The Dynkin Theorem for Multilinear Lie Elements

Askar Dzhumadil'daev

Communicated by E. B. Vinberg

Abstract

We establish a generalization of the Dynkin theorem for multilinear elements. It allows us to construct the presentation of a multilinear Lie element as a linear combination of base Lie elements. Mathematics Subject Classification 2010: 17B01, 05E99, 05A30. Key Words and Phrases: Dynkin idempotent, Lie elements, Free Lie algebra.

1. Introduction

For elements of an associative algebra $x_{1}, \ldots, x_{n} \in A$, denote by $\left[x_{1}, \ldots, x_{n}\right]$ the right-bracketed commutator $\left[x_{1},\left[x_{2}, \cdots\left[x_{n-1}, x_{n}\right] \cdots\right]\right.$. For example, $\left[x_{1}, x_{2}, x_{3}\right]=$ $x_{1} x_{2} x_{3}-x_{1} x_{3} x_{2}-x_{2} x_{3} x_{1}+x_{3} x_{2} x_{1}$.

Let F_{n} be the multilinear part of the free associative algebra freely generated by n elements a_{1}, \ldots, a_{n}. Recall that a base element of the form $a_{i_{1}} \cdots a_{i_{n}}$ is called multilinear if each element $a_{i}, 1 \leq i \leq n$, enters exactly one time. A linear combination of multilinear base elements is called multilinear. Then F_{n} has a base constituted by the elements $a_{\sigma(1)} \cdots a_{\sigma(n)}$, where $\sigma \in S_{n}$ are permutations. In particular, $\operatorname{dim} F_{n}=n$!. Let L_{n} be the multilinear part of the free Lie algebra generated by elements a_{1}, \ldots, a_{n}. Then L_{n} has a base constituted by elements $\left[a_{\sigma(1)}, \cdots, a_{\sigma(n-1)}, a_{l}\right]$, where $\sigma \in S_{n}$ is such that $\sigma(n)=l$. In particular, $\operatorname{dim} L_{n}=$ ($n-1$)!. Here we suppose that the base field K has characteristic 0 . These facts are known. See details, for example, in [7].

Let $F_{n}^{(l)}$ be the subspace of F_{n} generated by elements $a_{\sigma(1)} \cdots a_{\sigma(n-1)} a_{l}$, where $\sigma \in S_{n}$ runs through all permutations such that $\sigma(n)=l$. In particular, $\operatorname{dim} F_{n}^{(l)}=(n-1)!=\operatorname{dim} L_{n}$. Let

$$
q_{l}: F_{n} \rightarrow F_{n}^{(l)}
$$

be the natural projection of linear spaces,

$$
q_{l}\left(\sum_{\sigma \in S_{n}} \lambda_{\sigma} a_{\sigma(1)} \cdots a_{\sigma(n-1)} a_{\sigma(n)}\right)=\sum_{\sigma \in S_{n}, \sigma(n)=l} \lambda_{\sigma} a_{\sigma(1)} \cdots a_{\sigma(n-1)} a_{l} .
$$

Let

$$
p_{l}=\left[q_{l}\right]: F_{n} \rightarrow L_{n}
$$

be the linear map defined by

$$
p_{l}\left(\sum_{\sigma \in S_{n}} \lambda_{\sigma} a_{\sigma(1)} \cdots a_{\sigma(n-1)} a_{\sigma(n)}\right)=\sum_{\sigma \in S_{n}, \sigma(n)=l} \lambda_{\sigma}\left[a_{\sigma(1)}, \cdots, a_{\sigma(n-1)}, a_{l}\right] .
$$

Then

$$
p=p_{1}+\cdots+p_{n}: F_{n} \rightarrow L_{n}
$$

is the Dynkin map,

$$
p\left(\sum_{\sigma \in S_{n}} \lambda_{\sigma} a_{\sigma(1)} \cdots a_{\sigma(n-1)} a_{\sigma(n)}\right)=\sum_{\sigma \in S_{n}} \lambda_{\sigma}\left[a_{\sigma(1)}, \cdots, a_{\sigma(n-1)}, a_{\sigma(n)}\right] .
$$

