
factor algebra of F by T-ideal generated by polynomials f, . . . , fs. Denote by FC(t1, . . . , tk) free algebra of
a class C generated by elements t1, . . . , tk. About polynomial identities and varieties of non-associative
algebras, see for example [17].

Let

[t1, t2] = t1t2 − t2t1, t1 ⋆ t2 = t1t2 + t2t1,

are commutator and anti-commutator polynomials and

(t1, t2, t3) = t1(t2t3) − (t1t2)t3

is associator. Note that our de�nition of associator di�ers from usual one by sign.
Associator of plus-algebra is denoted by 〈a, b, c〉,

〈t1, t2, t3〉 = t1 ⋆ (t2 ⋆ t3) − (t1 ⋆ t2) ⋆ t3.

De�nition 1.3. Le�-symmetric and right-symmetric polynomials are de�ned by

lsym(t1, t2, t3) = (t1, t2, t3) − (t2, t1, t3),

rsym(t1, t2, t3) = (t1, t2, t3) − (t1, t3, t2).

An algebra with identities lsym = 0 and rsym = 0 is called assosymmetric.

So, an algebra A = (A, ·) is assosymmetric if

a · [b, c] = (a · b) · c − (a · c) · b,

[a, b] · c = a · (b · c) − b · (a · c).

for any a, b, c ∈ A. Recall that nucleus of algebra A is a subspace of elements x ∈ A such
that (x, a, b) = (a, x, b) = (a, b, x) = 0 for any a, b ∈ A. Nucleus of assosymmetric algebras contains
an ideal generated by commutator [A,A] ([2]). Assosymmetric algebras have been studied in
[2, 5, 6, 9, 13–15]. The following properties of assosymmetric algebra A,

([a, b], c, d) = (a, [b, c], d) = (a, b, [c, d]) = 0,

[a, b] · (c, d, e) = (a, b, c) · [d, e] = 0,

for any a, b, c, d, e ∈ A, are known (proofs one can �nd, for example, in [2]). Free base of assosymmetric
algebras was found in [5].

Denote by F±
C

(t1, . . . , tk) subalgebra of FC(t1, . . . , tk)
(±) generated by elements t1, . . . , tk. Let As be

class of associative algebras. Then F−
As(t1, . . . , tk) is isomorphic to free Lie algebra generated by t1, . . . , tk.

In that time F+
As is not free. For element X ∈ FC(t1, . . . , tk) say that X is Lie element in the class C if

X ∈ F−
C

(t1, . . . , tk). Similarly, X ∈ FC(t1, . . . , tk) is Jordan element in the class C if X ∈ F+
C

(t1, . . . , tk).
For a class of associative algebras, Jordan element is called j-element. Jordan element in a class of
assosymmetric algebras is called ja-element. For a class of alternating algebras, Jordan element is called
as jalt-element.

Let C(q) be class of algebras A(q) = (A, ·q), where a ·q b = a · b + q b · a is q-commutator and

(A, ·) ∈ C. Note that C(1) coincides with the class of plus-algebras and C(−1) coincides with the class
of minus-algebras. Let C be a variety of algebras. As we mentioned above C(±) is not necessary to form
variety. Theorem 2.2 of [3] states that C(q) is a variety if q2 6= 1. Moreover, as category of algebras, it is
isomorphic to the category C. So, from categorical point of view, it is interesting to study assosymmetric
algebras under Lie and Jordan commutators only.
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Let

jor(t1, t2) = (t1, t2, t
2
1),

mjor(t1, t2, t3, t4) = (t2, t1, t3t4) + (t3, t1, t4t2) + (t4, t1, t2t3)

be Jordan and multilinear Jordan polynomials. If p 6= 2, 3, then identities jor = 0 and mjor = 0 are
equivalent. If p = 3, then the identity mjor = 0 is a consequence of the identity jor = 0, but converse
is not true. Recall that Jordan algebras are de�ned as commutative algebras with identity jor = 0.
Associative algebras under Jordan product satisfy the Jordan identity of degree 4,

〈a, b, a2〉 = 0

and onemore identity of degree 8, so called Glennie identity [4]. We give Shestakov’s construction ([10],
[16]) of Glennie identity. Let

shest(t1, t2, t3) = −3〈t1, t3, t2〉 ⋆ (〈t1, t1, t
2
2〉 − 〈t1, t1, t2〉 ⋆ t2) − 2〈t1, 〈t1, 〈t1, t3, t2〉, t2〉, t2〉

be Shestakov polynomial and

glen(t1, t2, t3) = shest(t1, t2, t3 ⋆ t3) − 2t3 ⋆ shest(t1, t2, t3)

be Glennie polynomial. Shestakov has established that the derivation D([a,b]⋆[a,b])⋆[a,b] ∈ Der FAs is well
de�ned on Jordan subspace: for any a, b, c ∈ FAs, the element

D = D(a, b, c)
def
= [([a, b] ⋆ [a, b]) ⋆ [a, b], c]

is j-element. He got exact construction of the element D(a, b, c) as j-element,

D(a, b, c) = shest(a, b, c). (1)

Then Glennie identity is equivalent to the Leibniz condition for derivation

D([a,b]⋆[a,b])⋆[a,b] ∈ Der F
(+)
As .

