On a class of evolution algebras of "chicken" population

A. Dzhumadil'daev
Kazak-British Technical University
Tole bi 59, Almaty, 050000, Kazakhstan
dzhuma@hotmail.com
B. A. Omirov* and U. A. Rozikov ${ }^{\dagger}$
Institute of Mathematics
29, Do'rmon Yo'li str., 100125 Tashkent Uzbekistan
*omirov@mail.ru
${ }^{\dagger}$ rozikovu@yandex.ru

Received 21 February 2014
Accepted 26 June 2014
Published 9 July 2014

Abstract

This paper is devoted to the description of structure of evolution algebras of "chicken" population (EACP). Such an algebra is determined by a rectangular matrix of structural constants. Using the Jordan form of the matrix of structural constants we obtain a simple description of complex EACP. We give the classification of three-dimensional complex EACP. Moreover, some $(n+1)$-dimensional EACP are described.

Keywords: Evolution algebra; "chicken" population; solvable algebra; nilpotent algebra.
Mathematics Subject Classification 2010: 17D92, 17D99, $60 J 10$

1. Introduction

An algebraic approach in Genetics consists of the study of various types of genetic algebras (like algebras of free, "self-reproduction" and bisexual populations, Bernstein algebras). The formal language of abstract algebra to study of genetics was introduced in $[2-4]$. In recent years many authors have tried to investigate the difficult problem of classification of these algebras. The most comprehensive references for the mathematical research done in this area are $[1,6-9]$.

Let A be an arbitrary algebra and let $\left\{e_{1}, e_{2}, \ldots\right\}$ be a basis of the algebra A. The table of multiplication on A is defined by the products of the basic elements, namely,

$$
e_{i} e_{j}=\sum_{k} \gamma_{i j}^{k} e_{k}
$$

where $\gamma_{i j}^{k}$ are the structural constants. The study of such a general algebra A is difficult, since it is determined by the cubic matrix $\left\{\gamma_{i j}^{k}\right\}$ of structural constants. In some evolution algebras the cubic matrix is reduced to quadratic (see [8]) or rectangular (see [5]) matrices. This simplicity of the matrix allows to obtain deeper results on the algebra.

In this paper, following [5] we consider a set $\left\{h_{i}, i=1, \ldots, n\right\}$ (the set of "hen"s) and r (a "rooster").

Let (\mathcal{C}, \cdot) be an algebra over a field K (with characteristic $\neq 2$). If it admits a basis $\left\{h_{1}, \ldots, h_{n}, r\right\}$ such that

$$
\begin{gather*}
h_{i} r=r h_{i}=\frac{1}{2}\left(\sum_{j=1}^{n} a_{i j} h_{j}+b_{i} r\right), \tag{1.1}\\
h_{i} h_{j}=0, \quad i, j=1, \ldots, n ; \quad r r=0,
\end{gather*}
$$

then this algebra is called an evolution algebra of a "chicken" population (EACP). The basis $\left\{h_{1}, \ldots, h_{n}, r\right\}$ is called a natural basis.

We note that an algebra \mathcal{C} is defined by a rectangular $n \times(n+1)$-matrix

$$
M=\left(\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n} & b_{n}
\end{array}\right)
$$

which is called the matrix of structural constants of the algebra \mathcal{C}.
For a given element x of an algebra C, define a right multiplication operator $R_{x}: C \rightarrow C$, as $R_{x}(y)=y x, y \in C$. It should be noted that the matrix M of EACP \mathcal{C} coincides with the matrix of right multiplication operator R_{r}. Therefore, the multiplication of EACP \mathcal{C} may be given by the operator R_{r}.

In [5] it is proved that the algebra \mathcal{C} is commutative (and hence flexible), not associative and not necessarily power associative, in general. Moreover it is not unital. A condition is found on the structural constants of the algebra under which the algebra is associative, alternative, power associative, nilpotent, satisfies Jacobi and Jordan identities. The set of all operators of left (right) multiplications is described. Under some conditions on the structural constants it is proved that the corresponding EACP is centroidal. Moreover the classification of two-dimensional and some three-dimensional EACP are obtained.

In this paper, we continue the study of EACP. In Sec. 2 using the Jordan form of the matrix of structural constants we give a simple representation of EACP. Section 3 is devoted to the classification of three-dimensional complex EACP. In Sec. 4 we describe some $(n+1)$-dimensional EACP.

2. The Structure of EACP

Recall some notations.

Definition 1. An element x of an algebra \mathcal{A} is called nil if there exists $n(a) \in \mathbb{N}$ such that $(\cdots \underbrace{((x \cdot x) \cdot x) \cdots x}_{n(a)})=0$. The algebra \mathcal{A} is called nil if every element of the algebra is nil.

For $k \geq 1$, we introduce the following sequences:

$$
\begin{aligned}
\mathcal{A}^{(1)} & =\mathcal{A}, & & \mathcal{A}^{(k+1)}=\mathcal{A}^{(k)} \mathcal{A}^{(k)} ; \\
\mathcal{A}^{\langle 1\rangle} & =\mathcal{A}, & & \mathcal{A}^{\langle k+1\rangle}=\mathcal{A}^{\langle k\rangle} \mathcal{A} ; \\
\mathcal{A}^{1} & =\mathcal{A}, & & \mathcal{A}^{k}=\sum_{i=1}^{k-1} \mathcal{A}^{i} \mathcal{A}^{k-i}
\end{aligned}
$$

Definition 2. An algebra \mathcal{A} is called
(i) solvable if there exists $n \in \mathbb{N}$ such that $\mathcal{A}^{(n)}=0$ and the minimal such number is called index of solvability;
(ii) right nilpotent if there exists $n \in \mathbb{N}$ such that $\mathcal{A}^{\langle n\rangle}=0$ and the minimal such number is called index of right nilpotency;
(iii) nilpotent if there exists $n \in \mathbb{N}$ such that $\mathcal{A}^{n}=0$ and the minimal such number is called index of nilpotency.

We note that for an EACP notion as nil, nilpotent and right nilpotent algebras are equivalent. However, the indexes of nility, right nilpotency and nilpotency do not coincide in general.

In this section we consider EACP over the field of complex numbers.
Let \mathcal{C} be an $(n+1)$-dimensional complex EACP and $\left\{h_{1}, h_{2}, \ldots, h_{n}, r\right\}$ be a basis of this algebra. Then the table of multiplications of EACP have the following form

$$
h_{i} r=r h_{i}=\frac{1}{2}\left(\sum_{j=1}^{n} a_{i, j} h_{j}+b_{i} r\right), \quad h_{i} h_{j}=r r=0 .
$$

Let \mathcal{C} and \mathcal{D} be EACPs; we say that a linear homomorphism f from \mathcal{C} to \mathcal{D} is an evolution homomorphism if f is an algebraic map and for a natural basis $\left\{h_{1}, \ldots, h_{n}, r\right\}$ of $\mathcal{C},\left\{f(r), f\left(h_{i}\right), i=1, \ldots, n\right\}$ spans an evolution subalgebra in \mathcal{D}. Furthermore, if an evolution homomorphism is one-to-one and onto, it is an evolution isomorphism.

Theorem 1. If $b_{i}=0$ for any $i=1, \ldots, n$, then \mathcal{C} is a solvable $E A C P$ and it is isomorphic to one of the following pairwise non-isomorphic algebras:

$$
h_{\sum_{i=1}^{s-1} n_{i}+1} r=\frac{1}{2}\left(a_{s} h_{\sum_{i=1}^{s-1} n_{i}+1}+h_{\sum_{i=1}^{s-1} n_{i}+2}\right)
$$

$$
\begin{aligned}
h_{\sum_{i=1}^{s-1} n_{i}+2} r= & \frac{1}{2}\left(a_{s} h_{\sum_{i=1}^{s-1} n_{i}+2}+h_{\sum_{i=1}^{s-1} n_{i}+3}\right) \\
& \vdots \\
h_{\sum_{i=1}^{s-1} n_{i}+n_{s}-1} r= & \frac{1}{2}\left(a_{s} h_{\sum_{i=1}^{s-1} n_{i}+n_{s}-1}+h_{\sum_{i=1}^{s-1} n_{i}+n_{s}}\right) \\
h_{\sum_{i=1}^{s-1} n_{i}+n_{s}} r= & \frac{1}{2}\left(a_{s} h_{\sum_{i=1}^{s-1} n_{i}+n_{s}}\right),
\end{aligned}
$$

where $n=n_{1}+\cdots+n_{k}, s=1, \ldots, k$ and $\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\left(1, a_{2}, \ldots, a_{k}\right)$ or $\left(a_{1}, a_{2}, \ldots, a_{k}\right)=(0,0, \ldots, 0)$.

