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a b s t r a c t

A permutation σ of a multiset is called Stirling permutation if
σ(s) ≥ σ(i) as soon as σ(i) = σ(j) and i < s < j. In our paper
we study Stirling polynomials that arise in the generating function
for descent statistics on Stirling permutations of any multiset.
We develop generalizations of the classical Stirling numbers and
present their combinatorial interpretations. Particularly, we apply
the theory of P-partitions. Using certain specifications we also
introduce the Stirling numbers of odd type and generalizations of
the central factorial numbers.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Let k = (k1, . . . , kn) and n = {1k1 , . . . , nkn} be a multiset of type k, i.e., ki is a number of copies of
the element i. A permutation of a multiset is a sequence of its elements. We say that the permutation
σ of a multiset is a Stirling permutation if σ(s) ≥ σ(i) as soon as σ(i) = σ(j) and i < s < j. Stirling
permutations were introduced by Gessel and Stanley [10] in case of the multiset {12, . . . , n2

}.
Denote by SP k the set of Stirling permutations of n. For σ ∈ SP k say that i is a descent index if

σ(i) > σ(i + 1) and i < K or i = K , where K = k1 + · · · + kn. Let

Ak,i = |{σ ∈ SP k : |des(σ )| = i}|

be the number of Stirling permutations that have i descents (here des(σ ) is a set of descent indices of
σ ). The number Ak,i is called Eulerian number and the polynomial

n
i=1 Ak,ixi is Eulerian polynomial.

Since all copies of every element j(1 ≤ j ≤ n) contain at most one descent index, it is clear that
Ak,i = 0 if i > n. All copies of the greatest element cannot be separated and can be put in any of
k1 + · · · + kn−1 + 1 spaces between the other elements; this provides that

|SP k| =

n−1
i=1

(k1 + · · · + ki + 1).
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Define the rational functions Gk(x) and gk(x) as

Gk(x) =

n
i=1

Ak,ixi

(1 − x)K+1
and gk(x) =

K
i=K−n+1

Ak,K+1−ixi

(1 − x)K+1
.

These functions can be presented as formal power series of x and let Bk(m), bk(m) be their correspond-
ing coefficients:

Gk(x) =

∞
m=0

Bk(m)xm, gk(x) =

∞
m=0

bk(m)xm.

In fact, these coefficients are polynomials inm. Note that the series above yield

Bk(0) = 0 and bk(0) = · · · = bk(K − n) = 0.

We call the polynomials Bk(m) and bk(m) Stirling polynomials. The reason for such terminology is that

Bk(m) = S(n + m,m) and bk(m) = s(m,m − n),

where s(i, j) and S(i, j) are Stirling numbers of the first and second kinds, if ki = 2 for all i = 1, 2, . . . , n
[10].

The aim of our paper is to give combinatorial interpretations of Stirling polynomials Bk(m), bk(m)
for all k1, . . . , kn. Our approach is the following.

• Firstly, we apply the theory of P-partitions [16] and construct posets, we call them k-Stirling posets
Pk, whose order polynomials Ω(Pk,m), Ω(Pk,m) equal to Bk(m), bk(m), respectively.

• Next, we introduce the k-Stirling numbers of first and second kinds sk(n,m), Sk(n,m), for which

Bk(m) = Sk(ℓ + m,m) and bk(m) = sk(m,m − ℓ),

where ℓ = ℓ(n) is a number of components of n with multiplicities greater than 1,

ℓ = |{i | ki > 1, i = 1, . . . , n}|.

Combinatorial meanings of Sk(n,m) and sk(n,m) are related to partitions of sets and permutation
records.

If k = (1, 2, . . . , 2), we call the k-Stirling numbers as the Stirling numbers of odd type.1 The
case k = (1, . . . , 1, 2, . . . , 1, . . . , 1, 2) yields that the k-Stirling numbers naturally generalize the
central factorial numbers.

Related work. Gessel and Stanley [10] were first who introduced the notion of Stirling
permutations and presented combinatorial interpretations for the coefficients of the generating
function (1 − x)2n+1 

S(n + m,m)xm.
Brenti [1,2] studied Stirling permutations in general case for all ki. He has obtained algebraic

properties of Stirling polynomials and proved that Bk(m + 1) is a Hilbert polynomial. Note that
Ω(P,m + 1) is a Hilbert polynomial for any poset P , and therefore our construction of the k-Stirling
poset implies the same property for Bk(m + 1).

For k1 = · · · = kn, the k-Stirling poset was introduced by Klingsberg and Schmalzried [12].
Park [14] also studied this case with extensions to q-Stirling numbers.

Similar problems have been studied for the Legendre–Stirling and the Jacobi–Stirling numbers and
polynomials. Egge [6] has presented a theory concerning the Legendre–Stirling permutations. Gessel,
Lin and Zeng [9] have applied the theory of P-partitions for the Jacobi–Stirling polynomials. In our
notation, their combinatorial structures apparently work with ki = 1, 2 (for all 1 ≤ i ≤ n), where no
two consecutive ki equal to 1.

1 In [13] these numbers of the second kind were denoted as half-integer Stirling numbers.
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Examples.

k Bk(m) bk(m)

(k1, . . . , kn) = (1, . . . , 1) mn mn

(k1) = (k)


k+m−1
k

 m
k


(k1, . . . , kn) = (1, . . . , 1, 2)

m
i=1 i

n m−1
i=1 in

(k1, . . . , kn) = (2, . . . , 2) S(n + m,m) s(m,m − n)
(k1, . . . , k2n) = (1, 2, . . . , 1, 2) T (2n + 2m, 2m) t(2m, 2m − 2n)

Here T (2i, 2j), t(2i, 2j) are the central factorial numbers [15].