In our paper, we prove that relation (1) holds not only for associative algebras but also for assosym-
metric algebras. In other words, the element D(a, b, c) is not only j-element but also ja-element. Note
that relation (1) fails for a class alternative algebras. It does not mean that D(a, b, c) is not jalt-element.
We would be surprised very much if it is so. It just means that in alternative case, Jordan polynomial
corresponding to the element D(a, b, c) di�ers from Shestakov polynomial.

Let

lietriple(t1, t2, t3) = (t1, t
2
2 , t3) − t2 ⋆ (t1, t2, t3)

be Lie triple polynomial. A commutative algebra with identity lietriple = 0 is called Lie triple ([8] , [13],
[14]). So, A is Lie triple, if for any a, b, c ∈ A,

(a, b2, c) = 2b(a, b, c).

Denote byAs(+) class of plus-associative algebras, i.e. class of algebrasA(+), whereA runs associative
algebras. Similarly,Assym(+) is a class of assosymmetric algebras under Jordan product.

The main results of this paper are the following.

Theorem 1.4. Let p 6= 2. Any plus-algebra of assosymmetric algebra A is Lie triple,

〈a, b ⋆ b, c〉 = 2 b ⋆ 〈a, b, c〉, ∀a, b, c ∈ A,

and satis�es the Glennie identity of degree 8,

shest(a, b, c ⋆ c) − 2c ⋆ shest(a, b, c) = 0, ∀a, b, c ∈ A.

The identities [t1, t2] = 0, lietriple(t1, t2, t3) = 0 and glen(t1, t2, t3) = 0 are independent.
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Theorem 1.5. If p 6= 2, 3, then any identity of Assym(+) of degree 4 follows from commutativity and Lie
triple identities.

If p = 3, then Lie triple identity is not minimal for the classAssym(+). It satis�es the identity mjor = 0
and any identity of degree 4 for the classAssym(+) in case p = 3 follows from the commutativity one and
the identity mjor = 0.

2. Associators, derivations and commutators for assosymmetric algebras

In this section we assume that A = (A, ·) is assosymmetric if otherwise is not stated. Recall that a ⋆ b =

a · b+ b · a, [a, b] = a · b− b · a and 〈a, b, c〉 = a ⋆ (b ⋆ c) − (a ⋆ b) ⋆ c be associator of anti-commutator.
Here we give some preliminary results that we will use in proof of our theorems. In proof of our lemmas,
we use results of [2] . This paper needs restriction p 6= 2, 3.

Lemma 2.1. For any algebra A = (A, ·),

〈a, b, c〉 − (a, b, c) + (c, b, a) = a · (c · b) − c · (a · b) − (b · a) · c + (b · c) · a.

Lemma 2.2. Let A be assosymmetric. Then for any a, b, c ∈ A,

〈a, b, c〉 = [[a, c], b].

Proof. By Lemma 2.1 and by assosymmetric rules

〈a, b, c〉 = a · (c · b) − c · (a · b) − (b · a) · c + (b · c) · a

= [a, c] · b − b · [a, c] = [[a, c], b].

Lemma 2.3. If A is assosymmetric, and u = [x, y] for some x, y ∈ A, then

(u, a, b) = (a, u, b) = (a, b, u) = 0,

and

u · (a, b, c) = (a, b, c) · u = 0.

Moreover, if a has a form [x, y] · z or x · [y, z], for some x, y, z ∈ A, then also

(u, a, b) = (a, u, b) = (a, b, u) = 0.

Proof. Follows from results of [2].

Lemma 2.4. Let ad a : A → A be an adjoint map, ad a(b) = [a, b] = a · b − b · a. Then

ad a(b · c) = ad a(b) · c + b · ad a(c) + (a, b, c).

for any a, b, c ∈ A. If a has a form a = [x, y] or a = [x, y] · z, or a = x · [y, z], for some x, y, z ∈ A, then
ad a ∈ Der A.

In particular, ad a is a derivation of minus-algebra A− = (A, [ , ]),

ad a[b, c] = [ad a(b), c] + [a, ad a(c)].

The map ad a is not derivation of plus-algebra A+ = (A, ⋆),

ad a(b ⋆ c) = ad a(b) ⋆ c + b ⋆ ad a(c) + 2(a, b, c).

But ad a is a derivation of plus-algebra, if a ∈ [A,A].

Proof. Follows from Lemma 2.3.
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Lemma 2.5. Let A be assosymmetric. Then for any a, b, c ∈ A,

[(a, b, b), a] ⋆ [[a, b], c] = 0.

Proof. Let u = [[a, b], c]. Then by Lemma 2.3

((a, b, b) · a) · u = (a, b, b) · [a, u] + ((a, b, b) · u) · a = 0,

u · (a · (a, b, b)) = [u, a] · (a, b, b) + a · (u · (a, b, b)) = 0.

Therefore,

[(a, b, b), a] ⋆ u = [(a, b, b), a] · u + u · [(a, b, b), a]

= ((a, b, b) · a) · u − (a · (a, b, b)) · u + u · ((a, b, b) · a) − u · (a · (a, b, b))

− (a · (a, b, b)) · u + u · ((a, b, b) · a)

= −[a · (a, b, b), u] − u · (a · (a, b, b)) + ((a, b, b) · a) · u − [(a, b, b) · a, u]

= −[a · (a, b, b), u] − [(a, b, b) · a, u].