Proof. If $b_{i}=0$ for any $i=1, \ldots, n$, then we have the multiplication

$$
h_{i} r=\frac{1}{2}\left(\sum_{j=1}^{n} a_{i, j} h_{j}\right), \quad h_{i} h_{j}=r r=0 .
$$

It follows that $\mathcal{C}^{(2)} \subseteq\left\langle h_{1}, h_{2}, \ldots, h_{n}\right\rangle$, which implies $\mathcal{C}^{(3)}=0$. Hence, \mathcal{C} is solvable.

Since \mathcal{C} is a complex EACP, then by theorem on Jordan decomposition we conclude that there exists a basis of \mathcal{C} such that the matrix of the operator R_{r} has Jordan form (that is, diagonal block consist of Jordan blocks). We define $R_{r}=$ $J_{1} \oplus J_{2} \oplus \cdots \oplus J_{k}$, where a_{i} are diagonal elements of J_{i} and n_{i} are sizes of blocks $J_{i}, 1 \leq i \leq k$. Obviously, $n_{1}+n_{2}+\cdots+n_{k}=n$.

Then the table of multiplication of the algebra is follows:

$$
\begin{aligned}
h_{\sum_{i=1}^{s-1} n_{i}+1} r= & \frac{1}{2}\left(a_{s} h_{\sum_{i=1}^{s-1} n_{i}+1}+h_{\sum_{i=1}^{s-1} n_{i}+2}\right) \\
h_{\sum_{i=1}^{s-1} n_{i}+2} r= & \frac{1}{2}\left(a_{s} h_{\sum_{i=1}^{s-1} n_{i}+2}+h_{\sum_{i=1}^{s-1} n_{i}+3}\right) \\
& \vdots \\
h_{\sum_{i=1}^{s-1} n_{i}+n_{s}-1} r & =\frac{1}{2}\left(a_{s} h_{\sum_{i=1}^{s-1} n_{i}+n_{s}-1}+h_{\sum_{i=1}^{s-1} n_{i}+n_{s}}\right) \\
h_{\sum_{i=1}^{s-1} n_{i}+n_{s}} r= & \frac{1}{2}\left(a_{s} h_{\sum_{i=1}^{s-1} n_{i}+n_{s}}\right),
\end{aligned}
$$

where $s=1, \ldots, k$.
If $a_{s_{0}} \neq 0$, for some $1 \leq s_{0} \leq k$, then without loss of generality we can assume that $a_{1} \neq 0$.

In this case putting: $a_{s}^{\prime}=\frac{a_{s}}{a_{1}}, 2 \leq s \leq k$ and

$$
h_{\sum_{i=1}^{s=1} n_{i}+j}^{\prime}=\frac{h_{\sum_{i=1}^{s-1} n_{i}+j}^{j}}{a_{1}^{j}}, \quad 1 \leq j \leq n_{s}, \quad 1 \leq s \leq k
$$

one can assume that $a_{1}=1$.

Remark 1. From the above description it is easy to see that for any $s, 1 \leq s \leq k$

$$
\left\langle h_{\sum_{i=1}^{s-1} n_{i}+1}, h_{\sum_{i=1}^{s-1} n_{i}+2}, \ldots, h_{\sum_{i=1}^{s-1} n_{i}+n_{s}-1}, h_{\sum_{i=1}^{s-1} n_{i}+n_{s}}\right\rangle
$$

is an ideal of the EACP.
Moreover, if $\left(a_{1}, a_{2}, \ldots, a_{k}\right)=(0,0, \ldots, 0)$, then EACP is nilpotent.
Suppose that there exists $b_{i_{0}} \neq 0, i_{0} \in\{1, \ldots, n\}$, then by shifting of the basis elements $h_{i}, 1 \leq i \leq n$ we can assume that $b_{1} \neq 0$. Moreover, by the scaling $h_{1}^{\prime}=\frac{1}{b_{1}} h_{1}$ we can assume that $b_{1}=1$. So, we have

$$
h_{1} r=\frac{1}{2}\left(\sum_{j=1}^{n} a_{1, j} h_{j}+r\right), \quad h_{i} r=\frac{1}{2}\left(\sum_{j=1}^{n} a_{i, j} h_{j}+b_{i} r\right), \quad 2 \leq i \leq n .
$$

In obtained table of multiplication we take the following basis transformation:

$$
h_{i}^{\prime}=h_{i}-b_{i} h_{1}, \quad 2 \leq i \leq n .
$$

Therefore, we obtain the table of multiplication

$$
h_{1} r=\frac{1}{2}\left(\sum_{j=1}^{n} a_{1, j} h_{j}+r\right), \quad h_{i} r=\frac{1}{2}\left(\sum_{j=1}^{n} a_{i, j} h_{j}\right), \quad 2 \leq i \leq n .
$$

Thus, we obtain the following result.
Proposition 1. Let \mathcal{C} be an EACP. Then there exists a basis $\left\{h_{1}, h_{2}, \ldots, h_{n}, r\right\}$ such that \mathcal{C} on this basis is represented by the table of multiplication as follows:

$$
h_{1} r=\frac{1}{2}\left(\sum_{j=1}^{n} a_{1, j} h_{j}+\delta r\right), \quad \delta \in\{0,1\}, \quad h_{i} r=\frac{1}{2}\left(\sum_{j=1}^{n} a_{i, j} h_{j}\right), \quad 2 \leq i \leq n .
$$

3. Three-Dimensional Complex EACP

In the following theorem we present the classification of three-dimensional EACP.
Theorem 2. An arbitrary three-dimensional complex EACP \mathcal{C} is isomorphic to one of the following pairwise non-isomorphic algebras:

If $\operatorname{dim} \mathcal{C}^{2}=1$, then

$$
\begin{aligned}
& \mathcal{C}_{1}: h_{1} r=\frac{1}{2} r \\
& \mathcal{C}_{2}: h_{1} r=\frac{1}{2} h_{2} ; \\
& \mathcal{C}_{3}: h_{1} r=\frac{1}{2} h_{1}+\frac{1}{2} r .
\end{aligned}
$$

If $\operatorname{dim} \mathcal{C}^{2}=2$, then

$$
\mathcal{C}_{4}: h_{1} r=\frac{1}{2}\left(h_{1}+h_{2}\right), \quad h_{2} r=\frac{1}{2} h_{2} ;
$$

$$
\begin{aligned}
\mathcal{C}_{5}(\beta): h_{1} r & =\frac{1}{2} h_{1}, \quad h_{2} r=\frac{\beta}{2} h_{2}, \quad \beta \neq 0 ; \\
\mathcal{C}_{6}(\alpha, \beta): h_{1} r & =\frac{1}{2}\left(\alpha h_{1}+\beta h_{2}+r\right), \quad h_{2} r=\frac{1}{2} h_{1} ; \\
\mathcal{C}_{7}(\alpha): h_{1} r & =\frac{1}{2}\left(\alpha h_{1}+r\right), \quad h_{2} r=\frac{1}{2} h_{2} ; \\
\mathcal{C}_{8}: h_{1} r & =\frac{1}{2}\left(h_{1}+h_{2}+r\right), \quad h_{2} r=\frac{1}{2} h_{2},
\end{aligned}
$$

where one of non-zero parameter α, β in the algebra $\mathcal{C}_{6}(\alpha, \beta)$ can be assumed to be equal to 1 .

Proof. Since the EACPs with condition $\operatorname{dim} \mathcal{C}^{2}=1$ are already classified in [5], we shall consider only algebras such that $\operatorname{dim} \mathcal{C}^{2}=2$.