2. General properties of Stirling polynomials

Theorem 1. Let m be a positive integer. Then

• Bk(m), bk(m) are both polynomials in m of degree K with leading coefficients |SP k|/K ! and

Bk(0) = Bk(−1) = · · · = Bk(−K + n) = 0, Bk(m) = (−1)Kbk(−m).

• if kn > 1, then

Bk(m) =

m
i=0

iBk\kn(i)

kn + m − i − 2

kn − 2


, bk(m) =

m−1
i=0

ibk\kn(i)

m − i − 1
kn − 2


, (1)

where k \ kn = (k1, . . . , kn−1).
• B∅(m) = 1, Bk(0) = 0; and

Bk(m) =


Bk(m − 1) + Bk′(m), if kn > 1;
mBk′(m), if kn = 1, (2)

• b∅(m) = 1, bk(0) = 0; and

bk(m) =


bk(m − 1) + bk′(m − 1), if kn > 1;
mbk′(m), if kn = 1, (3)

where k′
= (k1, . . . , kn−1, kn − 1).

To prove Theorem 1 we need the following supplementary properties.

Lemma 1. Let k \ kn = (k1, . . . , kn−1). The recurrence for Ak,i is given by

Ak,i = i · Ak\kn,i + (k1 + · · · + kn−1 + 1 − (i − 1)) · Ak\kn,i−1, (4)

with A(k),1 = 1 and Ak,i = 0 if i = 0 or i > n.
The following differential equations hold for Gk(x), gk(x):

Gk(x) =
x

(1 − x)kn−1

d(Gk\kn(x))
dx

, (5)

gk(x) =
xkn

(1 − x)kn−1

d(gk\kn(x))
dx

. (6)

Proof. Theproof of (4) is standard. Stirling permutations of themultiset {1k1 , . . . , nkn} canbe obtained
from Stirling permutations of the multiset {1k1 , . . . , (n − 1)kn−1} by inserting the block nkn in any of
k1 + · · · + kn−1 + 1 spaces between the elements. Let σ be the permutation of {1k1 , . . . , (n − 1)kn−1}

and σ (t) be the corresponding permutation of {1k1 , . . . , nkn}, where the block nkn is inserted to the
t-th place of σ . If t is a descent index of σ , then desσ (t)

= desσ . If t is not a descent index of
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σ , then desσ (t)
= desσ + 1. In other words, the block nkn can be inserted in any of i descents

of Ak\kn,i permutations without producing a new descent; or it creates a new descent at any of
(k1 + · · ·+ kn−1 + 1− (i− 1)) positions (with no descent) of Ak\kn,i−1 permutations. So, (4) is proved.

By (4) we have

Gk(x) =

n
i=1

Ak,ixi

(1 − x)K+1

=
x

(1 − x)kn−1

n
i=1

(iAk\kn,ix
i−1

+ (k1 + · · · + kn−1 + 2 − i)Ak\kn,i−1xi−1)

(1 − x)k1+···+kn−1+2

=
x

(1 − x)kn−1
d


n−1
i=1

Ak\kn,ix
i

(1 − x)k1+···+kn−1+1

 /dx

=
x

(1 − x)kn−1

d(Gk\kn(x))
dx

.

Note that

gk(x) = (−1)K+1Gk(1/x).

Thus, from Eq. (5)

Gk(1/x) = (−1)kn−1 xkn−2

(1 − x)kn−1

d(Gk\kn(1/x))
d(1/x)

.

Therefore,

gk(x) = −
xkn−2

(1 − x)kn−1

d(gk\kn(x))
d(1/x)

=
xkn

(1 − x)kn−1

d(gk\kn(x))
dx

. �

Proof of Theorem 1. By (5), (6) we have

∞
m=0

Bk(m)xm =
1

(1 − x)kn−1

∞
j=0

jBk\kn(j)x
j,

∞
m=0

bk(m)xm =
1

(1 − x)kn−1

∞
j=0

jbk\kn(j)x
kn+j−1.

To obtain (1), it remains to use the well known relation 1
(1−x)kn−1 =


∞

i=0


kn+i−2
kn−2


xi.

If kn > 1, then Eqs. (5), (6) can be written as

Gk(x) =
x

(1 − x)kn−1

d(Gk\kn(x))
dx

=
1

(1 − x)
x

(1 − x)kn−2

d(Gk\kn(x))
dx

=
1

(1 − x)
Gk′(x),
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gk(x) =
xkn

(1 − x)kn−1

d(gk\kn(x))
dx

=
x

(1 − x)
xkn−1

(1 − x)kn−2

d(gk\kn(x))
dx

=
x

(1 − x)
gk′(x).

Thus, we have

Gk(x) =
1

(1 − x)
Gk′(x), gk(x) =

x
(1 − x)

gk′(x),

which provide us the first cases of recurrences (2), (3).
If kn = 1, then the second cases of (2), (3) are easy consequences of Eqs. (5), (6).
Let us now prove by induction on K that for every multiset n = {1k1 , . . . , nkn} having K elements,

the polynomial Bk(m) is a polynomial inm of degree K with the leading coefficient |SP k|/K ! and

Bk(0) = Bk(−1) = · · · = Bk(−K + n) = 0.

If K = 0, then B∅(m) = 1; if K = 1, then Bk(m) = m.
Suppose that the statement is true for all multisets having less than K elements and let n =

{1k1 , . . . , nkn} be any multiset having K elements.
If kn > 1, then Bk′(m) is a polynomial inm of degree K − 1 with the leading coefficient

a = |SP k′ |/(K − 1)! = |SP k|/K !

and

Bk′(0) = Bk′(−1) = · · · = Bk′(−K + 1 + n) = 0.

Hence, by the recurrence (2) ifm is any positive integer, then

Bk(m) − Bk(m − 1) = Bk′(m) or Bk(m) =

m
i=1

Bk′(i).