An element $X \in F_{n}$ is called a Lie element if $X \in L_{n}$. For example, the element $X=a_{1} a_{2} a_{3}-a_{1} a_{3} a_{2}$ is not Lie and $Y=a_{1} a_{2} a_{3}-a_{1} a_{3} a_{2}-a_{2} a_{3} a_{1}+a_{3} a_{2} a_{1}$ is Lie, $Y=\left[a_{1},\left[a_{2}, a_{3}\right]\right]$. The Dynkin-Specht-Wever theorem ([1], [2], [8], [9]) states that for a homogeneous element X of degree n, X is a Lie element if and only if $p X=n X$.

The aim of our paper is to establish the following more exact version of the Dynkin theorem for multilinear elements.

Theorem 1.1. Let $X \in F_{n}$ is a multilinear element of degree n. Then the following conditions are equivalent:
(i) X is a Lie element
(ii) for any $1 \leq l \leq n, p_{l} X=X$
(iii) $\sum_{l=1}^{n} \lambda_{l} p_{l}(X)=\sum_{l=1}^{n} \lambda_{l} X$, for any $\lambda_{l} \in K, 1 \leq l \leq n$
(iv) $p_{1} X=p_{2} X=\cdots=p_{n} X$.

For a Lie element X let us call its presentation as a linear combination of Lie base elements a Lie expression of X. Theorem 1.1 allows us to construct Lie expressions for known Lie elements.

Corollary 1.2. (Dynkin) If X is a multilinear Lie element of degree n, then X is Lie if and only if $p X=n X$.

Proof. It is clear that for any X the element $p X$ is a Lie element. By this reason, if $p X=n X$ and characteristic of the base field is 0 , then $X=1 / n p X$ is a Lie element.

Conversely, suppose that X is A Lie element. Since $p=\sum_{l=1}^{n} p_{l}$, by Theorem 1.1,

$$
p X=\sum_{l=1}^{n} p_{l}(X)=n X .
$$

2. Proof of Theorem 1.1

Let

$$
S_{n, l}=\left\{\sigma \in S_{n}|\sigma(1)<\cdots<\sigma(l)| \sigma(l+1)<\cdots<\sigma(n)\right\}
$$

and

$$
S_{n}^{(l)}=\left\{\sigma \in S_{n} \mid \sigma(n)=l\right\} .
$$

Lemma 2.1. For any $x_{1}, \ldots, x_{n} \in A$,

$$
\left[x_{1}, \ldots, x_{n}\right]=\sum_{r=0}^{n-1} \sum_{\sigma \in S_{n-1, r}}(-1)^{r} x_{\sigma(1)} \cdots x_{\sigma(r)} x_{n} x_{\sigma(n-1)} \cdots x_{\sigma(r+1)} .
$$

Proof. Follows from Theorem 8.16 [7].
Lemma 2.2. For any $1 \leq l \leq n, q_{l} p_{l}=q_{l}$.
Proof. We have to prove that for any $X \in F_{n}, q_{l} p_{l} X=q_{l} X$. Let us present $q_{l} X$ as a linear combination of base elements

$$
q_{l} X=\sum_{\sigma \in S_{n}^{(l)}} \mu_{\sigma} a_{\sigma(1)} \cdots a_{\sigma(n-1)} a_{l}
$$

Then

$$
p_{l} X=\left[q_{l} X\right]=\sum_{\sigma \in S_{n}^{(l)}} \mu_{\sigma}\left[a_{\sigma(1)}, \cdots, a_{\sigma(n-1)}, a_{l}\right] .
$$

Therefore by Lemma 2.1,

$$
q_{l} p_{l} X=\sum_{\sigma \in S_{n}^{(l)}} \mu_{\sigma} a_{\sigma(1)} \cdots a_{\sigma(n-1)} a_{l}=q_{l} X
$$

Lemma 2.3. Let $X \in F_{n}$. If $p_{l} X=0$ for any $1 \leq l \leq n$, then $X=0$.
Proof. By Lemma 2.2,

$$
p_{l} X=0 \Rightarrow q_{l} p_{l} X=0 \Rightarrow q_{l} X=0 \Rightarrow X=\sum_{l=1}^{n} q_{l} X=0
$$

Proof of Theorem 1.1.

