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ON THE COHOMOLOGY OF MODULAR LIE ALGEBRAS
UDC 519.46

A. S. DZHUMADIL'DAEV

The cohomology of many classes of Lie algebras over fields of characteristic zero is

known well. For instance there is exhaustive information available on the cohomology of

finite-dimensional semisimple complex Lie algebras. Whitehead's well-known lemma says

that the cohomology of a semisimple Lie algebra with coefficients in an irreducible

nontrivial finite-dimensional module is zero (cf. [1], p. 106, Exercise 12 k). The same is

true of finite-dimensional nilpotent Lie algebras (Dixmier [2]). Many attempts have

recently been made to compute the cohomology of infinite-dimensional Lie algebras of

Cartan type. Compared with this, the cohomology of modular Lie algebras (that is, Lie

algebras over prime characteristic fields) is virtually unknown. Therefore every result

specially devoted to the cohomology of modular Lie algebras is of essential interest.

In this paper we prove some modular analogues of the Whitehead lemma. In contrast to

the characteristic zero case, our main result (Theorem 1) remains correct for arbitrary

modular Lie algebras and for a rather large class of modules (not necessarily irreducible).

For example, the cohomology of a /«-algebra with coefficients in an irreducible module can

be nontrivial only if this module is a /^-module (Theorem 2). Then we apply these results

to study the cohomology of simple Lie algebras. We consider the case of a classical Lie

algebra, where we take Ax, and the case of a Lie algebra of Cartan type, where we take the

ρ "-dimensional Zassenhaus algebra Wx(n). In the former case we derive the complete

description of the cohomology with coefficients in an irreducible module (Theorem 4). In

the latter case we reduce the study of that cohomology to computing the cohomology of

Wx{n) itself and the cohomology of a (/)" - 2)-dimensional nilpotent subalgebra £, =

Θ Ι & 1 £ , of W\(n), where L, = ( x ( l + 1 > 9 ) , with coefficient in the trivial 1-dimensional

module (corollary to Theorem 5).

§1. Cohomology of modular Lie algebras with

coefficients in a nontrivial module

In this paper all algebras and modules are finite dimensional over a fixed field Ρ of

characteristic ρ > 0. Let L be a Lie algebra, U(L) the universal enveloping algebra and Ζ

the center of U(L). A polynomial of the form f(t) = 2 / s , 0

 A/ r / > £ i [ / ] is called a

p-polynomial. With every element / G L we can associate a ^-polynomial z(t) such that
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replacing t by I gives a central element z(l) G Z. Thus we obtain a map (in general this is

ambiguous) which we denote by z: L -» Z. Let Μ be an L-module and

/i-»(/)M, / E L , ( / ) w E E n d M ,

its associated representation. The main result can be stated as follows.

THEOREM 1. Let L be a Lie algebra over a field of prime characteristic and Μ an arbitrary

L-module. Suppose for some I Ε L the endomorphism (z(l))M is not degenerate, z(l) being

an associated central element. Then the cohomology H*(L, M) is zero.

It is useful, for the sequel, to recall some definitions concerning the cohomology of Lie

algebras. We follow the notation of [1], Chapter I, §3, Exercise 12, to which we add some

new notation. Let Ck(L, M) denote the space of all multilinear alternating maps in k

variables with k > 0. We also put C°(L,M) = Μ and Ck(L, M) = 0 if k < 0. In the

cochain complex C*(L, M) = (&kC
k(L, M) we introduce the coboundary map by

«/ψ = ψ ' + ψ", where ψ', ψ" Ε Ck+X(L, Μ) are the cochains corresponding to ψ Ε

Ck(L, Μ) and determined by the formulas

([Λ-,/>].Ί Λ 6 /*+.).

(here and everywhere in the sequel means that the element under this sign must be

omitted). The following notation is standard: Zk{L, M) is the space of A:-cocycles,

Bk(L, M) is the space of A:-coboundaries and Hk(L, M) = Zk(L, M)/Bk(L, M) is the

kth cohomology space. Now the cohomology class of the cocycle ψ Ε Zk{L, Μ) in

Hk{L, M) is denoted by ψ. Let θ be a representation of L in C*(L, M) of the form

This extends to a representation of the universal enveloping algebra U(L). Every element

/ Ε L determines an endomorphism of degree —1 (adjoint endomorphism) i(l) of the

cochain complex C*(L, M) if we put

(/(/ )* )(/„. . . ,/*_, ) = * ( / , / , , . . . , / * _ , ) , Ψ e c k ( L , M).