Therefore, Bk(m) is a polynomial inm of degree K with the leading coefficient

a/K = |SP k|/K !.

Hence,

Bk(m) − Bk(m − 1) = Bk′(m)

for anym. So,

Bk(0) − Bk(−m − 1) =

0
i=−m

Bk′(i).

By the definition, Bk(0) = 0 and hence

Bk(0) = Bk(−1) = · · · = Bk(−K + n) = 0.

If kn = 1, then Bk′(m) is a polynomial inm of degree K − 1 with the leading coefficient

a = |SP k′ |/(K − 1)! = |SP k|/K !

and

Bk′(0) = Bk′(−1) = · · · = Bk′(−K + 1 + n − 1) = 0.

By the recurrence relation (2), Bk(m) = mBk′(m). Therefore, Bk(m) is a polynomial in m of degree K
with the leading coefficient

a = |SP k′ |/(K − 1)! = |SP k|/K !
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and

Bk(0) = Bk(−1) = · · · = Bk(−K + n) = 0.

Now, if we take a new polynomial

fk(m) = (−1)KBk(−m),

then f∅(m) = 1, fk(0) = 0 and the recurrence (2) gives

fk(m) = fk(m − 1) + fk′(m − 1), if kn > 1

and

fk(m) = mfk′(m), if kn = 1,

which implies that fk(m) = bk(m). �

3. Stirling polynomials as order polynomials

Suppose that P is a finite labeled partially ordered set with the partial order <p.

Definition 1. LetΩ(P,m) be the number of order-preservingmaps σ : P → {1, . . . ,m} andΩ(P,m)
be the number of strict order-preserving maps σ : P → {1, . . . ,m}, i.e., if x<p y then σ(x) ≤ σ(y)
and σ(x) < σ(y).

It is known that Ω(P,m), Ω(P,m) are polynomials in m called order polynomials and Ω(P,m) =

(−1)|P|Ω(P, −m) (see [16]).
Let us call an s-tuple (q1, . . . , qs) by an s-series with end qs if q1 = · · · = qs−1 = 1 and qs > 1; or

just by an s-series if such qs does not exist. We say that the multiset n (or n-tuple k) has

length ℓ(n) = ℓ and weight w(n) = (a1, . . . , aℓ; t1, . . . , tℓ; a)

if k can be presented as a sequence of ai-series with ends ti and a-series:

(k1, . . . , kn) = (1, . . . , 1  
a1−1 ones

, t1, . . . , 1, . . . , 1  
aℓ−1 ones

, tℓ, 1, . . . , 1  
a ones

),

where ai > 0, ti > 1 for all 1 ≤ i ≤ ℓ and a ≥ 0.
For example, if n = 10 and k1 = 1, k2 = 1, k3 = 3, k4 = 2, k5 = 1, k6 = 1, k7 = 1, k8 = 2, k9 =

5, k10 = 6, then

k = (1, 1, 3, 2, 1, 1, 1, 2, 5, 6) ∼ (1, 1, 3) (2) (1, 1, 1, 2) (5) (6)

is a sequence of ai-series, where a1 = 3, a2 = 1, a3 = 4, a4 = 1, a5 = 1, with ends t1 =

3, t2 = 2, t3 = 2, t4 = 5, t5 = 6. So, in this example, the multiset n has length 5 and weight
(3, 1, 4, 1, 1; 3, 2, 2, 5, 6; 0).

Suppose that n = {1k1 , . . . , nkn} has weight (a1, . . . , aℓ; t1, . . . , tℓ; a). Set

s0 = 0, si = si−1 + ai + ti − 1 or si =

i
j=1

(aj + tj − 1) for 1 ≤ i ≤ ℓ.

Define the k-Stirling poset Pk by the diagram presented in Fig. 1. Here the elements labeled by
si−1+1, . . . , si−1+ai collapse to one, if ai = 1. If a > 0, then the elementswith labels sℓ+1, . . . , sℓ+a
are incomparable with other elements of Pk.

For example, if k = (1, 1, 2, 3, 1, 2, 2, 1, 1, 1), then Pk is shown in Fig. 2.
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Fig. 1. The k-Stirling poset Pk .

Fig. 2. The poset P(1,1,2,3,1,2,2,1,1,1) .

Theorem 2. Bk(m) = Ω(Pk,m) and bk(m) = Ω(Pk,m).

Proof. Let v be the maximal label in Pk and k \ kn = (k1, . . . , kn−1).
Case 1. If kn = 1, then v is incomparablewith the other elements and σ(v) can take any ofm values.

Thus, Ω(Pk,m) = mΩ(Pk\kn ,m).
Case 2. If kn > 1, then σ(v) is the maximal value in the map σ and two subcases are possible:
(a) if σ(v) ≤ m − 1, then the number of maps is equal to Ω(Pk,m − 1);
(b) if σ(v) = m, then the removal of v gives us Ω(Pk\kn ,m) ways to map the remaining elements.
Hence, in Case 2 we have

Ω(Pk,m) = Ω(Pk\kn ,m) + Ω(Pk,m − 1).

So, Ω(Pk,m) satisfies the same recurrence relation as (2) of Bk(m) and it is easy to check that the
initial values are also equal.

According to the reciprocity of order polynomials, bk(m) = Ω(Pk,m). �

Particular cases of our constructionwere knownbefore. For instance, the poset that induces Stirling
numbers of the second kind B(2,...,2)(m) = S(n + m,m), i.e., Ω(P,m) = B(2,...,2)(m), is shown in Fig. 3
[12,14].

It gives

Ω(P(2,...,2),m) =


1≤σ(2)≤···≤σ(2n)≤m

σ(2) · · · σ(2n),

Ω(P(2,...,2),m) =


1≤σ(2)<···<σ(2n)<m

σ(2) · · · σ(2n).

The poset P(k,...,k) was constructed in [12].