(i) \Longleftrightarrow (ii): Suppose that $X \in F_{n}$ is a Lie element and $1 \leq l \leq n$. Take base of the Lie multilinear part L_{n} constituted by elements $\left[a_{\sigma(1)}, \cdots, a_{\sigma(n-1)}, a_{l}\right]$, where $\sigma \in S_{n}^{(l)}$. Then

$$
X=\sum_{\sigma \in S_{n}^{(l)}} \mu_{\sigma}\left[a_{\sigma(1)}, \ldots, a_{\sigma(n-1)}, a_{l}\right]
$$

for some $\mu_{\sigma} \in K, \sigma \in S_{n}^{(l)}$. Hence by Lemma 2.1,

$$
q_{l} X=\sum_{\sigma \in S_{n}^{(l)}} \mu_{\sigma} a_{\sigma(1)} \cdots a_{\sigma(n-1)} a_{l}
$$

Therefore,

$$
p_{l} X=\left[q_{l} X\right]=\sum_{\sigma \in S_{n}^{(l)}} \mu_{\sigma}\left[a_{\sigma(1)}, \ldots, a_{\sigma(n-1)}, a_{l}\right]=X .
$$

Suppose now that $p_{l} X=X$ for some $1 \leq l \leq n$. Since $p_{l} X$ is a sum of comutators, X is a Lie element.
(ii) \Longleftrightarrow (iii): If $p_{l} X=X$ for any $1 \leq l \leq n$, then

$$
\sum_{l=1}^{n} \lambda_{l} p_{l}(X)=\sum_{l=1}^{n} \lambda_{l} X
$$

for any $\lambda_{l} \in K, 1 \leq l \leq n$.
Suppose conversely, that

$$
\sum_{l=1}^{n} \lambda_{l} p_{l}(X)=\sum_{l=1}^{n} \lambda_{l} X
$$

for any $\lambda_{l} \in K, 1 \leq l \leq n$. For given $1 \leq l \leq n$ take $\lambda_{l}=1$ and $\lambda_{s}=0, s \neq l$. We obtain the condition (i).

So, we have proved that conditions (i), (ii), (iii) are equivalent.
(i), (ii), (iii) \Longleftrightarrow (iv)

Suppose that

$$
\sum_{l=1}^{n} \lambda_{l} p_{l}(X)=\sum_{l=1}^{n} \lambda_{l} X,
$$

for any $\lambda_{l} \in K, 1 \leq l \leq n$. Take $\lambda_{l}=1, \lambda_{l+1}=-1$, and $\lambda_{s}=0, s \neq l, l+1$, for $1 \leq l<n$. Then by (iii)

$$
p_{l} X-p_{l+1} X=0
$$

for any $1 \leq l<n$. This is the condition (iv).
Now suppose that we have the condition (iv). Then

$$
p_{1} X=\cdots=p_{n} X=Y,
$$

for some $Y \in F_{n}$. Moreover, since $p_{l} X$ is a sum of commutators, Y is a Lie element. Then (since conditions (i) and (ii) are equivalent),

$$
p_{l} Y=Y, \quad 1 \leq l \leq n .
$$

Let $Z=X-Y$. Then

$$
p_{l} Z=p_{l} X-p_{l} Y=Y-Y=0
$$

for any $1 \leq l \leq n$. By Lemma $2.3, Z=0$. So, $X=Y$, and

$$
p_{1} X=\cdots=p_{n} X=X
$$

We obtain the condition (ii).
Theorem 1.1 is proved completely.

3. Applications of Theorem 1.1

For a Lie element X let us call its presentation as a linear combination of Lie base elements a Lie expression of X. In this section we construct Lie expressions for known Lie elements. Since these elements are multilinear, all constructions follow from Theorem 1.1.