We will need the relations

ISL, (1)

I EL. (2)

By ML we denote the subspace of all invariants

ML= (m GM\l(m) =0,/e l ) .

Let L' be a subalgebra in L. We recall that the relative cohomology space H*(L, L', M)

= ®k Hk(L, L', M) can be defined as the cohomology of the relative cochain complex

C*(L, L', Μ) = { ψ ε C*(L, Μ)|ί(/')ψ = Ο,0(/')ψ = Ο,/' e L > .

For more details on cohomology, see [3].

LEMMA 1. Letf(t) heap-polynomial in P[t] and I an element in L. Then 6(f(l)) = f(6{l)).
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PROOF. We may restrict ourselves to the case/(/) = tp\ Then it suffices to prove that

(Θ(1))Ρ'\Ρ = θ(Ιρ')ψ, ψ being an arbitrary cochain ψ e Ck(L, M), k 3* 0. We consider

representations 6q: L -» End Ck(L, M), 0 < q *£ A:, given by

These extend to representations of U(L). For any / ε L the endomorphisms 6^(1),

0 < q =£ A;, commute pairwise, and their sum equals #(/). Hence in raising the equation

θ(1) = 2Q θ (I) to a certain power we may use the binomial expansion. Thus

k

But 0 i(/)/)I = 0«,(//>), and the proof is complete.

COROLLARY. Let z(l) be a central element associated with an element I E L. Then

PROOF. Sincez(#„(/)) = 6q(z(l)) = Q,0<q*zk,by Lemma 1

LEMMA 2. For some Ι ε L, let the endomorphism (z(l))M be nondegenerate, and let

I = (z(/))^' be its inverse. Then Id = dl.

PROOF. Let ψ ε Ck(L, Μ), k > 0. We verify that

(ϊ^)' = Ζ(ψ'), (3)

(/»" = /(ψ")- (4)

(3) is obvious. Since z(l) ε Ζ we find that (z(l))M(l')M = {l')M{z(l))M, whence /(/ ' ) w =

(/')M/for all/' 6 L . Then

Now (4) is clear. The proof is complete.

PROOF OF THEOREM 1. Multiplying both sides of (2) by an element of the form #(/)* on

the right and considering (1) gives that diq{l) + iq(l)d — 0 ( / ) i + 1 for a suitable endomor-

phism iq(l) of degree —1 (in fact, iq{l) = i(l)e{l)q). Passing to linear combinations of

such relations, we derive that for any ^-polynomial/(/) G. P[t] there exists an endomor-

phism if\ C*(L, M) - C*(L, M) of degree - 1 such that

In particular, for a central element z(l), making use of the corollary to Lemma 1 we find

that

Now we suppose that (z(/)) w is invertible. Then, by Lemma 2, dp + pd = (id)M, where

the homotopy ρ is given by ρ = hz(l). Thus the theorem is proved.

We have the following corollaries.
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COROLLARY 1. Let Ρ be afield of prime characteristic and Μ an irreducible L-module. The

cohomology H*(L, M) is nonzero only if all the endomorphisms of the form (z(l))M, I G L,

are zero.

PROOF. By Schur's lemma the endomorphism (z(l))M is invertible if and only if it is

nonzero.

COROLLARY 2. Let I G L be an aa-nilpotent element such that (l)M is not degenerate.

Then //*(L, M) is trivial.

PROOF. If (ad l)q = 0 then lp" is in Ζ as soon as q <ps. Now (l)M is invertible if and

only if (iyM is.

COROLLARY 3. Let L be a nilpotent Lie algebra over a field of prime characteristic and Μ

an irreducible L-module. Then the cohomology H*(L, M) is nontrivial if and only if Μ is a

trivial \-dimensional L-module.

We remark that the latter also holds for fields of characteristic zero. This is proved in

[2], and, in fact, the proof given in [2] and relying on the Serre-Hochschild spectral

sequence does not depend on the characteristic of the base field. Since every finite-dimen-

sional irreducible representation of a nilpotent Lie algebra over an algebraically closed

field of characteristic zero is 1-dimensional, the result is more interesting for the modular

case.

PROOF. Suppose H*(L, Μ) Φ 0. We consider the lower central series

L1 = LD L2=[L,L]D • • O L ' D O .