So, by Lemmas 2.4 and 2.3,

[(a, b, b), a] ⋆ u = −[a, u] · (a, b, b) − a · [(a, b, b), u] − [(a, b, b), u] · a − (a, b, b) · [a, u] = 0.

Lemma 2.6. Let A = (A, ·) be assosymmetric algebra. For a, b, c ∈ A set

D = D(a, b, c) = [([a, b] ⋆ [a, b]) ⋆ [a, b], c]

and

shest = shest(a, b, c) = −3〈a, c, b〉 ⋆ (〈a, a, b2〉 − 〈a, a, b〉 ⋆ b) − 2〈a, 〈a, 〈a, c, b〉, b〉, b〉.

Then

D(a, b, c) = shest(a, b, c).

In particular, D(a, b, c) is Jordan element of assosymmetric algebra generated by a, b, c.

Proof. Let us set

x = [a, b], u = [[a, b], c].

Then u = [x, c]. We see that u and x are commutator elements.
By Lemma 2.4

D = [(x ⋆ x) ⋆ x, c]

= −2[c, (x · x) ⋆ x]

= −2[c, x · x] ⋆ x − 2(x · x) ⋆ [c, x] − 4 (c, x · x, x)

= −2([c, x] · x) ⋆ x − 2(x · [c, x]) ⋆ x − 2(x · x) ⋆ [c, x] − 2(c, x, x) ⋆ x − 4 (c, x · x, x)

= −2([c, x] ⋆ x) ⋆ x − 2(x · x) ⋆ [c, x] − 2(c, x, x) ⋆ x − 4 (c, x · x, x).

Since x ∈ [A,A], by Lemma 2.3.

(c, x, x) = (c, x, x · x) = 0.

Therefore,

D = 2 x ⋆ (x ⋆ u) + (x ⋆ x) ⋆ u.

Let us set

D2 = [[a, b2], a] − [[a, b], a] ⋆ b.
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By Lemma 2.4

[a, b2] = [a, b] · b + b · [a, b] + (a, b, b) = x · b + b · x + (a, b, b)

Therefore,

D2 = [[a, b2], a] − [[a, b], a] ⋆ b = [x · b, a] + [b · x, a] + [(a, b, b), a] − [x, a] ⋆ b.

So, by Lemma 2.4

D2 = [x, a] · b + x · [b, a] − (a, x, b) + [b, a] · x + b · [x, a] − (a, b, x)

+ [(a, b, b), a] − [x, a] · b − b · [x, a]

= −2x · x + [(b, a, b), a] − 2(a, b, x).

Then by Lemma 2.2

shest = −3[[a, b], c] ⋆ ([[a, b2], a] − [[a, b], a] ⋆ b) − 2[[a, b], [[a, b], [[a, b], c]]]

= −3D2 ⋆ u − 2[x, [x, u]].

Thus,

D − shest = D1 + 3D2 ⋆ u,

where we set

D1 = 2 x ⋆ (x ⋆ u) + 2[x, [x, u]] + (x ⋆ x) ⋆ u.

We have

D1 = 2 x · (x · u) + 2 x · (u · x) + 2 (x · u) · x + 2 (u · x) · x

+ 2 x · (x · u) − 2 x · (u · x) − 2 (x · u) · x + 2 (u · x) · x + (x ⋆ x) ⋆ u

= 4 x · (x · u) + 4 (u · x) · x + (x ⋆ x) ⋆ u.

Thus,

D1 + 3D2 ⋆ u = 4 x · (x · u) + 4 (u · x) · x − 6(x · x) · u − 6 u · (x · x) + 3[(a, b, b), a] ⋆ u

− 6(a, b, x) ⋆ u + (x ⋆ x) ⋆ u

= 4 (x · (x · u) − (x · x) · u) + 4 ((u · x) · x − u · (x · x)) − 2(x · x) · u − 2 u · (x · x)

+ 3[(a, b, b), a] ⋆ u − 6(a, b, x) ⋆ u + (x ⋆ x) ⋆ u

= 4 (x, x, u) − 4 (u, x, x) − (x ⋆ x) ⋆ u + 3[(a, b, b), a] ⋆ u − 6(a, b, x) ⋆ u + (x ⋆ x) ⋆ u

= (3[(a, b, b), a] − 6(a, b, x)) ⋆ u.

Since by Lemma 2.3, (a, b, x) ⋆ u = 0, we see that

D1 + 3D2 ⋆ u = 3[(a, b, b), a] ⋆ u.

It remains to use Lemma 2.5, to obtain that

D − shest = D1 + 3D2 ⋆ u = 0.

Lemma 2.7. Let A be assosymmetric. Then for any a, b, c ∈ A,

〈b, a, c ⋆ d〉 + 〈c, a, d ⋆ b〉 + 〈d, a, b ⋆ c〉 = −6[a, (b, c, d)].