For a word $u=i_{1} \ldots i_{k}$ with components in $[n]=\{1,2, \ldots, n\}$, let us say that $k=|u|$ is its length, and that $s \in[n-1]$ is a descent index if $i_{s}>i_{s+1}$. Denote by $\operatorname{Des}(u)$ the set of descent indices of u. The sum of all descent indices is called the major index of u and is denoted as $\operatorname{maj}(u)$,

$$
\operatorname{maj}(u)=\sum_{j \in \operatorname{Des}(u)} j
$$

Define the multi-parametric \mathbf{q}-major index $\operatorname{maj}_{\mathbf{q}}(u)$ of a word u by

$$
\operatorname{maj}_{\mathbf{q}}(u)=\frac{\prod_{j \in \operatorname{Des}(u)} q_{u(1)} \cdots q_{u(j)}}{\prod_{i=1}^{|u|-1}\left(1-q_{u(1)} \cdots q_{u(i)}\right)}
$$

where $\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)$ are some variables.
For a primitive n-th root of unity $q \in K$, A.A. Klyachko has constructed in [4] the following Lie element:

$$
k_{n}=\frac{1}{n} \sum_{\sigma \in S_{n}} q^{\operatorname{maj}(\sigma)} a_{\sigma(1)} \cdots a_{\sigma(n)}
$$

The Klyachko element has the following multi-parameter generalisation [6]. Let

$$
k_{n}(\mathbf{q})=\sum_{\sigma \in S_{n}} m a j_{\mathbf{q}}(\sigma) a_{\sigma(1)} \ldots a_{\sigma(n)}
$$

Then $k_{n}(\mathbf{q})$ is a Lie element if $q_{1} q_{2} \cdots q_{n}=1$, but $q_{i_{1}} q_{i_{2}} \cdots q_{i_{r}} \neq 1$ for any proper subset $\left\{i_{1}, \ldots, i_{r}\right\} \subset[n]$.

The Klyachko element has one more generalization. In [5] a Lie idempotent was constructed that generalises three other well-known idempotents. This generalization concerns the so called q-Solomon Lie element,

$$
\phi_{n}(q)=\frac{1}{n} \sum_{\sigma \in S_{n}} \frac{(-1)^{\operatorname{des}(\sigma)} q^{\operatorname{maj}(\sigma)-\binom{d(\sigma)+1}{2}}}{\left[\begin{array}{c}
n-1 \\
d(\sigma)
\end{array}\right]_{q}} a_{\sigma(1)} \cdots a_{\sigma(n)}
$$

Here $\left[\begin{array}{c}n-1 \\ p\end{array}\right]_{q}$ denotes the q-binomial coefficient. Recall that

$$
[n]_{q}!=1+q+\cdots+q^{n-1}
$$

and

$$
\left[\begin{array}{c}
n \\
p
\end{array}\right]_{q}=\frac{[n]_{q}!}{[p]_{q}![n-p]_{q}!}
$$

q-Solomon elements have the following properties:

$$
\phi_{n}(\omega)=k_{n}(\omega)
$$

is the Klyachko element if ω is a primitive root of degree n,

$$
\phi_{n}(0)=\left[\cdots\left[a_{1}, a_{2}\right], \cdots, a_{n}\right]
$$

is the Dynkin Lie element in the case $q=0$, and

$$
\phi_{n}(1)=\sum_{\sigma \in S_{n}} \frac{(-1)^{\operatorname{des}(\sigma)}}{\binom{n-1}{\operatorname{des}(\sigma)}} a_{\sigma(1)} \cdots a_{\sigma(n)}
$$

gives us the (first) Euler element if $q=1$.
Corollary 3.1. A Lie expression for the multi-parameter Klyachko element is

$$
k_{n}(\mathbf{q})=\sum_{\sigma \in S_{n}, \sigma(n)=n} \operatorname{maj}_{\mathbf{q}}(\sigma)\left[a_{\sigma(1)}, \ldots, a_{\sigma(n-1)}, a_{n}\right]
$$

Corollary 3.2. A Lie expression for the Klyachko element is

$$
k_{n}=\frac{1}{n} \sum_{\sigma \in S_{n}, \sigma(n)=n} q^{\operatorname{maj}(\sigma)}\left[a_{\sigma(1)}, \ldots, a_{\sigma(n-1)}, a_{n}\right] .
$$