4. Stirling polynomials as numbers of set partitions and permutation records

Let [n] = {1, . . . , n}. For a family F = {B1, . . . , Bm} of nonempty sets (or multisets) let min(Bi) be
the minimal element of Bi and min(F ) = {min(B1), . . . ,min(Bm)}. We write a∼F b if a, b ∈ Bj for
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Fig. 3. The poset P(2,...,2) .

some j. We define a multiset multiset(F ) as a merge sum of multisets:

multiset(F ) = ⊎
m
i=1 Bi.

In other words, a∼F b if a, b are in the same set and multiset(F ) is a multiset of all elements
of Bi. For example, if F = {{1, 3, 6}, {2, 3, 3, 5}, {2, 4, 6}}, then 2∼F 3, 2∼F 4, but 2�F 1 and
multiset(F ) = {1, 22, 33, 4, 5, 62

}.

For the given set U consider nonempty sets (or multisets) B1, . . . , Bm, where Bi ⊆ U(1 ≤ i ≤ m).
Say that the family F = {B1, . . . , Bm} is segmented if for all a < b < c (a, b, c ∈ U) the con-
dition a∼F c implies that b ∈ min(F ). For example, if U = {1, . . . , 8}, then {{1, 2}, {3, 3, 6},
{4}, {5}, {7, 7, 8}} is segmented and {{1, 2}, {3, 3, 6}, {4, 5}, {7, 7, 8}} is not segmented, because
3∼F 6 and 3 < 5 < 6, 5 ∉ min({{1, 2}, {3, 3, 6}, {4, 5}, {7, 7, 8}}) = {1, 3, 4, 7}.

Let lmin(σ ) be the set of left-to-right minima of a permutation σ .
Suppose now that n,m (n ≥ m) are given positive integers, U = [n+1] and let k be any tuple with

weight (a1, . . . , an−m; t1, . . . , tn−m; 0), which represents the type of some multiset of length n − m.
LetM = max(a1, . . . , an−m).

Definition 2. A k-partition system of [n] into m blocks is an ordered (M + 1)-tuple (π0, π1, . . . , πM)
which satisfies the following properties:

(i) π1, . . . , πM are partitions of [n] into nonempty blocks;
(ii) min(π1) = · · · = min(πM) and |min(π1)| = m;
(iii) if {x1, . . . , xn−m} = [n] \ min(π1) so that x1 < · · · < xn−m, then for all i(1 ≤ i ≤ n − m) and

j > ai, we have xi ∼πj 1;
(iv) π0 is a segmented family of nonempty multisets such that min(π0) = min(π1), x1 ∼π0 1 and

multiset(π0) ⊆ min(π1) ⊎ {x1, x
t1−2
2 , . . . , xtn−m−1−2

n−m , (n + 1)tn−m−2
}.

Definition 3. A k-permutation system of [n] havingm left-to-rightminima is an ordered (M+1)-tuple
(σ0, σ1, . . . , σM) which satisfies the following properties:

(i) σ1, . . . , σM are permutations of [n];
(ii) lmin(σ1) = · · · = lmin(σM) and |lmin(σ1)| = m;
(iii) if {x1, . . . , xn−m} = [n] \ lmin(σ1) so that x1 < · · · < xn−m, then for any i(1 ≤ i ≤ n − m) and

j > ai, if σj(p) = xi, then σj(q) > xi for all q > p;
(iv) σ0 is a segmented family of nonempty sets such that min(σ0) = lmin(σ1), x1 ∼σ0 1 and

multiset(σ0) = lmin(σ1) ⊎ {x1, x
t1−2
2 , . . . , xtn−m−1−2

n−m , (n + 1)tn−m−2
}.

Definition 4. Let Sk(n,m) be the number of k-partition systems of [n] into m blocks and sk(n,m) be
the number of k-permutation systems of [n] having m left-to-right minima.

Example (See Definition 2). Let n = 10,m = 5, k = (1, 1, 3, 2, 1, 1, 1, 2, 5, 6). Then (a1, a2, a3,
a4, a5) = (3, 1, 4, 1, 1), (t1, t2, t3, t4, t5) = (3, 2, 2, 5, 6) and (π0, π1, π2, π3, π4) is a k-partition



A. Dzhumadil’daev, D. Yeliussizov / European Journal of Combinatorics 36 (2014) 377–392 385

system of {1, . . . , 10} into 5 blocks, where

π1 = {1, 7} {2, 3} {4, 5, 10} {6} {8, 9};
π2 = {1, 3, 5, 9, 10} {2, 7} {4} {6} {8};
π3 = {1, 5, 9, 10} {2, 3} {4, 7} {6} {8};
π4 = {1, 3, 5, 9, 10} {2} {4} {6, 7} {8};
π0 = {1, 3} {2} {4, 5} {6} {8}.

Another possible configuration is

π1 = {1, 7} {2, 3} {4, 5, 9} {6, 8} {10};
π2 = {1, 3, 5, 8, 9} {2, 7} {4} {6} {10};
π3 = {1, 5, 8, 9} {2, 3} {4, 7} {6} {10};
π4 = {1, 3, 5, 8, 9} {2} {4} {6, 7} {10};
π0 = {1, 3} {2} {4, 5} {6} {10, 113

}.

Suppose now that n = 4,m = 2, k = (1, 3, 1, 4). Then (a1, a2) = (2, 2), (t1, t2) = (3, 4) and we
list the ways to form all 27 k-partition systems (π0, π1, π2) of {1, 2, 3, 4} into 2 blocks.