Proof. We have

[a, b · c] + [b, c · a] + [c, a · b] = (a, b, c) + (b, c, a) + (c, a, b) = 3(a, b, c).
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Hence,

[a, b ⋆ c] + [b, c ⋆ a] + [c, a ⋆ b] = 6(a, b, c).

Therefore, by Lemma 2.2,

〈b, a, c ⋆ d〉 + 〈c, a, d ⋆ b〉 + 〈d, a, b ⋆ c〉 = [[b, c ⋆ d], a] + [[c, d ⋆ b], a] + [[d, b ⋆ c], a]

= [[b, c ⋆ d] + [c, d ⋆ b] + [d, b ⋆ c], a] = −6[a, (b, c, d)]

Lemma 2.8. For any assosymmetric algebra A a multilinear map

A × A × A × A → A, (a, b, c, d) 7→ mjor(a, b, c, d)

is symmetric,

mjor(a1, a2, a3, a4) = mjor(aσ(1), aσ(2), aσ(3), aσ(4)),

for any permutation σ ∈ S4.

Proof. If σ ∈ S4 �xes the �rst element, σ(1) = 1, then

mjor(a1, a2, a3, a4) = mjor(aσ(1), aσ(2), aσ(3), aσ(4)),

for any algebra A, not necessary assosymmetric. The property

[a1, (a2, a3, a4)] = [a2, (a1, a3, a4)]

was established in [2], p.14, the relation (vii) or (vii’). Thus, by Lemma 2.7, mjor(a1, a2, a3, a4) is
symmetric by all parameters.

3. Proof of Theorem 1.4

By Lemma 2.2

〈a, b ⋆ b, c〉 = 2 [[a, c], b2] = 2 [[a, c], b] · b+ 2 b · [[a, c], b] = 2〈a, b, c〉 · b+ 2 b · 〈a, b, c〉 = 2〈a, b, c〉 ⋆ b.

Hence for any a, b, c ∈ A,

〈a, b ⋆ b, c〉 = 2b ⋆ 〈a, b, c〉.

Prove now that, if A is assosymmetric, then

glennie(a, b, c) = shest(a, b, c ⋆ c) − 2 c ⋆ shest(a, b, c) = 0

is polynomial identity for plus-assosymmetric algebras. For p 6= 2, 3, we can apply results of Section 2.
Let p 6= 2, 3. By Lemma 2.6,D(a, b, c) = shest(a, b, c) is well de�ned on plus-assosymmetric algebras

and the map c 7→ D(a, b, c) is a derivation of assosymmeric algebras. In particular, it is a derivation
of plus-assosymmetric algebras. The condition shest(a, b, c ⋆ c) = 0 is equivalent to Leibniz condition
for this derivation. As was shown by Shestakov, the identity shest = 0 is equivalent to Glennie identity
[4]. Suppose that the identity shest = 0 is a consequence of commutativity and Lie-triple identities.
Since Lie-triple identity is a consequence of Jordan identity, this means that shest = 0 will be identity
for Jordan algebars also. It contradicts to Glennie’s result that glen = 0 is a special identity that does not
follow from commutativity and Jordan identities. Therefore, commutative, Jordan andGlennie identities
are independent not only in a class of plus-associative algebras but also in a class of plus-assosymmetric
algebras.

For p = 3, one can check by computer program, say by Albert [1], that Glennie identity holds for
plus-assosymmetric algebras also.
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4. Identities of degree 4 for commutative algebras

In this section we consider non-associative but commutative polynomials with variables t1, t2, . . . . Let
mjor be multilinear Jordan polynomial

mjor(t1, t2, t3, t4) = (t2, t1, t3t4) + (t3, t1, t4t2) + (t4, t1, t2t3)

and

jor2(t1, t2, t3, t4) = mjor(t1, t2, t3, t4) − mjor(t2, t1, t3, t4) + mjor(t3, t1, t2, t4) − mjor(t4, t1, t2, t3).

De�ne multilinear commutative non-associative polynomial jor1 by

jor1(t1, t2, t3, t4) = [lt1 , lt2 ](t3t4) − t3([lt1 , lt2 ](t4)) − ([lt1 , lt2 ](t3))t4

= t1(t2(t3t4)) − t3(t1(t2t4)) − (t1(t2t3))t4 − t2(t1(t3t4)) − t3(t2(t1t4)) − (t2(t1t3))t4.

Note that jor1(t1, t2, t3, t4) is skew-symmetric by variables t1, t2 and symmetric by variables t3, t4.

Lemma 4.1. If A is commutative algebra, then for any a, b, c ∈ A,

(a, b, c) = [la, lc](b).

In particular, for any a, b, c ∈ A,

(a, b, c) + (c, b, a) = 0.

Lemma 4.2.

jor1(t1, t2, t3, t4) = (t1, t3t4, t2) − t3(t1, t4, t2) − t4(t1, t3, t2).

Proof. Easy calculations based on Lemma 4.1.

Lemma 4.3. jor1(t1, t2, t3, t4) = −mjor(t1, t2, t3, t4) + mjor(t2, t1, t3, t4).