According to Proposition 1 we have that there exists a basis $\left\{h_{1}, h_{2}, r\right\}$ such that the multiplication of \mathcal{C} on this basis has the form:

$$
h_{1} r=\frac{1}{2}\left(a_{1,1} h_{1}+a_{1,2} h_{2}+\delta r\right), \quad h_{2} r=\frac{1}{2}\left(a_{2,1} h_{1}+a_{2,2} h_{2}\right) .
$$

If $\delta=0$, then using the result of Theorem 1 we obtain the algebras

$$
\begin{aligned}
I: h_{1} r & =\frac{1}{2}\left(\alpha h_{1}+h_{2}\right), \quad h_{2} r=\frac{1}{2} \alpha h_{2} . \\
I I: h_{1} r & =\frac{\alpha}{2} h_{1}, \quad h_{2} r=\frac{\beta}{2} h_{2} .
\end{aligned}
$$

Since $\operatorname{dim} \mathcal{C}^{2}=2$, then $\alpha \beta \neq 0$ and h_{1}, h_{2} are symmetric in the table of multiplication, we can conclude (by scaling of r) that $\alpha=1$ and $\beta \neq 0$, i.e. we obtain the algebras $\mathcal{C}_{4}, \mathcal{C}_{5}(\beta)$.

Let now $\delta=1$. Then the table of multiplication of the algebra \mathcal{C} has the form

$$
h_{1} r=\frac{1}{2}\left(a_{1,1} h_{1}+a_{1,2} h_{2}+r\right), \quad h_{2} r=\frac{1}{2}\left(a_{2,1} h_{1}+a_{2,2} h_{2}\right) .
$$

Case 1. Let $a_{2,1} \neq 0$. Then putting $r^{\prime}=\frac{1}{a_{2,1}} r$ and $h_{1}^{\prime}=h_{1}+\frac{a_{1,2}}{a_{2,1}} h_{2}$ we get family of algebras:

$$
\mathcal{C}_{6}(\alpha, \beta): h_{1} r=\frac{1}{2}\left(\alpha h_{1}+\beta h_{2}+r\right), \quad h_{2} r=\frac{1}{2} h_{1} .
$$

Case 2. Let $a_{2,1}=0$. Then $a_{2,2} \neq 0$ and by scaling $r^{\prime}=\frac{1}{a_{2,2}} r$ we obtain the multiplication:

$$
h_{1} r=\frac{1}{2}\left(a_{1,1} h_{1}+a_{1,2} h_{2}+r\right), \quad h_{2} r=\frac{1}{2} h_{2} .
$$

- In the case of $a_{1,2}=0$, we have the algebra \mathcal{C}_{7}.
- If $a_{1,2} \neq 0$, then by $h_{2}^{\prime}=a_{1,2} h_{2}$ we conclude that $a_{1,2}=1$, that is, we get family of algebras

$$
h_{1} r=\frac{1}{2}\left(\alpha h_{1}+h_{2}+r\right), \quad h_{2} r=\frac{1}{2} h_{2} .
$$

- In the above table of multiplication when $\alpha \neq 1$ by setting $h_{1}^{\prime}=h_{1}+\frac{1}{\alpha-1} h_{2}$ we get the table of multiplication $\mathcal{C}_{7}(\alpha \neq 1)$.
- In the case of $\alpha=1$ we get \mathcal{C}_{8}.

Thus, we obtain the algebras

$$
\mathcal{C}_{4}, \quad \mathcal{C}_{5}(\beta), \beta \neq 0, \quad \mathcal{C}_{6}(\alpha, \beta), \quad \mathcal{C}_{7}(\alpha), \quad \mathcal{C}_{8}
$$

We shall investigate isomorphisms inside of families $\mathcal{C}_{6}(\alpha, \beta)$ and $\mathcal{C}_{7}(\alpha)$.
First consider the algebra

$$
\mathcal{C}_{6}(\alpha, \beta): h_{1} r=\frac{1}{2}\left(\alpha h_{1}+\beta h_{2}+r\right), \quad h_{2} r=\frac{1}{2} h_{1} .
$$

Let us take the general change of basis elements
$h_{1}^{\prime}=a_{1} h_{1}+a_{2} h_{2}+a_{3} r, \quad h_{2}^{\prime}=b_{1} h_{1}+b_{2} h_{2}+b_{3} r, \quad r^{\prime}=c_{1} h_{1}+c_{2} h_{2}+c_{3} r$.
Consider the product

$$
0=h_{1}^{\prime} h_{1}^{\prime}=2 a_{1} a_{3} h_{1} r+2 a_{2} a_{3} h_{2} r=\left(a_{1} a_{3} a_{1,1}+a_{2} a_{3}\right) h_{1}+a_{1} a_{3} a_{1,2} h_{2}+a_{1} a_{3} r .
$$

Hence, $a_{1} a_{3}=a_{2} a_{3}=0$.
Similarly, from $0=h_{2}^{\prime} h_{2}^{\prime}=r^{\prime} r^{\prime}=h_{1}^{\prime} h_{2}^{\prime}$ we derive

$$
b_{1} b_{3}=b_{2} b_{3}=c_{1} c_{3}=c_{2} c_{3}=0, \quad a_{2} b_{3}+a_{3} b_{2}=0, \quad a_{1} b_{3}+a_{3} b_{1}=0
$$

From the chain of equalities

$$
\begin{aligned}
\frac{1}{2}\left(a_{1} h_{1}+a_{2} h_{2}+a_{3} r\right) & =\frac{1}{2} h_{1}^{\prime}=h_{2}^{\prime} r^{\prime}=\left(b_{1} c_{3}+b_{3} c_{1}\right) h_{1} r+\left(b_{2} c_{3}+b_{3} c_{2}\right) h_{2} r \\
& =\frac{1}{2}\left(b_{1} c_{3}+b_{3} c_{1}\right)\left(\alpha h_{1}+\beta h_{2}+r\right)+\frac{1}{2}\left(b_{2} c_{3}+b_{3} c_{2}\right) h_{1}
\end{aligned}
$$

we deduce

$$
\left(b_{1} c_{3}+b_{3} c_{1}\right) \alpha+\left(b_{2} c_{3}+b_{3} c_{2}\right)=a_{1}, \quad\left(b_{1} c_{3}+b_{3} c_{1}\right) \beta=a_{2}, \quad b_{1} c_{3}+b_{3} c_{1}=a_{3}
$$

Analogously, the equality

$$
h_{1}^{\prime} r^{\prime}=\frac{1}{2}\left(\alpha^{\prime} h_{1}^{\prime}+\beta^{\prime} h_{2}^{\prime}+r^{\prime}\right)
$$

implies

$$
\begin{aligned}
\left(a_{1} c_{3}+a_{3} c_{1}\right) \alpha+\left(a_{2} c_{3}+a_{3} c_{2}\right) & =\alpha^{\prime} a_{1}+\beta^{\prime} b_{1}+c_{1} \\
\left(a_{1} c_{3}+a_{3} c_{1}\right) a_{1,2} & =\alpha^{\prime} a_{2}+\beta^{\prime} b_{2}+c_{2} \\
a_{1} c_{3}+a_{3} c_{1} & =\alpha^{\prime} a_{3}+\beta^{\prime} b_{3}+c_{3}
\end{aligned}
$$

Thus, we obtain the following restrictions:

$$
\begin{gathered}
a_{1} a_{3}=a_{2} a_{3}=b_{1} b_{3}=b_{2} b_{3}=c_{1} c_{3}=c_{2} c_{3}=0, \quad a_{2} b_{3}+a_{3} b_{2}=0, \quad a_{1} b_{3}+a_{3} b_{1}=0 \\
\quad\left(b_{1} c_{3}+b_{3} c_{1}\right) \alpha+\left(b_{2} c_{3}+b_{3} c_{2}\right)=a_{1}, \quad\left(b_{1} c_{3}+b_{3} c_{1}\right) \beta=a_{2}, \quad b_{1} c_{3}+b_{3} c_{1}=a_{3}
\end{gathered}
$$

$$
\begin{gathered}
\left(a_{1} c_{3}+a_{3} c_{1}\right) \alpha+\left(a_{2} c_{3}+a_{3} c_{2}\right)=\alpha^{\prime} a_{1}+\beta^{\prime} b_{1}+c_{1} \\
\left(a_{1} c_{3}+a_{3} c_{1}\right) a_{1,2}=\alpha^{\prime} a_{2}+\beta^{\prime} b_{2}+c_{2} \\
a_{1} c_{3}+a_{3} c_{1}=\alpha^{\prime} a_{3}+\beta^{\prime} b_{3}+c_{3}
\end{gathered}
$$

It is not difficult to check that $a_{3}=b_{3}=0$. Therefore, $c_{3} \neq 0$ (otherwise the chosen basis transformation is non-singular) and the restriction will have the following form:

$$
\begin{gathered}
a_{1}=b_{2} c_{3}=1, \quad a_{2}=b_{1}=c_{1}=c_{2}=0 \\
\alpha^{\prime}=c_{3} \alpha, \quad \beta^{\prime}=c_{3}^{2} \beta
\end{gathered}
$$

By choosing appropriate value of c_{3} we can assert that one of non-zero parameter $\alpha^{\prime}, \beta^{\prime}$ can be scaled to 1 .