Ways 1–16 :

π1 = {1, , } {2, , };

π2 = {1, , } {2, , };

π0 = {1, 3} {2}.
put , : (4 ways in π1) and (4 ways in π2);

Ways 17–24 :

π1 = {1, 2, } {3, };

π2 = {1, 2, } {3, };

π0 = {1, 2} {3, }.

put : (2 ways in π1) and (2 ways in π2) and (2 ways to put or not 4 in π0);

Ways 25–27 :

π1 = {1, 2, 3} {4};
π2 = {1, 2, 3} {4};
π0 = {1, 2} {4, , }.

put , : 3 ways {4}, {4, 5}, {4, 5, 5} (note that the element 3 cannot be put in π0 as {1, 2, 3} because
the segmented partition has 1 < 2 < 3, and hence 2 should be a block minimum).

Therefore,

S(1,3,1,4)(4, 2) = 27.

Example (See Definition 3). Let k = (1, 1, 3, 2, 1, 1, 1, 2, 3, 3). Then (a1, a2, a3, a4, a5) = (3, 1, 4,
1, 1), (t1, t2, t3, t4, t5) = (3, 2, 2, 3, 3) and (σ0, σ1, σ2, σ3, σ4) is a k-permutation system of
{1, . . . , 10} having 5 left-to-right minima, where

σ1 = (10, 8, 9, 7, 3, 5, 6, 4, 1, 2);
σ2 = (10, 8, 7, 3, 1, 5, 2, 4, 6, 9);
σ3 = (10, 8, 7, 3, 1, 2, 5, 4, 6, 9);
σ4 = (10, 8, 7, 3, 1, 2, 4, 5, 6, 9);
σ0 = {10, 11}, {8}, {7, 9}, {3, 4}, {1, 2}.

Another possible configuration is

σ1 = (10, 8, 7, 9, 3, 1, 6, 5, 4, 2);
σ2 = (10, 8, 7, 3, 1, 2, 4, 5, 6, 9);
σ3 = (10, 8, 7, 3, 5, 1, 2, 4, 6, 9);
σ4 = (10, 8, 7, 3, 1, 2, 5, 4, 6, 9);
σ0 = {10, 11}, {8, 9}, {7}, {3, 4}, {1, 2}.
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Suppose thatn = 6,m = 4,k = (1, 3, 1, 4). Then (a1, a2) = (2, 2), (t1, t2) = (3, 4) andwe list the
ways to form all 9 k-permutations (σ0, σ1, σ2) of {1, 2, 3, 4, 5, 6} having 4 left-to-right minima. One
can check that from all possible configurations of left-to-rightminima the only valid here is {6, 5, 3, 1}
and we have

σ1 = (6, 5, 3, , 1, , 2, );

σ2 = (6, 5, 3, , 1, , 2, );

σ0 = {6, 7}, {5, 7}, {3, 4}, {1, 2};
there are 3 ways to place 4 in σ1, 3 ways to place 4 in σ2, only 1 way to form σ0, which totally gives 9
possible configurations. So,

s(1,3,1,4)(6, 4) = 9.

Theorem 3. If the multiset n = {1k1 , . . . , nkn} has length ℓ and weight (a1, . . . , aℓ; t1, . . . , tℓ; 0), then

Bk(m) = Sk(ℓ + m,m),

bk(m) = sk(m,m − ℓ).

Moreover,

Sk(ℓ + m,m) =


1≤i1≤···≤iℓ≤m

ia11 · · · iaℓℓ


t1 + i2 − i1 − 2

i2 − i1


· · ·


tℓ + m − iℓ − 2

m − iℓ


(7)

and

sk(m,m − ℓ) =


1≤i1<···<iℓ<m

ia11 · · · iaℓℓ


i2 − i1 − 1

t1 − 2


· · ·


m − iℓ − 1

tℓ − 2


. (8)

Proof. Let us first prove that Bk(m) = Sk(ℓ+m,m). SetM = max(a1, . . . , aℓ). We can fixmminimal
elements of [ℓ + m] that are common for (π0, . . . , πM) and consider the elements {x1, . . . , xℓ} =

[ℓ + m] \ min(π1), so that x1 < · · · < xℓ. For any j(1 ≤ j ≤ ℓ) denote

ij = |{x | x < xj, x ∈ min(π1)}|.

Then, according to the property (iii) from Definition 2 above, the element xj can be placed in ij blocks
of any of partitions (π1, . . . , πaj), for every 1 ≤ j ≤ ℓ. This provides i

aj
j ways to place xj and totally

ia11 · · · iaℓℓ ways to place all the elements x1, . . . , xℓ, if the minimal elements are fixed.
Consider now the number of ways to form π0. The element x1 is already placed with the minimal

element 1. Let xℓ+1 = m + 1 and p1 = 1. Then, according to the segmented property, for every
j(2 ≤ j ≤ ℓ + 1), the element xj can be placed only in multisets whose minimal elements pj are
greater than xj−1; or xj is placed nowhere. So, for any j(2 ≤ j ≤ ℓ + 1) there are ij − ij−1 + 1 ways to

put tj−1 − 2 copies of the element xj, which gives


tj−1−2+ij−ij−1
ij−ij−1


ways.

Thus, for this fixed arrangement of minimal elements, we have

ia11 · · · iaℓℓ


t1 + i2 − i1 − 2

i2 − i1


· · ·


tℓ + m − iℓ − 2

m − iℓ


ways to form (M + 1)-tuple (π0, . . . , πM). Note that it holds for the arbitrary sequence satisfying
1 ≤ i1 ≤ · · · ≤ iℓ ≤ m. So, we have established (7).

Iterative use of (1) gives the same formula for Bk(m):

Bk(m) =


1≤i1≤···≤iℓ≤m

ia11 · · · iaℓℓ


t1 + i2 − i1 − 2

i2 − i1


· · ·


tℓ + m − iℓ − 2

m − iℓ


.