Proof. We have

mjor(t1, t2, t3, t4) − mjor(t2, t1, t3, t4) = (t2, t1, t3t4) + (t3, t1, t4t2) + (t4, t1, t2t3)

− (t1, t2, t3t4) − (t3, t2, t4t1) − (t4, t2, t1t3)

= t2(t1(t3t4)) − (t2t1)(t3t4) + t3(t1(t4t2)) − (t3t1)(t4t2)

+ t4(t1(t2t3)) − (t4t1)(t2t3)

− t1(t2(t3t4)) + (t1t2)(t3t4) − t3(t2(t4t1)) + (t3t2)(t4t1)

− t4(t2(t1t3)) + (t4t2)(t1t3)

= t2(t1(t3t4)) + t3(t1(t4t2)) + t4(t1(t2t3))

− t1(t2(t3t4)) − t3(t2(t4t1)) − t4(t2(t1t3))

= −t1(t2(t3t4)) + t3(t1(t2t4)) + (t1(t2t3))t4

× t2(t1(t3t4)) − t3(t2(t1t4)) − (t2(t1t3))t4

= −jor1(t1, t2, t3, t4).

Lemma 4.4.

jor2(t1, t2, t3, t4) − jor2(t2, t1, t3, t4) = −2 jor1(t1, t2, t3, t4),

jor2(t1, t2, t3, t4) − jor2(t1, t2, t4, t3) = −2 jor1(t3, t4, t1, t2),

jor2(t1, t2, t3, t4) + jor2(t2, t1, t3, t4) = −2 jor1(t3, t4, t1, t2),

jor2(t1, t2, t3, t4) + jor2(t1, t2, t4, t3) = −2 jor1(t1, t2, t3, t4).
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In particular,

jor2(t1, t2, t3, t4) + jor2(t2, t1, t4, t3) = 0. (2)

Proof. Since variables ti are commuting, by Lemma 4.1

jor2(t1, t2, t3, t4) − jor2(t2, t1, t3, t4) = 2(mjor(t1, t2, t3, t4) − mjor(t2, t1, t3, t4))

Therefore by Lemma 4.3,

jor2(t1, t2, t3, t4) − jor2(t2, t1, t3, t4) = −2 jor1(t1, t2, t3, t4).

Further, by Lemma 4.3,

jor2(t1, t2, t3, t4) − jor2(t1, t2, t4, t3) = 2{mjor(t3, t1, t2, t4) − mjor(t4, t1, t2, t3)}

= 2{mjor(t3, t4, t1, t2) − mjor(t4, t3, t1, t2)}

= −2 jor1(t3, t4, t1, t2).

Similarly, by Lemmas 4.1 and 4.3,

jor2(t1, t2, t3, t4) + jor2(t2, t1, t3, t4) = 2{mjor(t3, t1, t2, t4) − mjor(t4, t1, t2, t3)}

= 2{mjor(t3, t4, t1, t2) − mjor(t4, t3, t1, t2)}

= −2 jor1(t3, t4, t1, t2),

and

jor2(t1, t2, t3, t4) + jor2(t1, t2, t4, t3) = 2{mjor(t1, t2, t3, t4) − mjor(t2, t1, t3, t4)}

= −2 jor1(t1, t2, t3, t4).

Since

jor2(t1, t2, t3, t4) − jor2(t1, t2, t4, t3) = −2 jor1(t3, t4, t1, t2) = jor2(t1, t2, t3, t4) + jor2(t2, t1, t3, t4),

we have

jor2(t1, t2, t4, t3) + jor2(t2, t1, t3, t4) = 0.

Lemma 4.5.

jor2(t1, t2, t3, t4) = −jor1(t1, t2, t3, t4) − jor1(t3, t4, t1, t2).

Proof. By Lemma 4.4

jor2(t1, t2, t3, t4) − jor2(t2, t1, t3, t4) = −2 jor1(t1, t2, t3, t4),

jor2(t1, t2, t3, t4) − jor2(t1, t2, t4, t3) = −2 jor1(t3, t4, t1, t2),

Add these two relations. By Lemma 4.4, relation (2), we receive that

jor2(t1, t2, t3, t4) = −jor1(t1, t2, t3, t4) − jor1(t3, t4, t1, t2).

Lemma 4.6. Let p 6= 2 and A be a commutative algebra. Then the following conditions are equivalent

[la, lb] ∈ DerA (3)

a(b(cd)) − (a(bc))d − c(a(bd)) = b(a(cd)) − (b(ac))d − c(b(ad)) (4)
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a(b(cc)) − 2(a(bc))c = b(a(cc)) − 2c(b(ac)) (5)

(a, cc, b) = 2c(a, c, b) (6)

(a, bc, d) = b(a, c, d) + c(a, b, d) (7)

jor2(a, b, c, d) = 0 (8)

[[la, lc], lb] = l(a,b,c) (9)

mjor(a, b, c, d) = mjor(b, a, c, d) (10)

Any of these identities implies the identity

2((ba)a)a + b((aa)a) = 3(b(aa))a (11)

Proof. The Leibniz rule for a derivation [la, lb] can be written as

[la, lb](cd) = ([la, lb]c)d + c([la, lb]d)

Therefore (3) is equivalent to (4). Substitution in (4) c = d gives us (5). Conversely, polarization of (5)
gives us (4). Rewrite (5) by the following way,

a(b(cc)) − b(a(cc)) = 2c{a(bc) − b(ac)}.

