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The Dynkin Theorem for Multilinear Lie Elements
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Abstract. We establish a generalization of the Dynkin theorem for multi-
linear elements. It allows us to construct the presentation of a multilinear Lie
element as a linear combination of base Lie elements.
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1. Introduction

For elements of an associative algebra x1, . . . , xn ∈ A, denote by [x1, . . . , xn] the
right-bracketed commutator [x1, [x2, · · · [xn−1, xn] · · · ]]. For example, [x1, x2, x3] =
x1x2x3 − x1x3x2 − x2x3x1 + x3x2x1.

Let Fn be the multilinear part of the free associative algebra freely generated
by n elements a1, . . . , an. Recall that a base element of the form ai1 · · · ain is
called multilinear if each element ai, 1 ≤ i ≤ n, enters exactly one time. A linear
combination of multilinear base elements is called multilinear. Then Fn has a
base constituted by the elements aσ(1) · · · aσ(n), where σ ∈ Sn are permutations.
In particular, dimFn = n!. Let Ln be the multilinear part of the free Lie algebra
generated by elements a1, . . . , an. Then Ln has a base constituted by elements
[aσ(1), · · · , aσ(n−1), al], where σ ∈ Sn is such that σ(n) = l. In particular, dimLn =
(n− 1)!. Here we suppose that the base field K has characteristic 0. These facts
are known. See details, for example, in [7].

Let F
(l)
n be the subspace of Fn generated by elements aσ(1) · · · aσ(n−1)al,

where σ ∈ Sn runs through all permutations such that σ(n) = l. In particular,

dimF
(l)
n = (n− 1)! = dimLn. Let

ql : Fn → F (l)
n

be the natural projection of linear spaces,

ql(
∑
σ∈Sn

λσaσ(1) · · · aσ(n−1)aσ(n)) =
∑

σ∈Sn,σ(n)=l

λσaσ(1) · · · aσ(n−1)al.

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



796 Dzhumadil’daev

Let
pl = [ql] : Fn → Ln

be the linear map defined by

pl(
∑
σ∈Sn

λσaσ(1) · · · aσ(n−1)aσ(n)) =
∑

σ∈Sn,σ(n)=l

λσ[aσ(1), · · · , aσ(n−1), al].

Then
p = p1 + · · ·+ pn : Fn → Ln

is the Dynkin map,

p(
∑
σ∈Sn

λσaσ(1) · · · aσ(n−1)aσ(n)) =
∑
σ∈Sn

λσ[aσ(1), · · · , aσ(n−1), aσ(n)].

An element X ∈ Fn is called a Lie element if X ∈ Ln. For example, the
element X = a1a2a3−a1a3a2 is not Lie and Y = a1a2a3−a1a3a2−a2a3a1 +a3a2a1
is Lie, Y = [a1, [a2, a3]]. The Dynkin-Specht-Wever theorem ([1], [2], [8], [9]) states
that for a homogeneous element X of degree n, X is a Lie element if and only if
pX = nX.

The aim of our paper is to establish the following more exact version of the
Dynkin theorem for multilinear elements.

Theorem 1.1. Let X ∈ Fn is a multilinear element of degree n. Then the
following conditions are equivalent:

(i) X is a Lie element

(ii) for any 1 ≤ l ≤ n, plX = X

(iii)
∑n

l=1 λlpl(X) =
∑n

l=1 λlX, for any λl ∈ K, 1 ≤ l ≤ n

(iv) p1X = p2X = · · · = pnX.

For a Lie element X let us call its presentation as a linear combination of
Lie base elements a Lie expression of X . Theorem 1.1 allows us to construct Lie
expressions for known Lie elements.

Corollary 1.2. (Dynkin) If X is a multilinear Lie element of degree n, then
X is Lie if and only if pX = nX.

Proof. It is clear that for any X the element pX is a Lie element. By this
reason, if pX = nX and characteristic of the base field is 0, then X = 1/n pX is
a Lie element.

Conversely, suppose that X is A Lie element. Since p =
∑n

l=1 pl, by
Theorem 1.1,

pX =
n∑
l=1

pl(X) = nX.
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2. Proof of Theorem 1.1

Let

Sn,l = {σ ∈ Sn|σ(1) < · · · < σ(l) | σ(l + 1) < · · · < σ(n)}

and

S(l)
n = {σ ∈ Sn|σ(n) = l}.

Lemma 2.1. For any x1, . . . , xn ∈ A,

[x1, . . . , xn] =
n−1∑
r=0

∑
σ∈Sn−1,r

(−1)rxσ(1) · · ·xσ(r)xnxσ(n−1) · · ·xσ(r+1).