In the case of the family of algebras $\mathcal{C}_{7}(\alpha)$ taking general change of basis and considering products in new basis, we obtain restrictions:

$$
\begin{gathered}
a_{1} a_{3}=a_{2} a_{3}=b_{1} b_{3}=b_{2} b_{3}=c_{1} c_{3}=c_{2} c_{3}=0, \quad a_{2} b_{3}+a_{3} b_{2}=0 \\
a_{1} b_{3}+a_{3} b_{1}=0, \quad b_{1}=\left(b_{1} c_{3}+b_{3} c_{1}\right) \alpha, \quad b_{2}=\left(b_{2} c_{3}+b_{3} c_{2}\right) \\
b_{3}=b_{1} c_{3}+b_{3} c_{1}, \quad\left(a_{1} c_{3}+a_{3} c_{1}\right) \alpha=\alpha^{\prime} a_{1}+c_{1} \\
a_{2} c_{3}+a_{3} c_{2}=\alpha^{\prime} a_{2}+c_{2}, \quad a_{1} c_{3}+a_{3} c_{1}=\alpha^{\prime} a_{3}+c_{3}
\end{gathered}
$$

Simple study of the restrictions lead to

$$
a_{1}=c_{3}=1, \quad a_{3}=b_{1}=b_{3}=c_{1}=c_{2}=0, \quad b_{2} \neq 0, \quad \alpha=\alpha^{\prime}
$$

Therefore, for different values of parameter α in the family $\mathcal{C}_{7}(\alpha)$ we get nonisomorphic algebras.

Applying argumentations similar as above we derive that there is no algebra of the family $\mathcal{C}_{7}(\alpha)$ which is isomorphic to the algebra \mathcal{C}_{8}.

Since any algebra of the family $\mathcal{C}_{6}(\alpha, \beta)$ has not one-dimensional non-abelian ideal and $\left\langle h_{2}\right\rangle$ is non-abelian ideal in algebras $\mathcal{C}_{7}(\alpha), \mathcal{C}_{8}$, we conclude that there is no algebra of the family $\mathcal{C}_{6}(\alpha, \beta)$ which is isomorphic to $\mathcal{C}_{7}(\alpha)$ and \mathcal{C}_{8}.

Using the explicit form of algebras $\mathcal{C}_{i}, i=1, \ldots, 8$ mentioned in Theorem 2 one can easily check the following proposition.

Proposition 2.

- The algebras $\mathcal{C}_{i}, i=1,4,5$, are solvable.
- The algebra \mathcal{C}_{2} is nilpotent.
- The algebras $\mathcal{C}_{i}, i=3,6,7,8$, are non-solvable.

4. The Description of Complex EACP

In this section we give the description of some $(n+1)$-dimensional EACP.

According to Proposition 1, we obtain that any $(n+1)$-dimensional EACP admits a basis $\left\{h_{1}, h_{2}, \ldots, h_{n}, r\right\}$ such that the table of multiplication of this basis has the form

$$
h_{1} r=\frac{1}{2}\left(\sum_{j=1}^{n} a_{1, j} h_{j}+\delta r\right), \delta \in\{0,1\}, \quad h_{i} r=\frac{1}{2}\left(\sum_{j=1}^{n} a_{i, j} h_{j}\right), \quad 2 \leq i \leq n .
$$

Since the result of Theorem 1 gives a description in the case of $\delta=0$, we shall consider only the case $\delta=1$.

Let us introduce denotations

$$
V_{2}=\left\langle h_{2}, \ldots, h_{n}\right\rangle, \quad R_{\bar{r}}=\left.R_{r}\right|_{V_{2}} .
$$

Then we have

$$
\begin{equation*}
h_{i} \bar{r}=\frac{1}{2}\left(\sum_{j=1}^{n} a_{i, j} h_{j}\right), \quad 2 \leq i \leq n . \tag{4.1}
\end{equation*}
$$

Considering the equality (4.1) by modulo space $\left\langle h_{1}\right\rangle$, we obtain

$$
\begin{equation*}
h_{i} \bar{r}=\frac{1}{2}\left(\sum_{j=2}^{n} a_{i, j} h_{j}\right), \quad 2 \leq i \leq n \quad \bmod \left(\left\langle h_{1}\right\rangle\right) . \tag{4.2}
\end{equation*}
$$

Similar to the proof of Theorem 1, we obtain the following products:

$$
\begin{aligned}
h_{\sum_{i=1}^{s-1} n_{i}+2} r & =\frac{1}{2}\left(a_{s} h_{\sum_{i=1}^{s-1} n_{i}+2}+h_{\sum_{i=1}^{s-1} n_{i}+3}\right) \\
h_{\sum_{i=1}^{s-1} n_{i}+3} r & =\frac{1}{2}\left(a_{s} h_{\sum_{i=1}^{s-1} n_{i}+3}+h_{\sum_{i=1}^{s-1} n_{i}+4}\right) \\
& \vdots \\
h_{\sum_{i=1}^{s-1} n_{i}+n_{s}-1} r & =\frac{1}{2}\left(a_{s} h_{\sum_{i=1}^{s-1} n_{i}+n_{s}-1}+h_{\sum_{i=1}^{s-1} n_{i}+n_{s}}\right) \\
h_{\sum_{i=1}^{s-1} n_{i}+n_{s}} r & =\frac{1}{2}\left(a_{s} h_{\sum_{i=1}^{s-1} n_{i}+n_{s}}\right),
\end{aligned}
$$

where $s=1, \ldots, k, n_{1}+n_{2}+\cdots+n_{k}=n-1$ and $\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\left(1, a_{2}, \ldots, a_{k}\right)$ or $\left(a_{1}, a_{2}, \ldots, a_{k}\right)=(0,0, \ldots, 0)$.

Now go up to the space V_{1}, we obtain the following result.
Theorem 3. There exists a basis $\left\{h_{1}, h_{2}, \ldots, h_{n}, r\right\}$ of EACP, such that the table of multiplication of this basis has the following form:

$$
\begin{aligned}
h_{1} r & =\frac{1}{2}\left(\sum_{j=1}^{n} a_{1, j} h_{j}+r\right) \\
h_{\sum_{i=1}^{s-1} n_{i}+2} r & =\frac{1}{2}\left(a_{\sum_{i=1}^{s-1} n_{i}+2,1} h_{1}+a_{s} h_{\sum_{i=1}^{s-1} n_{i}+2}+h_{\sum_{i=1}^{s-1} n_{i}+3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& h_{\sum_{i=1}^{s-1} n_{i}+3} r= \frac{1}{2}\left(a_{\sum_{i=1}^{s-1} n_{i}+3,1} h_{1}+a_{s} h_{\sum_{i=1}^{s-1} n_{i}+3}+h_{\sum_{i=1}^{s-1} n_{i}+4}\right) \\
& \vdots \\
& h_{\sum_{i=1}^{s-1} n_{i}+n_{s}-1} r= \frac{1}{2}\left(a_{\sum_{i=1}^{s-1} n_{i}+n_{s}-1,1} h_{1}+a_{s} h_{\sum_{i=1}^{s-1} n_{i}+n_{s}-1}+h_{\sum_{i=1}^{s-1} n_{i}+n_{s}}\right) \\
& h_{\sum_{i=1}^{s-1} n_{i}+n_{s}} r= \frac{1}{2}\left(a_{\sum_{i=1}^{s-1} n_{i}+n_{s}, 1} h_{1}+a_{s} h_{\sum_{i=1}^{s-1} n_{i}+n_{s}}\right),
\end{aligned}
$$

where $s=1, \ldots, k$ and $a_{1}=1$.