For commutative algebra this condition is equivalent to (6). The identity (7) is a polarization of (6),

(a, (b + c)2, d) − 2(b + c)(a, b + c, d) − (a, b2, d) + 2b(a, b, d) − (a, c2, d) + 2c(a, c, d)

= (a, bc, d) + (a, cb, d) − 2b(a, c, d) − 2c(a, b, d)

= 2{(a, bc, d) − b(a, c, d) − c(a, b, d)}.

So, (6) implies (7). If p 6= 2, let us substitute b = c in (7). We obtain (6).
By Lemma 4.3, identities jor1 = 0 and jor2 = 0 are equivalent. Therefore, by Lemma 4.2 identities

(7) and (8) are equivalent. Further

jor2(a, b, c, c) = (a, cc, b) − 2c(a, c, b).

So, (6), (7), (8) are equivalent. We have

([[la, lc], lb] − l(a,b,c))d = a(c(bd)) − c(a(bd)) − b(a(cd)) + b(c(ad)) − (a, b, c)d

= (a, bd, c) − b(a, d, c) − (a, b, c)d.

Therefore (9) is equivalent to (7). By Lemma 4.3 conditions (4) and (10) are equivalent. Take in (8)
c = d = a,

jor2(a, b, a, a) = (a, aa, b) − 2a(a, a, b) + (a, ab, a) − a(a, b, a) − b(a, a, a)

= a((aa)b) − (a(aa))b − 2a(a(ab)) + 2a((aa)b)

= 3a(b(aa)) − b(a(aa)) − 2a(a(ab)).

So, (8) implies (11).

Remark. If p > 3 then (11) and any of identities (3), (4), (5), (6), (7), (8) and (9) are equivalent.

Remark. In Lemma 4.6 we assume that the commutativity identity t1t2 = t2t1 is given. If we omit the
commutativity identity, then identities (3)–(10) are not equivalent. Namely, (3) and (6) are equivalent,
(4), (5), (7), (8) are equivalent, (3) and (6) imply (4), (5), (7), (8) and (4), (5), (7), (8) do not imply (3)
and (6). Identities of degree 4 were studied by Osborn in series of papers [11–13].
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5. Proof of Theorem 1.5

Consider identities for the class As+. It has identity of degree 2: commutativity identity. No identity of
degree 3 that does not follow from commutativity rule. In degree 4, the following commutative non-
associative polynomials give us identities that are not consequences of commutativity identity (see [7],
Chapter 1.1, p. 5–6):

g
(1)
[4] (t1) = (t1, t1, t

2
1),

g
(1)
[3,1](t1, t2) = (t1, t2, t

2
1),

g
(2)
[3,1](t1, t2) = t2(t1t

2
1) + 2t1(t1(t1t2)) − 3t1(t2t

2
1),

g
(1)
[2,2](t1, t2) = t21t

2
2 − t1(t1t

2
2) − 2t2(t1(t1t2)) + 2(t1t2)(t1t2),

g
(1)
[2,1,1](t1, t2, t3) = (t1, t1, t2t3) + (t2, t1, t3t1) + (t3, t1, t1t2),

g
(2)
[2,1,1](t1, t2, t3) = 2(t1, t2, t1t3) + (t3, t2, t

2
1),

g
(1)
[1,1,1,1](t1, t2, t3, t4) = (t2, t1, t2t3) + (t3, t1, t1t4) + (t4, t1, t2t3).

All polynomials of a form g
(i)
α are homogeneous of type α. This means that lower index α corresponds

to the type of identity, i.e., if α = [α1, . . . ,αs, . . .], then ts in each monomial of g
(i)
α enters αs times. Such

αs is called multiplicity of ts. Note that permutation of indices ts with equal multiplicities in g
(i)
α induces

a consequence of the identity g
(i)
α of type α. Therefore, any consequence of these identities in degree

4 can be presented as a linear combination of polynomials with given type where variables with equal
multiplicity are permuted.

Any associative algebra is assosymmetric. Therefore, any identity of type α of degree 4 for plus-

assosymmetric algebras is a consequence of identities g
(i)
α . So, polynomials of the following form should

be tested for an identity of plus-assosymmetric algebras

α = [4], f[4] = g
(1)
[4] ,

α = [3, 1], f
µ1,µ2
[3,1] = µ1g

(1)
[3,1] + µ2g

(2)
[3,1], µi ∈ K,

α = [2, 2], f
µ1,µ2
[2,2] (t1, t2) = µ1g

(1)
[2,2](t1, t2) + µ2g

(1)
[2,2](t2, t1), µi ∈ K.

Since g
(1)
[2,2](t1, t2, t3) = g

(1)
[2,2](t1, t3, t1), in case of α = [2, 1, 1], as a general form of a commutative

polynomial tested for identity of plus-assosymmetric algebras, we can get

f
µ1,µ2,µ3
[2,1,1] (t1, t2, t3) = µ1g

(1)
[2,1,1](t1, t2, t3) + µ2g

(2)
[2,1,1](t1, t2, t3) + µ3g

(2)
[2,1,1](t1, t3, t2), µi ∈ K.