Proof. Follows from Theorem 8.16 [7].

Lemma 2.2. For any 1 ≤ l ≤ n, qlpl = ql.

Proof. We have to prove that for any X ∈ Fn, qlplX = qlX. Let us present
qlX as a linear combination of base elements

qlX =
∑
σ∈S(l)

n

µσaσ(1) · · · aσ(n−1)al.

Then

plX = [qlX] =
∑
σ∈S(l)

n

µσ[aσ(1), · · · , aσ(n−1), al].

Therefore by Lemma 2.1,

qlplX =
∑
σ∈S(l)

n

µσaσ(1) · · · aσ(n−1)al = qlX.

Lemma 2.3. Let X ∈ Fn. If plX = 0 for any 1 ≤ l ≤ n, then X = 0.

Proof. By Lemma 2.2,

plX = 0⇒ qlplX = 0⇒ qlX = 0⇒ X =
n∑
l=1

qlX = 0.

Proof of Theorem 1.1.

(i) ⇐⇒ (ii): Suppose that X ∈ Fn is a Lie element and 1 ≤ l ≤ n. Take
base of the Lie multilinear part Ln constituted by elements [aσ(1), · · · , aσ(n−1), al],
where σ ∈ S(l)

n . Then

X =
∑
σ∈S(l)

n

µσ[aσ(1), . . . , aσ(n−1), al],



798 Dzhumadil’daev

for some µσ ∈ K, σ ∈ S(l)
n . Hence by Lemma 2.1,

qlX =
∑
σ∈S(l)

n

µσaσ(1) · · · aσ(n−1)al.

Therefore,

plX = [qlX] =
∑
σ∈S(l)

n

µσ[aσ(1), . . . , aσ(n−1), al] = X.

Suppose now that plX = X for some 1 ≤ l ≤ n. Since plX is a sum of
comutators, X is a Lie element.

(ii) ⇐⇒ (iii): If plX = X for any 1 ≤ l ≤ n, then
n∑
l=1

λlpl(X) =
n∑
l=1

λlX,

for any λl ∈ K, 1 ≤ l ≤ n.

Suppose conversely, that
n∑
l=1

λlpl(X) =
n∑
l=1

λlX,

for any λl ∈ K, 1 ≤ l ≤ n. For given 1 ≤ l ≤ n take λl = 1 and λs = 0, s 6= l.
We obtain the condition (i).

So, we have proved that conditions (i), (ii), (iii) are equivalent.

(i), (ii), (iii) ⇐⇒ (iv)

Suppose that
n∑
l=1

λlpl(X) =
n∑
l=1

λlX,

for any λl ∈ K, 1 ≤ l ≤ n. Take λl = 1, λl+1 = −1, and λs = 0, s 6= l, l + 1, for
1 ≤ l < n. Then by (iii)

plX − pl+1X = 0

for any 1 ≤ l < n. This is the condition (iv).

Now suppose that we have the condition (iv). Then

p1X = · · · = pnX = Y,

for some Y ∈ Fn. Moreover, since plX is a sum of commutators, Y is a Lie
element. Then (since conditions (i) and (ii) are equivalent),

plY = Y, 1 ≤ l ≤ n.

Let Z = X − Y. Then

plZ = plX − plY = Y − Y = 0,

for any 1 ≤ l ≤ n. By Lemma 2.3, Z = 0. So, X = Y, and

p1X = · · · = pnX = X.

We obtain the condition (ii).

Theorem 1.1 is proved completely.
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3. Applications of Theorem 1.1

For a Lie element X let us call its presentation as a linear combination of Lie base
elements a Lie expression of X. In this section we construct Lie expressions for
known Lie elements. Since these elements are multilinear, all constructions follow
from Theorem 1.1.

For a word u = i1 . . . ik with components in [n] = {1, 2, . . . , n}, let us say
that k = |u| is its length, and that s ∈ [n − 1] is a descent index if is > is+1.
Denote by Des(u) the set of descent indices of u . The sum of all descent indices
is called the major index of u and is denoted as maj(u),

maj(u) =
∑

j∈Des(u)

j.

Define the multi-parametric q-major index majq(u) of a word u by

majq(u) =

∏
j∈Des(u) qu(1) · · · qu(j)∏|u|−1
i=1 (1− qu(1) · · · qu(i))

,

where q =(q1, . . . , qn) are some variables.

For a primitive n-th root of unity q ∈ K, A.A. Klyachko has constructed
in [4] the following Lie element:

kn =
1

n

∑
σ∈Sn

qmaj(σ)aσ(1) · · · aσ(n).