Arguing by induction over i = q, q — 1,..., 1, we can prove that (l)M — 0 for all / ε L'.

Then, for / = 1, we will find that Μ is a trivial L-module, hence a 1-dimensional one.

Now, since Lq is in the center of L, using Corollary 1 we see that the base of the induction

is true. We then assume that the assertion is true for / + 1. Then [(l)M,(l')M] = ([/, l'])M

= 0, / ε L', Ι' ε L, because [/, /'] ε L' + 1 . We see that, although / is not necessarily an

element in Z, the endomorphism (l)M commutes with all endomorphisms (l')M. By Schur's

lemma either (l)M — 0 or {l)M is not degenerate. But the latter is impossible since z(l) has

the form lp'; hence by theorem 1 we have 0 = {z{l))M = (/)&'. The induction step is

proved.

The converse of Corollary 3 is obvious. For instance,

H°(L,P) =ΡΦ0.

In contrast to [2], we do not require that the base field is algebraically closed.

We recall that the nil component of z(l) ε Ζ is an L-module Μ is a subspace M0(z(l))

in which (z(/))M acts nilpotently; it has the form M0(z(/)) — UJ>X Ker(z(l))J

M. The

subspace M0(Z) = H / e £ M0(z(l)) is called the Z-nil component of M. The nil component

M0(Z) has the structure of an L-module. We remark that, when L is nilpotent, M0(Z)

coincides with Fitting's nil component

Mo= (Ί U
/εί. j»f

Now we reformulate Theorem 1.
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THEOREM Γ. Let L be an arbitrary Lie algebra over a field of prime characteristic, and Μ

an L-module. Then

H*(L, M) ~H*(L,M0(Z)).

PROOF. If Μ = M0(Z), the result is obvious. If Μ Φ M0(z(/)) for some / Ε L, then, in

M{(z(l)) = Μ/M0(z(l)), the endomorphism (z(l))M (z(in is invertible; hence, due to

Theorem 1, H*(L, Λ/,(ζ(/))) = 0. From the long exact cohomological sequence

• • · - Hk(L, M0(z(l))) - Hk{L, M) - Hk(L, M,

which corresponds to the exact sequence of L-modules

we find that

Hk(L, M) s Hk(L, M0(z(/))), k > 0, dim M0(z(/)) < dim M.

Using induction over the dimension of M, we complete the proof of Theorem 1'.

COROLLARY 4. If L is a modular nilpotent Lie algebra, then H*(L, M) is isomorphic to

H*(L, Mo).

In particular, we get another proof of Corollary 3.

The following important corollary is awarded the name of a theorem.

THEOREM 2. Let L be a Lie p-algebra, and suppose that an irreducible L-module Μ is not a

p-module. Then H*(L, M) is trivial.

P R O O F . There exists an element / e L such that the endomorphism (lp — l[p])M is not

zero. Since lp — llp] G Z, by Corollary 1 the proof is complete.

Now let L possess an invariant symmetric form ( , ). Let e,,..., en be a basis in L and

e\,... ,e'n its dual: (e,, ej) = δι Jy i, j — 1,. . . ,n. Since ( , ) is nondegenerate, the following

is true.

ASSERTION. / /

[ε»ΐ] = 2Κ& and [<./] = Σλ;,^;
' j

are basic decompositions for I E L, then λ, 7 + A y ; = 0 for all i, j = 1, . . . ,n.

The Casimir element c = Σ, e^e- belongs to Z. In the proof of this well-known result one

uses the above assertion. The same assertion is principal in Whitehead's lemma and in the

following.

THEOREM 3. Let R be an ideal of a Lie algebra L and ( , ) an invariant nondegenerate

symmetric form on R. Let c denote the corresponding Casimir element. If (c)M is invertible,

then the cohomology H*(L, M) is trivial.

In particular, if the trace form (/, l')M — tr((l)M(l')M) corresponding to an irreducible

L-module Μ is not degenerate and the dimension of R is not divisible by the characteristic

of the base field, then H*(L, M) = 0 (see [1], Chapter I, §3, Exercise 12j).
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We briefly recall the proof of this theorem. Let ρ be an endomorphism of degree — 1 in

C*{L, M) such that

Then, using the above assertion, we find that

dp + pd={c)M. (5)

The beginning of the proof of Theorem 3 is precisely the same. To complete the proof

after formula (5) we apply Lemma 2.