4.1. The case of $k=1$

Now we shall investigate the case of $k=1$. Thanks to Theorem 3 we obtain the multiplication:

$$
\left\{\begin{aligned}
h_{1} r & =\frac{1}{2}\left(\sum_{j=1}^{n} a_{1, j} h_{j}+r\right) \\
h_{i} r & =\frac{1}{2}\left(a_{i, 1} h_{1}+\alpha h_{i}+h_{i+1}\right), \quad 2 \leq i \leq n-1 \\
h_{n} r & =\frac{1}{2}\left(a_{n, 1} h+\alpha h_{n}\right)
\end{aligned}\right.
$$

where $\alpha \in\{0 ; 1\}$.
Assume there exists some $m, 2 \leq m \leq n$ such that $a_{1, m} \neq 0$ and $a_{1, m}$ is the first non-zero parameter. Putting

$$
h_{i}^{\prime}=\sum_{j=m}^{n} a_{1, j} h_{j-m+i}, \quad 2 \leq i \leq n
$$

we can assume that the table of multiplication has the form

$$
\mathcal{C}^{\alpha}\left(a_{i}, m_{1}\right): \begin{cases}h_{1} r=a_{1} h_{1}+\alpha h_{m_{1}}+r, & 2 \leq m_{1} \leq n \\ h_{i} r=a_{i} h_{1}+\alpha h_{i}+h_{i+1}, & 2 \leq i \leq n-1 \\ h_{n} r=a_{n} h_{1}+h_{n}\end{cases}
$$

where $\alpha \in\{0 ; 1\}$.
Consider two algebras $\mathcal{C}^{1}\left(a_{i}, m_{1}\right)$ and $\mathcal{C}^{1}\left(b_{i}, m_{2}\right)$, with basis $\left\{h_{1}, h_{2}, \ldots, h_{n}, r\right\}$ and $\left\{h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{n}^{\prime}, r^{\prime}\right\}$, respectively. If $m_{1} \neq m_{2}$, then without loss of generality we can suppose $m_{1}<m_{2}$.

Theorem 4. Two algebras $\mathcal{C}^{1}\left(a_{i}, m_{1}\right)$ and $\mathcal{C}^{1}\left(b_{i}, m_{2}\right)$ with $m_{1}<m_{2}$ are isomorphic if and only if
(1) $a_{i}=b_{i}=0, m_{1} \leq i \leq n$;
(2) $a_{1}=b_{1}$ and $b_{1} \neq 1$, and $b_{1} \neq a_{m_{1}-1}+1$ in the case of $b_{m_{1}-1} \neq 0 ; b_{1} \neq 1$, or $a_{m_{1}-2} \neq-1$ in the case of $b_{m_{1}-1}=0, b_{m_{1}-2} \neq 0$;
(3) there exist $B_{2}, B_{3}, \ldots, B_{m_{1}-1} \in \mathbb{C}$, with $B_{2} \neq 0$, such that

$$
b_{i}=\sum_{k=i}^{m_{1}-1} B_{k-i+2} a_{k}, \quad 2 \leq i \leq m_{1}-1 .
$$

Proof. Necessary. Let f be an isomorphism $f: \mathcal{C}^{1}\left(b_{i}, m_{2}\right) \rightarrow \mathcal{C}^{1}\left(a_{i}, m_{1}\right)$. Then

$$
f\left(h_{i}^{\prime}\right)=\sum_{j=1}^{n} A_{i, j} h_{j}+C_{i} r, 1 \leq i \leq n, \quad f\left(r^{\prime}\right)=\sum_{j=1}^{n} D_{j} h_{j}+C_{n+1} r .
$$

Note that, without loss of generality we can assume $C_{n+1} \neq 0$.
From the following chain of equalities

$$
\begin{aligned}
0 & =f\left(h_{i}^{\prime}\right) f\left(h_{i}^{\prime}\right)=\left(\sum_{j=1}^{n} A_{i, j} h_{j}+C_{i} r\right)\left(\sum_{j=1}^{n} A_{i, j} h_{j}+C_{i} r\right)=2 C_{i} \sum_{j=1}^{n} A_{i, j} h_{j} r \\
& =C_{i}\left[A_{i, 2} h_{2}+A_{i, 1} h_{m_{1}}+A_{i, 1} r+\sum_{j=1}^{n} A_{i, j} a_{j} h_{1}+\sum_{j=3}^{n}\left(A_{i, j-1}+A_{i, j}\right) h_{j}\right], \\
0 & =f\left(r^{\prime}\right) f\left(r^{\prime}\right)=\left(\sum_{j=1}^{n} D_{j} h_{j}+D_{n+1} r\right)\left(\sum_{j=1}^{n} D_{j} h_{j}+C_{n+1} r\right)=2 C_{n+1} \sum_{j=1}^{n} D_{j} h_{j} r \\
& =C_{n+1}\left[D_{2} h_{2}+D_{1} h_{m_{1}}+D_{1} r+\sum_{j=1}^{n} D_{j} a_{j} h_{1}+\sum_{j=3}^{n}\left(D_{j-1}+D_{j}\right) h_{j}\right],
\end{aligned}
$$

we obtain the restrictions:

$$
\begin{aligned}
C_{i} \sum_{j=1}^{n} A_{i, j} a_{j} & =0, \quad C_{i} A_{i, k}=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq n, \\
C_{n+1} \sum_{j=1}^{n} D_{j} a_{j} & =0, \quad C_{n+1} D_{k}=0, \quad 1 \leq k \leq n .
\end{aligned}
$$

Since $C_{n+1} \neq 0$, we obtain $D_{i}=0$ for $1 \leq i \leq n$. Moreover, it is not difficult to obtain that $C_{i}=0$ for $1 \leq i \leq n$. Indeed, if there exists $C_{i_{0}} \neq 0$, for $2 \leq i_{0} \leq n$, then it implies that $A_{i_{0}, j}=0$ for $1 \leq j \leq n$. It is a contradiction with the condition of the matrix of the general change is not singular, since $D_{i}=0$ for $1 \leq i \leq n$.

Thus, we have

$$
f\left(h_{i}^{\prime}\right)=\sum_{j=1}^{n} A_{i, j} h_{j}, \quad 1 \leq i \leq n, \quad f\left(r^{\prime}\right)=r .
$$

Consider the multiplication

$$
\begin{aligned}
f\left(h_{n}^{\prime}\right) f\left(r^{\prime}\right)=\sum_{j=1}^{n} A_{n, j} h_{j} r= & A_{n, 2} h_{2}+A_{n, 1} h_{m_{1}}+A_{n, 1} r+\sum_{j=1}^{n} A_{n, j} a_{j} h_{1} \\
& +\sum_{j=3}^{n}\left(A_{n, j-2}+A_{n, j}\right) h_{j} .
\end{aligned}
$$

On the other hand,

$$
f\left(h_{n}^{\prime}\right) f\left(r^{\prime}\right)=b_{n} f\left(h_{1}^{\prime}\right)+f\left(h_{n}^{\prime}\right)=\sum_{j=1}^{n}\left(b_{n} A_{1, j}+A_{n, j}\right) h_{j} .
$$

Comparing the coefficients at the basis elements we obtain

$$
\begin{cases}A_{n, 1}=0, & \sum_{j=2}^{n} A_{n, j} a_{j}=b_{n} A_{1,1} \tag{4.3}\\ 0=b_{n} A_{1,2}, & \\ A_{n, k}=b_{n, 1} A_{1, k+1}, & 2 \leq k \leq n-1\end{cases}
$$