Recall that mjor(t1, t2, t3, t4) are symmetric by permutations of indices t2, t3, t4. Therefore as a general
form of a commutative polynomial tested for identity of plus-assosymmetric algebras in the case
α = [1, 1, 1, 1], we can take

f
µ1,µ2,µ3,µ4
[1,1,1,1] (t1, t2, t3, t4) = µ1g

(1)
[1,1,1,1](t1, t2, t3, t4)

+ µ2g
(1)
[1,1,1,1](t2, t1, t3, t4) + µ3g

(1)
[1,1,1,1](t3, t1, t2, t4)

+ µ4g
(1)
[1,1,1,1](t4, t1, t2, t3), µi ∈ K.
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By Theorem 1 of [5] free assosymmetric algebra in type α of degree 4 has the following base and
dimensions

α Base Dim

[4] {((aa)a)a, (aa)(aa), (a(aa))a} 3
[3, 1] {(aa)(ab), (b(aa))a, ((ba)a)a, ((ab)a)a, ((aa)b)a, (a(aa))b, 7

((aa)a)b}
[2, 2] {{(aa)(bb), (b(ab))a, ((bb)a)a, ((ba)b)a, ((ab)b)a, (b(aa))b, 9

((ba)a)b, ((ab)a)b, ((aa)b)b}
[2, 1, 1] {(aa)(bc), (c(ab))a, ((cb)a)a, ((bc)a)a, ((ca)b)a, 16

((ac)b)a, ((ba)c)a, ((ab)c)a, (c(aa))b, ((ca)a)b, ((ac)a)b,
((aa)c)b, (b(aa))c, ((ba)a)c, ((ab)a)c, ((aa)b)c}

[1, 1, 1, 1] {(ab)(cd), (d(bc))a, ((dc)b)a, ((cd)b)a, ((db)c)a, ((bd)c)a, ((cb)d)a, 29
((bc)d)a, ((da)c)b, ((dc)a)b, ((cd)a)b, ((da)c)b, ((ad)c)b, ((ca)d)b,
((ac)d)b, (d(ab))c, ((db)a)c, ((bd)a)c, ((da)b)c, ((ad)b)c, ((ba)d)c,
((ab)d)c, (c(ab))d, ((cb)a)d, ((bc)a)d, ((ca)b)d, ((ac)b)d, ((ba)c)d,
((ab)c)d}

Let us substitute in polynomials fα instead of parameters ti elements of free assosymmetric algebras
and calculate its value in terms of assosymmetric multiplication.

We have

f[4](a) = < a, a, {a, a} >= {a, {a, {a, a}}} − {{a, a}, {a, a}}

= 2(a(a(aa)) + 2a((aa)a) + 2(a(aa))a + 2((aa)a)a − 8(aa)(aa)

= 2(a, a, aa) − 2(aa, a, a) + 2a((aa)a) + 2(a(aa))a − 4(aa)(aa)

= 2(a, aa, a) + 4(a(aa))a − 4(aa)(aa)

= 2(aa, a, a) + 4(a(aa))a − 4(aa)(aa)

= 2(aa)(aa) − 2((aa)a)a + 4(a(aa))a − 4(aa)(aa)

= −2((aa)a)a + 4(a(aa))a − 2(aa)(aa).

Since elements ((aa)a)a, (a(aa))a and (aa)(aa) are base elements, this means that f[4](a) 6= 0. So, plus-
assosymmetric algebras have no identity of type [4].

Similar calculations show that f[3,1] = 0 is identity if µ1 = 0. So, in type [3,1] plus-assosymmetric

algebras have an identity g
(2)
[3,1] = 0.

Consider type [2,2] case. Calculations show that

f
µ1,µ2
[2,2] (t1, t2) = 6(µ1 + µ2){(aa)(b, b) − 2(b(ab))a − ((aa)b)b + 2((ba)b)a}.

So, f
µ1,µ2
[2,2] is identity for plus-assosymmetric algebras if µ1 + µ2 = 0, p 6= 2, 3, and, h[2,2](t1, t2) = 0 is

identity for plus-assosymmetric algebras, where h[2,2] = f−1,1
[2,2] . Note that

h[2,2](t1, t2) = t1(t1t
2
2) − t2(t2t

2
1) − 2t1(t2(t1t2)) + 2t2(t1(t1t2))

is identity for plus-assosymmetric algebras.
In the case of type [2,1,1], we have

f
µ1,µ2,µ3
[2,1,1] (a, b, c) = −6(µ1 + µ2 + µ3){(aa)(bc) − 2(c(ab))a − ((aa)b)c + 2((ca)b)a}.

Therefore, h
(1)
[2,1,1] = 0 and h

(2)
[2,1,1] = 0 are identities for plus-assosymmetric algebras, where

h
(1)
[2,1,1] = f 1,−1,0

[2,1,1] , h
(2)
[2,1,1] = f 0,1,−1

[2,1,1] ,
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if p 6= 2, 3. Note that

h
(1)
[2,1,1](t1, t2, t3) = (t1, t1, t2t3) + (t2, t1, t3t1) + (t3, t1, t1t2) − 2(t1, t2, t1t3) − (t3, t2, t

2
1),

h
(2)
[2,1,1](t1, t2, t3) = 2(t1, t2, t1t3) − 2(t1, t3, t1t2) + (t3, t2, t

2
1) − (t2, t3, t

2
1).