These facts was established in [3].
Corollary 3.3. A Lie expression for the q-Solomon element is given by

$$
\phi_{n}(q)=\frac{1}{n} \sum_{\sigma \in S_{n}, \sigma(n)=n} \frac{(-1)^{\operatorname{des}(\sigma)} q^{\operatorname{maj}(\sigma)-\binom{d(\sigma)+1}{2}}}{\left[\begin{array}{c}
n-1 \\
d(\sigma)
\end{array}\right]_{q}}\left[a_{\sigma(1)}, \cdots, a_{\sigma(n-1)}, a_{n}\right] .
$$

Corollary 3.4. A Lie expression for the Dynkin element is

$$
\left[\left[\cdots\left[a_{1}, a_{2}\right], \cdots\right], a_{n}\right]=\sum_{\sigma \in M_{n}}(-1)^{\operatorname{des}(\sigma)}\left[a_{\sigma(1)}, \cdots, a_{\sigma(n-1)}, a_{n}\right] .
$$

Here summation is taken over the set of permutations

$$
M_{n}=\left\{\sigma \in S_{n} \left\lvert\, \operatorname{maj}(\sigma)=\binom{\operatorname{des}(\sigma)+1}{2}\right., \sigma(n)=n\right\} .
$$

Let

$$
M_{n}^{\prime}=\left\{\sigma \in S_{n-1} \left\lvert\, \operatorname{maj}(\sigma)=\binom{\operatorname{des}(\sigma)+1}{2}\right.\right\} .
$$

Then

$$
M_{n}=\left\{\sigma n \mid \sigma \in M_{n}^{\prime}\right\} .
$$

Note that the set M_{n}^{\prime} can be easily construced by induction. Set $M_{2}^{\prime}=\{1\}$. Then M_{n+1}^{\prime}, for $n>1$, consists of permutations of the forms σn (append n at the end) and $n \sigma$ (prepend n at the beginning), where $\sigma \in M_{n}^{\prime}$. Note also that for any $\sigma \in M_{n}^{\prime}$,

$$
\operatorname{des}(n \sigma)=\operatorname{des}(\sigma)+1, \quad \operatorname{des}(\sigma n)=\operatorname{des}(\sigma)
$$

Corollary 3.5. The Euler element has the following Lie expression

$$
\phi_{n}(1)=\sum_{\sigma \in S_{n}, \sigma(n)=n} \frac{(-1)^{\operatorname{des}(\sigma)}}{\binom{n-1}{\operatorname{des}(\sigma)}}\left[a_{\sigma(1)}, \cdots, a_{\sigma(n-1)}, a_{n}\right]
$$

References

[1] Dynkin, E. B., Computation of the coefficients in the Campbell-Hausdroff formula, Doklady Akad. Nauk SSSR 57 (1947), 323-326.
[2] -, On the representation of the series $\log \left(e^{x} e^{y}\right)$ in non-commutating x and y via the commutators, Mat. Sbornik 25 (1949), 155-162.
[3] Dzhumadil'daev, A. S., Lie expression for multi-parameter Klyachko idempotent, J. Alg. Comb. 33 (2011), 531-542.
[4] Klyachko, A. A., Lie elements in a tensor algebra, Sibirsk. Mat. Zh. 15 (1974), 1296-1304.
[5] Krob, D., B. Leclerc, and J.-Y. Thibon, Noncommutative symmetric functions II: Transformations of alphabets, Int. J. Algebra and Computation 7 (1997), 181-264.
[6] McNamara, P., and C. Reutenauer, P-partitions and multi-parameter Klyachko idempotent, Elect. J. Comb. 11(2) (2005), \#R21.
[7] Reutenauer, C., "Free Lie algebras," Clarendon Press, Oxford, 1993.
[8] W. Specht, Die linearen Beziehungen zwischen höheren Kommutatoren, Math. Z. 51 (1948), 367-376.
[9] F. Wever, Über Invarianten in Lieschen Ringen, Math. Annalen, 120 (1949), 563-580.

Askar Dzhumadil'daev
Kazakh-British Technical University
Tole bi 59
Almaty,050000, Kazakhstan
dzhuma@hotmail.com

Received November 9, 2012
and in final form December 19, 2012