The Klyachko element has the following multi-parameter generalisation [6]. Let

kn(q) =
∑
σ∈Sn

majq(σ)aσ(1) . . . aσ(n).

Then kn(q) is a Lie element if q1q2 · · · qn = 1, but qi1qi2 · · · qir 6= 1 for any proper
subset {i1, . . . , ir} ⊂ [n].

The Klyachko element has one more generalization. In [5] a Lie idempo-
tent was constructed that generalises three other well-known idempotents. This
generalization concerns the so called q -Solomon Lie element,

φn(q) =
1

n

∑
σ∈Sn

(−1)des(σ)qmaj(σ)−(d(σ)+1
2 )[ n− 1

d(σ)

]
q

aσ(1) · · · aσ(n).

Here
[ n− 1

p

]
q

denotes the q -binomial coefficient. Recall that

[n]q! = 1 + q + · · ·+ qn−1

and [ n
p

]
q

=
[n]q!

[p]q![n− p]q!
.
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q -Solomon elements have the following properties:

φn(ω) = kn(ω)

is the Klyachko element if ω is a primitive root of degree n ,

φn(0) = [· · · [a1, a2], · · · , an]

is the Dynkin Lie element in the case q = 0, and

φn(1) =
∑
σ∈Sn

(−1)des(σ)(
n−1
des(σ)

) aσ(1) · · · aσ(n)

gives us the (first) Euler element if q = 1.

Corollary 3.1. A Lie expression for the multi-parameter Klyachko element is

kn(q) =
∑

σ∈Sn,σ(n)=n

majq(σ)[aσ(1), . . . , aσ(n−1), an].

Corollary 3.2. A Lie expression for the Klyachko element is

kn =
1

n

∑
σ∈Sn,σ(n)=n

qmaj(σ)[aσ(1), . . . , aσ(n−1), an].

These facts was established in [3].

Corollary 3.3. A Lie expression for the q -Solomon element is given by

φn(q) =
1

n

∑
σ∈Sn,σ(n)=n

(−1)des(σ)qmaj(σ)−(d(σ)+1
2 )[ n− 1

d(σ)

]
q

[aσ(1), · · · , aσ(n−1), an].

Corollary 3.4. A Lie expression for the Dynkin element is

[[· · · [a1, a2], · · · ], an] =
∑
σ∈Mn

(−1)des(σ)[aσ(1), · · · , aσ(n−1), an].

Here summation is taken over the set of permutations

Mn = {σ ∈ Sn|maj(σ) =

(
des(σ) + 1

2

)
, σ(n) = n}.

Let

M ′
n = {σ ∈ Sn−1|maj(σ) =

(
des(σ) + 1

2

)
}.

Then
Mn = {σ n|σ ∈M ′

n}.
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Note that the set M ′
n can be easily construced by induction. Set M ′

2 = {1}. Then
M ′

n+1, for n > 1, consists of permutations of the forms σ n (append n at the end)
and nσ (prepend n at the beginning), where σ ∈ M ′

n. Note also that for any
σ ∈M ′

n,
des(nσ) = des(σ) + 1, des(σ n) = des(σ).

Corollary 3.5. The Euler element has the following Lie expression

φn(1) =
∑

σ∈Sn,σ(n)=n

(−1)des(σ)(
n−1
des(σ)

) [aσ(1), · · · , aσ(n−1), an].

References

[1] Dynkin, E. B., Computation of the coefficients in the Campbell-Hausdroff
formula, Doklady Akad. Nauk SSSR 57 (1947), 323–326.

[2] —, On the representation of the series log(exey) in non-commutating x and
y via the commutators, Mat. Sbornik 25 (1949), 155–162.

[3] Dzhumadil’daev, A. S., Lie expression for multi-parameter Klyachko idempo-
tent, J. Alg. Comb. 33 (2011), 531–542.

[4] Klyachko, A. A., Lie elements in a tensor algebra, Sibirsk. Mat. Zh. 15
(1974), 1296–1304.

[5] Krob, D., B. Leclerc, and J.-Y. Thibon, Noncommutative symmetric functions
II: Transformations of alphabets, Int. J. Algebra and Computation 7 (1997),
181–264.

[6] McNamara, P., and C. Reutenauer, P -partitions and multi-parameter Kly-
achko idempotent, Elect. J. Comb. 11(2) (2005), #R21.

[7] Reutenauer, C., “Free Lie algebras,” Clarendon Press, Oxford, 1993.

[8] W. Specht, Die linearen Beziehungen zwischen höheren Kommutatoren,
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