Analogously, considering products

$$
\begin{aligned}
f\left(h_{i}^{\prime}\right) f\left(r^{\prime}\right)= & \sum_{j=1}^{n} A_{i, j} h_{j} r=A_{i, 2} h_{2}+A_{i, 1} h_{m_{1}}+A_{i, 1} r+\sum_{j=1}^{n} A_{i, j} a_{j} h_{1} \\
& +\sum_{j=3}^{n}\left(A_{i, j-1}+A_{i, j}\right) h_{j} \\
= & b_{i} f\left(h_{1}^{\prime}\right)+f\left(h_{i}^{\prime}\right)+f\left(h_{i+1}^{\prime}\right)=\sum_{j=1}^{n}\left(b_{i} A_{1, j}+A_{i, j}+A_{i+1, j}\right) h_{j},
\end{aligned}
$$

for $2 \leq i \leq n-1$, we get

$$
\left\{\begin{array}{l}
A_{i, 1}=0 \tag{4.4}\\
\sum_{j=2}^{n} A_{i, j} a_{j}=b_{i} A_{1,1} \\
b_{i} A_{1,2}+A_{i+1,2}=0 \\
A_{i, k}=b_{i} A_{1, k+1}+A_{i+1, k+1}, \quad 2 \leq k \leq n-1
\end{array}\right.
$$

Consider the product

$$
\begin{aligned}
f\left(h_{1}^{\prime}\right) f\left(r^{\prime}\right)= & \sum_{j=1}^{n} A_{1, j} h_{j} r=A_{1,2} h_{2}+A_{1,1} h_{m_{1}}+A_{1,1} r+\sum_{j=1}^{n} A_{1, j} a_{j} h_{1} \\
& +\sum_{j=3}^{n}\left(A_{1, j-1}+A_{1, j}\right) h_{j}
\end{aligned}
$$

$$
=b_{1} f\left(h_{1}^{\prime}\right)+f\left(h_{m_{2}}^{\prime}\right)+f\left(r^{\prime}\right)=r+\sum_{j=1}^{n}\left(b_{1} A_{1, j}+A_{m_{2}, j}\right) h_{j} .
$$

From this we derive

$$
\begin{cases}A_{1,1}=1, & \sum_{j=1}^{n} A_{1, j} a_{j}=b_{1} \tag{4.5}\\ A_{1,2}=b_{1} A_{1,2}+A_{m_{2}, 2}, & 2 \leq k \leq n-1, \quad k \neq m_{1}-1, \\ A_{1, k}+A_{1, k+1}=b_{1} A_{1, k+1}+A_{m_{2}, k+1}, & \\ 1+A_{1, m_{1}-1}+A_{1, m_{1}}=b_{1} A_{1, m_{1}}+A_{m_{2}, m_{1}} . & \end{cases}
$$

From $b_{n} A_{1,2}=0$, we obtain $b_{n}=0$. Indeed, if $b_{n} \neq 0$ then $A_{1,2}=0$ and according to (4.4) we get $A_{i, 2}=0$ for $3 \leq i \leq n$. From $A_{n, 2}=b_{n} A_{1,3}$ and by (4.4) we get

$$
A_{1,3}=0, \quad A_{2,2}=A_{3,3}, \quad A_{i, 3}=0, \quad 4 \leq i \leq n .
$$

Recurrently, we obtain

$$
A_{1, k}=0, \quad A_{k, k}=A_{2,2}, \quad A_{i, k}=0, \quad 2 \leq k \leq m_{1}, \quad k+1 \leq i \leq n
$$

But since $m_{1}<m_{2}$, from $1+A_{1, m_{1}-1}+A_{1, m_{1}}=b_{1} A_{1, m_{1}}+A_{m_{2}, m_{1}}$ we get incorrect equality $1=0$. It is a contradiction with assumption $b_{n} \neq 0$.

Thus, $b_{n}=0$. From this we have $A_{n, i}=0,2 \leq i \leq n-1$ and $a_{n}=0$.
Continuing this process we obtain the condition (1), i.e.

$$
b_{i}=a_{i}=0, \quad m_{1} \leq i \leq n .
$$

- If $b_{m_{1}-1,1} \neq 0$, then it is not difficult to obtain that

$$
\begin{align*}
A_{1, j} & =0, \quad 2 \leq j \leq m_{1}-1 \\
A_{i, j} & =0, \quad 3 \leq i \leq m_{1}-1, \quad 2 \leq j \leq i-1 \tag{4.6}
\end{align*}
$$

Indeed, from $b_{m_{1}-1,1} A_{1,2}=0$ we have $A_{1,2}=0$, which implies $A_{i, 2}=0$ for $3 \leq i \leq m_{1}-1$. So, the equality (4.6) is true for $j=2$. Recurrently we obtain the equality (4.6) for any $j\left(2 \leq j \leq m_{1}-1\right)$.

Thus, we obtain $a_{1}=b_{1}, \sum_{k=i}^{m_{1}-1} A_{i, k} a_{k}=b_{i}, 2 \leq i \leq m_{1}-1$, and

$$
\begin{cases}1+A_{1, m_{1}}=b_{1} A_{1, m_{1}}, & \tag{4.7}\\ A_{1, k}+A_{1, k+1}=b_{1} A_{1, k+1}, & m_{1} \leq k \leq m_{2}-2, \\ A_{1, k}+A_{1, k+1} & \\ \quad=b_{1} A_{1, k+1}+A_{m_{1}, m_{1}-m_{2}+k+1}, & m_{2}-1 \leq k \leq n-1, \\ A_{i, k}=A_{i+1, k+1}, & 2 \leq i \leq m_{1}-2, \quad i \leq k \leq m_{1}-2, \\ A_{i, k}=b_{i} A_{1, k+1}+A_{i+1, k+1}, & 2 \leq i \leq m_{1}-1, \quad m_{1}-1 \leq k \leq n-1, \\ A_{i, k}=A_{i+1, k+1}, & m_{1} \leq i \leq n-1, \quad i \leq k \leq n-1 .\end{cases}
$$

Taking into account the equality $1+A_{1, m_{1}}=b_{1} A_{1, m_{1}}$, we have $b_{1} \neq 1$, and $A_{1, m_{1}}=\frac{1}{b_{1}-1}$. From the fifth equality of (4.7) for $k=m_{1}-1$, we have

$$
A_{m_{1}, m_{1}}=A_{m_{1}-1, m_{1}-1}-b_{m_{1}-1} A_{1, m_{1}}=b_{m_{1}-1}\left(\frac{1}{a_{m_{1}-1}}-\frac{1}{b_{1}-1}\right)
$$

Since $A_{m_{1}, m_{1}} \neq 0$, we obtain $b_{1} \neq a_{m_{1}-1}+1$, i.e. the condition (2) is satisfied.
Taking into account, the fourth equation of the system (4.7), putting $B_{k}=$ $A_{2, k}, 2 \leq k \leq m_{1}-1$ we obtain the condition (3).

- In the case of $b_{m_{1}-1}=0$, using the similar argument for the first non-zero element b_{t} from the set $\left\{b_{m_{1}-2}, \ldots, b_{2}\right\}$ we obtain the equality $a_{1}=b_{1}, \sum_{k=i}^{t} A_{i, k} a_{k}=$ $b_{i}, 2 \leq i \leq t$, and

$$
\begin{cases}A_{1, t+1}=b_{1} A_{1, t+1}, & \tag{4.8}\\ A_{1, k}+A_{1, k+1}=b_{1} A_{1, k+1}, & t+1 \leq k \leq m_{1}-2 \\ 1+A_{1, m_{1}-1}+A_{1, m_{1}}=b_{1} A_{1, m_{1}}, & \\ A_{1, k}+A_{1, k+1}=b_{1} A_{1, k+1}, & m_{1} \leq k \leq m_{2}-2 \\ A_{1, k}+A_{1, k+1} & \\ \quad=b_{1} A_{1, k+1}+A_{t+1, t-m_{2}+k+2}, & m_{2}-1 \leq k \leq n-1 \\ A_{i, k}=A_{i+1, k+1}, & 2 \leq i \leq t-1, i \leq k \leq t-1 \\ A_{i, k}=b_{i} A_{1, k+1}+A_{i+1, k+1}, & 2 \leq i \leq t, t \leq k \leq n-1 \\ A_{i, k}=A_{i+1, k+1}, & t+1 \leq i \leq n-1, \quad i \leq k \leq n-1\end{cases}
$$

If $t=m_{1}-2$, then in the case of $b_{1}=1$ and $a_{m_{1}-2}=-1$, we obtain $A_{m_{1}-1, m_{1}-1}=b_{m_{1}-2}\left(\frac{1}{a_{m_{1}-2}}+1\right)=0$, which is a contradiction with the existence of isomorphism f. Therefore, if $t=m_{1}-2$, then $b_{1} \neq 1$ or $a_{m_{1}-2} \neq-1$, i.e. the condition (2) is satisfied.