Let us now prove that bk(m) = sk(m,m − ℓ). To do that we form permutations (σ1, . . . , σM),
which all have the same set of left-to-right minima. In all these permutations we write the minima in
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decreasing order and look at the number ofways to place the remaining elements x1, . . . , xℓ, satisfying
x1 < · · · < xℓ. Then, according to the property (iii) from Definition 3, the element xj can be placed
to the right of any of xj − 1 elements in permutations (σ1, . . . , σaj), for any 1 ≤ j ≤ ℓ. Note that in
the other permutations (σaj+1, . . . , σM) the element xj can be put only in one place—the rightmost
position where the next elements are greater than xj, which satisfies (iii) from Definition 3. This gives
(xj −1)aj ways to place xj and totally (x1 −1)a1 · · · (xℓ −1)aℓ ways to place all the elements x1, . . . , xℓ,
if the left-to-right minima are fixed.

Now we count the number of ways to form σ0. Let xℓ+1 = m + 1 and p1 = 1. Then, according to
the segmented property, for any j(2 ≤ j ≤ ℓ + 1), the element xj can be placed only in sets whose
minimal elements pj are greater than xj−1. So, for any j(2 ≤ j ≤ ℓ + 1) we should put the element xj
in any tj−1 − 2 of xj − 1 − xj−1 vacant sets, which gives


xj−xj−1−1
tj−1−2


ways.

Thus, for any fixed arrangement of minimal elements, we have

(x1 − 1)a1 · · · (xℓ − 1)aℓ

x2 − x1 − 1

t1 − 2


· · ·


m + 1 − xℓ − 1

tℓ − 2


ways to form (M + 1)-tuple (σ0, . . . , σM). Note that it holds for the arbitrary sequence satisfying
2 ≤ x1 < · · · < xℓ ≤ m. Therefore, we establish (8):

sk(m,m − ℓ) =


2≤x1<···<xℓ≤m

(x1 − 1)a11 · · · (xℓ − 1)aℓ

x2 − x1 − 1

t1 − 2


· · ·


m + 1 − xℓ − 1

tℓ − 2


=


1≤i1<···<iℓ<m

ia11 · · · iaℓℓ


i2 − i1 − 1

t1 − 2


· · ·


m − iℓ − 1

tℓ − 2


.

Iterative use of Eq. (1) gives the same formula for bk(m):

bk(m) =


1≤i1<···<iℓ<m

ia11 · · · iaℓℓ


i2 − i1 − 1

t1 − 2


· · ·


m − iℓ − 1

tℓ − 2


. �

Remark. A general case with the weight (a1, . . . , aℓ; t1, . . . , tℓ, a) can be covered in a similar way.
Combinatorial interpretation will be enriched by k-partitions of [n + 1] having the property that the
element n+ 1 is not a block or left-to-right minimum andM = max(a1, . . . , aℓ, a). At the same time,
the corresponding formulas

Bk = maB(k1,...,kn−a)(m), bk = mab(k1,...,kn−a)(m)

hold for tuples (k1, . . . , kn−a) with weight (a1, . . . , aℓ; t1, . . . , tℓ, 0).

Corollary 1. If k hasweight (a1, . . . , an−m; t1, . . . , tn−m; 0), then the following recurrence relations hold

S(...,tn−m)(n,m) =

tn−m−2
i=0

S(...,tn−m−i)(n − 1,m − 1) + man−mS(...,tn−m−1)(n − 1,m),

s(...,tn−m)(n,m) =

tn−m−2
i=0

s(...,tn−m−i)(n − 1,m − 1) + (n − 1)an−ms(...,tn−m−1)(n − 1,m),

or the following two types

S(...,tn−m)(n,m) =

m
i=0

ian−m


tn−m − 2 + m − i

tn−m − 2


S(...,tn−m−1)(n − m − 1 + i, i),

s(...,tn−m)(n,m) =

m−1
i=0

ian−m


m − i − 1
tn−m − 2


s(...,tn−m−1)(n − m − 1 + i, i).
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If we extend m, n for all integers, then

Sk(n,m) = (−1)K sk(−m, −n).

If k1 = · · · = kn = 2, then we get the usual Stirling numbers:
B(2,...,2)(m) = S(n + m,m), b(2,...,2)(m) = s(m,m − n).

Corollary 2. If k1 = · · · = kn = 3, then

B(3,...,3)(m) = S3(n + m,m), b(3,...,3)(m) = s3(m,m − n),

where
(1) S3(n,m) is a number of ordered pairs (π0, π1) which satisfy the following properties:

(a) π1 is a partition of [n] into m blocks and π0 is a segmented partition of a subset of [n+ 1] into m
blocks;

(b) min(π1) = min(π0);
(c) if x = min([n] \ min(π1)), then x∼π0 1;

(2) s3(n,m) is a number of ordered pairs (σ0, σ1) which satisfy the following properties:
(a) σ1 is a permutation of [n] having m left-to-rightminima and σ0 is a segmented partition of [n+1]

into m blocks;
(b) lmin(σ1) = min(σ0);
(c) if x = min([n] \ lmin(σ1)), then x∼σ0 1.

Corollary 3. For k1 = · · · = kn = k > 2, we have

B(k,...,k)(m) = Sk(n + m,m), b(k,...,k)(m) = sk(m,m − n),

where
(1) Sk(n,m) is a number of ordered pairs (π0, π1) which satisfy the following properties:

(a) π1 is a partition of [n] into m blocks;
(b) π0 is a segmented partition of the multi-subset of {1k−2, . . . , (n+1)k−2

} into m (multiset) blocks
so that any block contains one copy of its minimal element;

(c) min(π1) = min(π0);
(d) if x = min([n] \ min(π1)), then x(k−2)

∼π0 1.
(2) sk(n,m) is a number of ordered pairs (σ0, σ1) which satisfy the following properties:

(a) σ1 is a permutation of [n] having m left-to-right minima;
(b) σ0 is a segmented partition of the multiset {1k−2, . . . , (n + 1)k−2

} into m multiset blocks so that
any block contains one copy of its minimal element;

(c) lmin(σ1) = min(σ0);
(d) if x = min([n] \ lmin(σ1)), then x(k−2)

∼σ0 1.