Now consider the case [1,1,1,1]. By Lemma 2.7 the polynomial mjor can not give an identity on
Assym+, if p 6= 2, 3. For any assosymmetric algebra A and for any its four elements a, b, c, d ∈ A by
Lemma 2.8,

f
µ1,µ2,µ3,µ4
[1,1,1,1] (a, b, c, d) = (µ1 + µ2 + µ3 + µ4)mjor(a, b, c, d).

Thus, f
µ1,µ2,µ3,µ4
[1,1,1,1] = 0 is identity onAssym+ if and only if

µ1 + µ2 + µ3 + µ4 = 0

Therefore,

µ4 = −µ1 − µ2 − µ3,

and

f
µ1,µ2,µ3,µ4
[1,1,1,1] (t1, t2, t3, t4) = µ1(mjor(t1, t2, t3, t4) − mjor(t4, t1, t2, t3))

+ µ2(mjor(t2, t1, t3, t4) − mjor(t4, t1, t2, t3))

+ µ3(mjor(t3, t1, t2, t4) − mjor(t4, t1, t2, t3)).

In other words, by Lemma 4.3,

−f
µ1,µ2,µ3,µ4
[1,1,1,1] (t1, t2, t3, t4) = µ1 jor1(t1, t4, t2, t3) + µ2 jor1(t2, t4, t1, t3) + µ3 jor1(t3, t4, t1, t2).

By Lemma 2.8 jor1 = 0 is identity onAssym+. So, jor1 = 0 is identity forAssym+.
It remains to prove that all identities appeared for types [2,2] and [2,1,1] are consequences of the

identity jor1 = 0 if p 6= 2, 3.
It is easy too see that

h[2,2](t1, t2) = (t1, t1, t
2
2) − (t2, t2, t

2
1) − 2(t1, t2, t1t2) + 2(t2, t1, t1t2)

= t1(t1t
2
2) − t2(t2t

2
1) − 2{t1(t2(t1t2)) − t2(t1(t1t2))}

= −t1(t2, t2, t1) + t2(t1, t1, t2) − t1(t2(t1t2)) + t2(t1(t1t2)).

Therefore by Lemma 4.1,

h[2,2](t1, t2) = t1(t1, t2, t2) + t2(t1, t1, t2) − t1((t1t2)t2) + (t1(t1t2))t2

= t1(t1, t2, t2) + t2(t1, t1, t2) − (t1, t1t2, t2).

Hence the identity h[2,2] = 0 is a consequence of the identity

(t1, t2t3, t4) − t1(t1, t3, t4) − (t1, t2, t4)t3 = 0.

By Lemma 4.6, (7), this means that the identity h[2,2] = 0 is a consequence of identity jor1 = 0. By
Lemma 4.3

h
(1)
[2,1,1] = mjor(t1, t2, t3, t1) − mjor(t2, t1, t3, t1) = −jor1(t1, t2, t3, t1),

h
(2)
[2,1,1] = mjor(t2, t3, t1, t1) − mjor(t3, t2, t1, t1) = −jor1(t2, t3, t1, t1).

So, jor1 = 0 is a minimal identity for Assym+ that does not follow from commutativity identity if
p = char K 6= 2, 3.
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Now consider the case p = 3. By Lemma 2.7mjor = 0 is an identity for plus-assosymmetric algebras.

As we have checked above g
(1)
[2,2] = 0 and g

(1)
[2,1,1] = g

(2)
[2,1,1] = 0 are identities for p = 3. We have

g
(1)
[2,2](t1, t2) = −(t1, t1, t

2
2) − 2(t2, t1, t1t2) = −mjor(t1, t1, t2, t2),

g
(1)
[2,1,1](t1, t2, t3) = mjor(t1, t1, t2, t3),

g
(2)
[2,1,1](t1, t2, t3) = 2(t1, t2, t1t3) + (t3, t2, t

2
1) = mjor(t2, t3, t1, t1).

So,mjor = 0 is a minimal identity forAssym+, p = 3.
Since by Lemma 4.6 Lie triple identity and the identity jor1 = 0 are equivalent, Theorem 1.5 is proved

completely.

6. Additional remarks

Remark 1. concerns Theorem 1.5 in case p = 2. If p = 2, thenAssym(+) = Assym(−). Therefore, plus-
assosymmetric algebras are Lie, and all identities for Assym(+) follow from commutativity and Jacobi
identities. In particular, Jordan identity andGlennie identity are consequences of commutativity one and
Jacobi identity.

Remark 2. Recall that an Jordan algebra is called special Jordan, if it is isomorphic to a subalgebra of
algebra A(+) for some associative algebra A. Well known that Jordan algebra of 3×3 hermitian matrices
over octoniansM8

3 is not special, and Glennie identity is an example of special Jordan identity. Say that
a Lie triple algebra is special if it is isomorphic to a subalgebra of algebra A(+) for some Lie triple algebra
A. Since for commutative algebras, Jordan identity implies Lie triple identity, by Theorem 1.4M8

3 as Lie
triple algebra is exceptional and Glennie identity of degree 8 is special Lie triple identity.
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