Putting $B_{k}=A_{2, k}, 2 \leq k \leq m_{1}-1$ we obtain the condition (3).
Sufficient. Let the conditions (1), (2) and (3) are satisfied. From the previous proof it follows that the existence of an isomorphism $f: \mathcal{C}^{1}\left(b_{i}, m_{2}\right) \rightarrow \mathcal{C}^{1}\left(a_{i}, m_{1}\right)$ is equivalent to the solvability of $(4.7)\left((4.8)\right.$ if $\left.b_{m_{1}-1}=0\right)$.

In the case of $b_{m_{1}-1} \neq 0$, and $b_{1} \neq 1, b_{1} \neq a_{m_{1}-1}+1$ we find a solution of (4.7) as follows:

$$
\begin{aligned}
& A_{i, k}=B_{k-i+2}, \quad 2 \leq i \leq m_{1}-1, \quad i \leq k \leq m_{1}-1 \\
& A_{1, k}=\frac{1}{\left(b_{1}-1\right)^{k-m_{1}+1}}, \quad m_{1} \leq k \leq m_{2}-1 \\
& A_{i, i}=b_{m_{1}-1}\left(\frac{1}{a_{m_{1}-1}}-\frac{1}{b_{1}-1}\right), \quad m_{1} \leq i \leq n .
\end{aligned}
$$

Then from (4.7) we obtain other parameters $A_{i, k}$.
The case $b_{m_{1}-1}=0$ is similar to the case $b_{m_{1}-1} \neq 0$.

Corollary 1. $\mathcal{C}^{1}(0, m) \cong \mathcal{C}^{1}(0,2)$ for any $m(3 \leq m \leq n)$. And as an isomorphism we can take

$$
\begin{aligned}
& f\left(h_{1}^{\prime}\right)=h_{1}+\sum_{k=1}^{m-1}(-1)^{k} h_{k}+\sum_{k=m}^{m}\left((-1)^{k-1}+(-1)^{k-m}\right) h_{k}, \\
& f\left(h_{i}^{\prime}\right)=h_{i}, \quad 2 \leq i \leq n, \quad f\left(r^{\prime}\right)=r
\end{aligned}
$$

Analogously, we obtain the following theorem for the class of algebras $\mathcal{C}^{0}\left(a_{i}, m\right)$.
Theorem 5. Two algebras $\mathcal{C}^{0}\left(a_{i}, m_{1}\right)$ and $\mathcal{C}^{0}\left(b_{i}, m_{2}\right)$ with $m_{1}<m_{2}$ are isomorphic if and only if
(1) $a_{i}=b_{i}=0, m_{1} \leq i \leq n$;
(2) $a_{1}=b_{1}$ and $b_{1} \neq 0$, and $b_{1} \neq a_{m_{1}-1}$ in the case of $b_{m_{1}-1} \neq 0 ; b_{1} \neq 0$, or $a_{m_{1}-2} \neq-1$ in the case of $b_{m_{1}-1}=0, b_{m_{1}-2} \neq 0$;
(3) there exist $B_{2}, B_{3}, \ldots, B_{m_{1}-1} \in \mathbb{C}$, with $B_{2} \neq 0$, such that

$$
b_{i}=\sum_{k=i}^{m_{1}-1} B_{k-i+2} a_{k}, \quad 2 \leq i \leq m_{1}-1 .
$$

Now we investigate the criteria of isomorphism inside the class of $\mathcal{C}^{1}\left(a_{i}, m\right)$.
According to Theorem 4, if $a_{i}=0$ for $m-1 \leq i \leq n$, then there exists an algebra $\mathcal{C}^{1}\left(c_{i}, m-1\right)$ which is isomorphic to $\mathcal{C}^{1}\left(a_{i}, m\right)$, we consider the case of $a_{i} \neq 0$ for some $i(m-1 \leq i \leq n)$.

For this purpose consider two algebras $\mathcal{C}^{1}\left(a_{i}, m\right)$ and $\mathcal{C}^{1}\left(b_{i}, m\right)$, i.e. case of $m_{1}=m_{2}$.

Similar to the proof of Theorem 4, we consider the isomorphism $f: \mathcal{C}^{1}\left(b_{i}, m\right) \rightarrow$ $\mathcal{C}^{1}\left(a_{i}, m\right)$ as follows:

$$
f\left(h_{i}^{\prime}\right)=\sum_{j=1}^{n} A_{i, j} h_{j}, \quad 1 \leq i \leq n, \quad f\left(r^{\prime}\right)=r .
$$

We obtain $A_{1,1}=1, A_{i, 1}=0$, for $2 \leq i \leq n$ and the following restrictions:

$$
\begin{cases}b_{1}=a_{1}+\sum_{j=2}^{n} A_{1, j} a_{j}, \tag{4.9}\\ b_{i}=\sum_{j=2}^{n} A_{i, j} a_{j}, & 2 \leq i \leq n, \\ b_{n} A_{1,2}=0, b_{i} A_{1,2}+A_{i+1,2}=0, & 2 \leq i \leq n, \\ A_{i, k}=b_{i} A_{1, k+1}+A_{i+1, k+1}, & 2 \leq i \leq n-1, \quad 2 \leq k \leq n-1, \\ A_{n, k}=b_{n} A_{1, k+1}, & 2 \leq k \leq n-1, \\ A_{1,2}=b_{1} A_{1,2}+A_{m, 2}, & \\ A_{1, k}+A_{1, k+1}=b_{1} A_{1, k+1}+A_{m, k+1}, & 2 \leq k \leq n-1, \quad k \neq m-1, \\ 1+A_{1, m-1}+A_{1, m}=b_{1} A_{1, m}+A_{m, m} . & \end{cases}
$$

From (4.9) it is not difficult to obtain the following recurrent formula:

$$
\begin{equation*}
A_{i+1, k+1}=A_{2, k-i+2}-\sum_{j=2}^{i} b_{i} A_{1, k-i+1+j} \tag{4.10}
\end{equation*}
$$

Let p be the first non-zero element from the set $\left\{b_{n}, b_{n-1}, \ldots, b_{m-1}\right\}$.
In the case of $p=m-1$, i.e. $b_{n}=b_{n-1}=\cdots=b_{m}=0, b_{m-1} \neq 0$, from (4.9) we obtain $a_{n}=a_{n-1}=\cdots=a_{m}=0$, and

$$
\left\{\begin{array}{rlrl}
A_{1, i}=0, & & 2 \leq i \leq m-1 \tag{4.11}\\
A_{i, i}= & A_{2,2}, & & 3 \leq i \leq m-1, \\
A_{i, i}= & A_{2,2}-b_{m-1} A_{1, m}, & & m \leq i \leq n \\
b_{1}= & a_{1}, b_{i}=\sum_{j=2}^{m+1-i} A_{2, j} a_{j-2+i}, & & \\
A_{2,2}= & 1+\left(1-b_{1}+b_{m-1,1}\right) A_{1, m}, & & \\
A_{2,3}= & \left(1-b_{1}+b_{m-1}\right) A_{1, m+1}+\left(1+b_{m-2}\right) A_{1, m}, & & \\
A_{2, i}= & \left(1-b_{1}+b_{m-1}\right) A_{1, m-2+i}+\left(1+b_{m-2}\right) A_{1, m-3+i} & \\
& +\sum_{j=4}^{i} b_{m+1-j} A_{1, m+i-j}, & & \\
A_{2, i}= & \left(1-b_{1}+b_{m-1}\right) A_{1, m-2+i}+\left(1+b_{m-2}\right) A_{1, m-3+i} & & \\
& +\sum_{j=4}^{m-1} b_{m+1-j} A_{1, m+i-j}, & & m \leq i \leq n-m+1
\end{array}\right.
$$