Corollary 4. Suppose that k has weight (a, . . . , a; t, . . . , t; 0) and length n. Then

Bk(m) = Sa,t(n + m,m), bk(m) = sa,t(m,m − n),

where
(1) Sa,t(n,m) is a number of ordered (a + 1)-tuples (π0, π1, . . . , πa) which satisfy the following

properties:
(a) π1, . . . , πa are partitions of [n] into m blocks;
(b) π0 is a segmented partition of the multi-subset of {1t−2, . . . , (n+ 1)t−2

} into m (multiset) blocks
so that any block contains one copy of its minimal element;

(c) min(π1) = min(π0);
(d) if x = min([n] \ min(π1)), then x(t−2)

∼π0 1.
(2) sa,t(n,m) is a number of ordered (a+1)-tuples (σ0, σ1, . . . , σa)which satisfy the following properties:

(a) σ1, . . . , σa are permutations of [n] having m left-to-right minima;
(b) σ0 is a segmented partition of the multiset {1t−2, . . . , (n + 1)t−2

} into m multiset blocks so that
any block contains one copy of its minimal element;

(c) lmin(σ1) = min(σ0);
(d) if x = min([n] \ lmin(σ1)), then x(t−2)

∼σ0 1.
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5. Stirling numbers of odd type

Let us define the Stirling numbers of odd type of second and first kinds Sodd(n, k) and sodd(n, k) by
the following recurrence relations

Sodd(n, k) = Sodd(n − 1, k − 1) + kSodd(n − 1, k) + δn,k,

sodd(n, k) = sodd(n − 1, k − 1) + (n − 1)sodd(n − 1, k) + δn,k,

where Sodd(0, 0) = sodd(0, 0) = 0, Sodd(n, k) = sodd(n, k) = 0, if n < k; δn,k is a Kronecker delta,
δn,k = 1 if n = k and δn,k = 0, otherwise. Note that Sodd(n, n) = sodd(n, n) = n.

Now we introduce the notion of partitions and permutations with leader. Let π = {B1, . . . , Bk} be
a partition of [n] into k blocks such that min(B1) < · · · < min(Bk). Say that (ℓ, π) is a partition
with leader ℓ if min(Bℓ) = ℓ. Similarly, for a cyclic presentation of a permutation σ ∈ Sn as a
product of cycles σ = σ (1)

· · · σ (k), where min(σ (1)) < · · · < min(σ (k)), say that (ℓ, σ ) is a
permutation with leader ℓ, if min(σ (i)) = ℓ. For example, for the partition π = {{1, 3}, {2}, {4}} the
pairs (1, π) and (2, π) are partitions with leader. Example for permutation: if σ = 14852763, then
σ = (1)(245)(38)(67) and (1, σ ), (2, σ ), (3, σ ) are permutations with leader.

Theorem 4. The following properties hold for Sodd(n, k), sodd(n, k):

• Sodd(n, k) is equal to the number of partitions with leader of [n] into k blocks.
• sodd(n, k) is equal to the number of permutations with leader of [n] with k cycles.
• If k0 = 1 and k1 = · · · = kn = 2, i.e., n = {01, 12, . . . , n2

}, then

Bk(m) = Sodd(n + m,m), bk(m) = sodd(m,m − n).

•

Sodd(n + m,m) =


1≤i1≤···≤in≤m

i21i2 · · · in,

sodd(m,m − n) =


1≤i1<···<in<m

i21i2 · · · in.
(9)

Proof. Let S ′(n, k) (resp. s′(n, k)) be the number of partitions (resp. permutations) with leader of [n]
into k blocks (resp. cycles). If n = k, then there are n partitions (resp. permutations) with leader and
S ′(n, n) = s′(n, n) = n. Otherwise, if n > k, then n is not a leader. If n forms one separate block (resp.
cycle), then there are S ′(n−1, k−1) (resp. s′(n−1, k−1)) partitions (resp. permutations) with leader.
If n belongs to other blocks (resp. cycles), there are kS ′(n − 1, k) (resp. (n − 1)s′(n − 1, k)) partitions
(resp. permutations) with leader. Therefore,

S ′(n, k) = S ′(n − 1, k − 1) + kS ′(n − 1, k), if n > k and S ′(n, n) = n,
s′(n, k) = s′(n − 1, k − 1) + (n − 1)s′(n − 1, k), if n > k and s′(n, n) = n.

So,

Sodd(n, k) = S ′(n, k), sodd(n, k) = s′(n, k).

If n = 0, then B(0)(m) = b(0)(m) = Sodd(m,m) = sodd(m,m) = m. If n ≥ 1, then by the recurrence
relations (2), (3),

Bk(m) = Bk(m − 1) + mBk\2(m),

bk(m) = bk(m − 1) + (m − 1)bk\2(m − 1),

which is the same as the recurrences

Sodd(n + m,m) = Sodd(n + m − 1,m − 1) + mSodd(n + m − 1,m),

sodd(m,m − n) = sodd(m − 1,m − n − 1) + (m − 1)sodd(m − 1,m − n).
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Therefore,

Bk(m) = Sodd(n + m,m), bk(m) = sodd(m,m − n).

The formulas (9) are consequences of Theorem 3 and (7), (8). �

Remark. These combinatorial interpretations of Sodd(n, k), sodd(n, k) are a partial case of our general
model with the weight (2, 1, . . . , 1; 2, . . . , 2; 0). In that case the k-partition (resp. k-permutation)
system consists of two partitions (resp. permutations) (π1, π2) (resp. (σ1, σ2)) differing only in one
element that can be used as a leader.