From this we obtain the following result.
Theorem 6. Any algebra $\mathcal{C}^{1}\left(a_{i}, m\right)$ with $a_{m-1} \neq 0, a_{m}=a_{m+1}=\cdots=a_{n}=0$ is isomorphic to one of the following non-isomorphic algebras:

$$
\begin{aligned}
& \mathcal{C}_{1}^{1}\left(a_{i}, m\right):\left\{\begin{array}{l}
a_{1}=a, \\
a_{m-2}=-1, \\
a_{m-1}=a-1, \\
a_{j}=0 \quad \text { otherwise },
\end{array}\right. \\
& \mathcal{C}_{2}^{1}\left(a_{i}, m\right): \begin{cases}a_{1}=a, \\
a_{m-1}=a-1, \\
a_{j}=0 & \text { otherwise },\end{cases} \\
& \mathcal{C}_{3}^{1}\left(a_{i}, m\right):\left\{\begin{array}{l}
a_{1} \neq 2, \\
a_{m-1}=1, \\
a_{j}=0
\end{array}\right. \\
& \text { otherwise. }
\end{aligned}
$$

Proof. From (4.11) it is not difficult to see that if $b_{m-1}=b_{1}-1$ and $b_{m-2}=-1$, then

$$
\left\{\begin{array}{l}
A_{2,2}=1 \tag{4.12}\\
A_{2,3}=0 \\
A_{2, i}=\sum_{j=4}^{i} b_{m+1-j} A_{1, m+i-j}, \quad 4 \leq i \leq m-1, \\
A_{2, i}=\sum_{j=4}^{m-1} b_{m+1-j} A_{1, m+i-j}, \quad m \leq i \leq n-m+2,
\end{array}\right.
$$

which implies $a_{m-1}=b_{m-1}=b_{1}-1, a_{m-2}=-1$, and $b_{i}=a_{i}+\sum_{j=4}^{m+1-i} A_{2, j} a_{j-2+i}$, for $2 \leq i \leq m-3$.

Putting

$$
\begin{aligned}
& A_{2,4}=-\frac{a_{m-3}}{b_{m-1}}, \quad A_{2,5}=-\frac{1}{b_{m-1}}\left(a_{m-4}-a_{m-1} A_{2,4}\right) \\
& A_{2, i}=-\frac{1}{b_{m-1}}\left(a_{m+1-i}-\sum_{j=4}^{i-1} a_{m-1-i+j} A_{2, j}\right), \quad 5 \leq i \leq m-1,
\end{aligned}
$$

we can suppose $b_{2}=b_{3}=\cdots=b_{m-3}=0$. Other parameters of the isomorphism f can be found by (4.12) and (4.10). Thus, for any parameters $a_{1}, a_{2}, a_{3}, \ldots, a_{m-1}$ with conditions $a_{m-1}=b_{m-1}=b_{1}-1, a_{m-2}=-1$, there exists an isomorphism f from the algebra $\mathcal{C}^{1}\left(a_{i}, m\right)$ to the algebra \mathcal{C}_{1}^{1}.

If $b_{m-1}=b_{1}-1$ and $b_{m-2} \neq-1$, then we have $A_{2,2}=1$ and $a_{m-1}=b_{m-1}=$ $b_{1}-1$.

Putting

$$
\begin{aligned}
& A_{2,3}=-\frac{a_{m-2}}{b_{m-1}}, \quad A_{2,4}=-\frac{a_{m-3}}{b_{m-1}}, \quad A_{2,5}=-\frac{1}{b_{m-1}}\left(a_{m-4}-a_{m-1} A_{2,4}\right), \\
& A_{2, i}=-\frac{1}{b_{m-1}}\left(a_{m+1-i}-\sum_{j=3}^{i-1} a_{m-1-i+j} A_{2, j}\right), \quad 4 \leq i \leq m-1,
\end{aligned}
$$

we can suppose $b_{2}=b_{3}=\cdots=b_{m-2}=0$. Other parameters of the isomorphism f can be found by (4.12) and (4.11). Thus, for any parameters $a_{1}, a_{2}, a_{3}, \ldots, a_{m-1}$ with conditions $a_{m-1}=a_{1}-1$ there exists an isomorphism f from the algebra $\mathcal{C}_{1}^{1}\left(a_{i}, m\right)$ to \mathcal{C}_{2}^{1}.

Analogously, in the case of $b_{m-1} \neq b_{1}-1$ and $b_{m-2} \neq-1$, putting $A_{2, j}$ we can suppose $b_{2}=b_{3}=\cdots=b_{m-2}=0$ and $b_{m-1}=1$, which derive the algebra L_{3}^{1}.

Now consider the case $p \geq m$, i.e. $b_{n}=b_{n-1}=\cdots=b_{p+1}=0, b_{p} \neq 0$, then from (4.9) we obtain $a_{n}=a_{n-1}=\cdots=a_{p+1}=0$, and

Similar to Theorem 6, we obtain the following result.
Theorem 7. Any algebra $\mathcal{C}^{1}\left(a_{i}, m\right)$ with $a_{p} \neq 0, a_{p+1}=a_{p+2}=\cdots=a_{n}=0$, $p \geq n$ is isomorphic to one of the following pairwise non-isomorphic algebras:

$$
\begin{aligned}
& \mathcal{C}_{1}^{1}\left(a_{i}, m, p\right): \begin{cases}a_{1}=a, \\
a_{m-2}=-1, \\
a_{m-1}=a-1, \\
a_{j} \in \mathbb{C}, & m \leq j \leq p, \\
a_{j}=0 & \text { otherwise },\end{cases} \\
& \mathcal{C}_{2}^{1}\left(a_{i}, m, p\right): \begin{cases}a_{1}=a, \\
a_{m-1}=a-1, \\
a_{j} \in \mathbb{C}, & m \leq j \leq p, \\
a_{j}=0 & \text { otherwise },\end{cases} \\
& \mathcal{C}_{3}^{1}\left(a_{i}, m, p\right): \begin{cases}a_{1} \neq 2, & m \leq j \leq p, \\
a_{m-1}=1, \\
a_{j} \in \mathbb{C}, & m \leq r e \\
a_{j}=0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Acknowledgments

The work is supported by the Grant No. 0251/GF3 of Education and Science Ministry of Republic of Kazakhstan.

References

[1] J. M. Casas, M. Ladra, B. A. Omirov and U. A. Rozikov, On evolution algebras, Algebra Colloq. 21(2) (2014) 331-342.
[2] I. M. H. Etherington, Genetic algebras, Proc. Roy. Soc. Edinburgh 59 (1939) 242-258.
[3] I. M. H. Etherington, Duplication of linear algebras, Proc. Edinburgh Math. Soc. (2) 6 (1941) 222-230.
[4] I. M. H. Etherington, Non-associative algebra and the symbolism of genetics, Proc. Roy. Soc. Edinburgh 61 (1941) 24-42.
[5] A. Labra, M. Ladra and U. A. Rozikov, An evolution algebra in population genetics, Linear Algebra Appl. 457 (2014) 348-362.
[6] Y. I. Lyubich, Mathematical Structures in Population Genetics (Springer, Berlin, 1992).
[7] M. L. Reed, Algebraic structure of genetic inheritance, Bull. Amer. Math. Soc. (N.S.) 34(2) (1997) 107-130.
[8] J. P. Tian, Evolution Algebras and Their Applications, Lecture Notes in Mathematics, Vol. 1921 (Springer, Berlin, 2008).
[9] A. Wörz-Busekros, Algebras in Genetics, Lecture Notes in Biomathematics, Vol. 36 (Springer, Berlin, 1980).