The usual Stirling numbers correspond to the case k1 = · · · = kn = 2 and they can be defined as
Stirling numbers of even type. The numbers Sodd(n, k) in Knuth [13] are denoted as half-integer Stirling
numbers.

Wemay also note that the presented combinatorial meanings of Sodd(n, k), sodd(n, k) clearly imply
their connection with the r-Stirling numbers introduced by Broder [3]. Namely,

Sodd(n, k) =

n
k


1
+

n
k


2
+ · · · +

n
k


k
, sodd(n, k) =

n
k


1
+

n
k


2
+ · · · +

n
k


k
,

where
 n
k


r ,

 n
k


r are r-Stirling numbers of the first and second kinds, which count the number of

permutations (resp. partitions) of [n] with k cycles (resp. blocks) such that the numbers 1, . . . , r are
in distinct cycles (resp. blocks).

6. Generalization of central factorial numbers

Let St(n, k), st(n, k) be the numbers defined by the following relations

xn =

n
k=0

St(n, k)
k−1
i=0

(x − it),
n−1
i=0

(x + it) =

n
k=0

st(n, k)xk.

They satisfy the following recurrence relations

St(n, k) = St(n − 1, k − 1) + ktSt(n − 1, k), St(0, 0) = 1,
St(n, k) = 0 if n < k;
st(n, k) = st(n − 1, k − 1) + (n − 1)tst(n − 1, k), st(0, 0) = 1,
st(n, k) = 0 if n < k.

If t = 1, then S1(n, k), s1(n, k) became the usual Stirling numbers of the second and the
first kind, respectively. If t = 2, then S2(n, k), s2(n, k) refer to the central factorial numbers
T (2n, 2k), t(2n, 2k) [15] defined by

xn =

n
k=0

T (n, k)x
k−1
i=1

(x + k/2 − i), x
n−1
i=1

(x + n/2 − i) =

n
k=0

t(n, k)xk.

The numbers St(n, k), st(n, k) are partial cases of Sk(n, k), sk(n, k) defined in Section 4, if k consists of
several repetitions of t-series with ends 2.

Denote by tn the nt-tuple defined by

tn = (k1, . . . , knt) = (

t numbers  
1, 1, . . . , 1, 2,

t numbers  
1, 1, . . . , 1, 2, . . . ,

t numbers  
1, 1, . . . , 1, 2  

n blocks by t numbers

).

The multiset of type tn has length n and weight (t, . . . , t; 2, . . . , 2; 0). For example, if t = 3, n = 2,
then (k1, . . . , k6) = (1, 1, 2, 1, 1, 2) and the corresponding multiset is nt = {1k1 , . . . , 6k6} =

{1, 2, 3, 3, 4, 5, 6, 6}.
The tn-Stirling poset Ptn (see Fig. 4) satisfies the following relations

Ω(Ptn,m) = St(n + m,m), Ω(Ptn,m) = st(m,m − n).
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Fig. 4. The tn-Stirling poset Ptn .

Theorem 5. The following properties hold for St(n, k), st(n, k):

• St(n, k) is a number of ordered t-tuples (π1, . . . , πt), where π1, . . . , πt are partitions of [n] into k
blocks such that min(π1) = · · · = min(πt).

• st(n, k) is a number of ordered t-tuples (σ1, . . . , σt), where σ1, . . . , σt are permutations of [n] that
have k cycles, such that min(σ1) = · · · = min(σt).

• Btn(m) = St(n + m,m) and btn(m) = st(m,m − n).
•

St(n + k, k) =


1≤i1≤···≤ik≤n

it1 · · · itk, st(n, n − k) =


1≤i1<···<ik<n

it1 · · · itk. (10)

Proof. Let S ′
t(n, k) (resp. s

′
t(n, k)) be the number of ordered t-tuples of partitions (resp. permutations)

of [n] into k blocks (resp. cycles) having the same set of blocks (resp. cycles) minima.
If we have a separate block {n} (resp. cycle (n)), then n is a minimal element and this block should

appear in every partition π1, . . . , πt (resp. permutation σ1, . . . , σt ), and the number of ways to form
these tuples is S ′

t(n − 1, k − 1) (resp. s′t(n − 1, k − 1)). Otherwise, if n belongs to blocks (resp. cycles)
with the other elements, then for any partition πi(1 ≤ i ≤ t) (resp. permutation σi), there are k (resp.
n − 1) ways to put n in k blocks (resp. cycles) of πi (resp. σi). So, there are totally ktS ′

t(n − 1, k) (resp.
(n − 1)ts′t(n − 1, k)) ways to form π1, . . . , πt (resp. σ1, . . . , σt ). S ′

t(n, k) (resp. s′t(n, k)) satisfies the
same recurrence as St(n, k) (resp. st(n, k)) and S ′

t(1, 1) = St(1, 1), s′t(1, 1) = st(1, 1). Therefore,

St(n, k) = S ′

t(n, k), st(n, k) = s′t(n, k).

If n = 0, then B∅(m) = b∅(m) = St(m,m) = st(m,m) = 1. By the recurrence relations (2), (3),

Btn(m) = Btn(m − 1) + mtBt(n−1)(m), btn(m) = btn(m − 1) + (m − 1)tbt(n−1)(m).

It is easy to see that St(n + m,m), st(m,m − n) satisfy the same recurrence relations and the
corresponding initial values coincide.

The formulas (10) imply from Theorem 3 and (7), (8). �

Note that the described combinatorial meanings of St(n, k), st(n, k) can be refined fromCorollary 4
and in case of t = 2 they are similar to Dumont’s interpretations of the central factorial numbers
(see [5,7,8]). Other combinatorial interpretations of the generalized central factorial numbers St(n, k)
have previously been considered in [4] and in a more general version in [11].
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