Although Whitehead's lemma and Theorem 3 differ in minor details, the latter has

wider application. Indeed, every simple Lie algebra over a field of characteristic zero has a

nondegenerate trace form. This is not the case when the characteristic is prime. Neverthe-

less, every classical modular simple Lie algebra possesses a nondegenerate invariant form.

In fact this is true of Lie algebras which are not necessarily classical or even /j-algebras.

For example, every Hamiltonian Lie algebra has a nondegenerate invariant form which is

not a trace form [7].

We apply Theorems 2 and 3 to study the cohomology of the 3-dimensional simple Lie

algebra of the type A,. We start with a proposition of independent interest. We recall that

an abelian subalgebra Γ in a Lie algebra L is called a torus if there is a basis ( ea | α ε Τ*)

such that the action of every element h ε Τ is semisimple, i.e. [h, ea] — a(h)ea, α ε Τ*.

PROPOSITION 1. Let L be a finite-dimensional Lie algebra over an arbitrary field, and let

the action of a torus Τ in a finite-dimensional L-module Μ be semisimple. Let a coboundary

d\p Ε B*(L, M) be invariant under the action of the torus: 6(h) dip = 0 V h ε Τ. Then, in

the cohomology class of the cochain ψ, there exists a representative φ which is also invariant

with respect to the action of the torus: 6(h)q> = 0 V /ι Ε Γ, φ — ψ £ B*(L, Μ).

PROOF. Since all the Γ-modules under consideration are semisimple, there exists a basis

in the finite-dimensional cochain space C*(L, M) = h*L ® Μ whose elements are eigen-

vectors with respect to all endomorphisms 6(h), h ε Τ. Let ψ = Σο Ψ,·, where ψ0, ψ,,... ,\pk

are eigenvectors with pairwise different eigenvalues λ 0 , λ,,.,.,λ^. Let, say, λ 0 = 0. We

apply the endomorphism 6{h)q to the equation d\j/ = Σο ̂ Ψ,· Using (1), we get

k

2.Wjdtj· = 0, 0 <<?=££.

The Vandermonde determinant is nonzero:
λ, ·

λ2, ·

κ •

•• λ ,

·· κ

Hence d\pj = 0 for all 1 <j; ^ k. Then, according to (2),

λ,ψ,., 1 <j < k,

which gives ψ, = d(i(h)\pj/Xj) ε B*(L, M). To finish we put φ = ψ + da, where σ =

\ ^j/\j. The proof is complete.
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COROLLARY. Let L, Μ and Τ denote the same as in Proposition 1. Then H*(L, M) =
H*(L, M)T.

Now let

L = ( e _ , h , e + \ [ e + , e _ ] - h , [ h , e ± ] = ± 2 e ± )

denote the Lie algebra of type Λ, over an algebraically closed field of characteristic/» > 3.
All /^-representations of this Lie algebra can be obtained by reduction modulo ρ from
standard irreducible representations of dimensions 1 < / + 1 < ρ with highest weight i
(see [5]). The endomorphism (c)M corresponding to the Casimir element c = e+e_ +
e^e+ +h2/2 is not degenerate if dim Μ φ \, ρ — 1. According to Theorems 2 and 3, then
H*(L, M) = 0 as soon as Μ is any irreducible L-module whose dimension is not 1 or
ρ — 1. Now let Μ = (Vj\ 1 < ι; **/> — 1) be a (p — l)-dimensional irreducible L-module
with maximal vector νρ^λ: e+ vp_x — 0 and with minimal vector υ,: e vl = 0. The classes
of the cocycles ψ+ , ψ1, Ε. Z\L, Μ) and ψ+ , ψΐ e Z2(L, M) with nonzero components
satisfying the relations

form a basis of H*(L, M). This follows from the corollary to Proposition 1. Thus we have
proved the following.

THEOREM 4. Let L be a Lie algebra of the type A, over an algebraically closed field of
characteristic ρ s* 3, and let Μ be an irreducible L-module. Then

H°(L,P) ^H3(L,P) s/>,

H\L,M) =H2(L,M) sP®P, dimM = p-\.

In all the other cases Hk(L, M) is trivial.

A deeper application of Theorem 1 is given in the following section, where we study the
cohomology of the Zassenhaus algebra.

§2. The cohomology of the Zassenhaus algebra

All finite-dimensional simple Lie algebras over fields of prime characteristic known so
far split into two classes of simple Lie algebras, called classical and Cartan Lie algebras.
While the lowest-dimensional representative of the first class is the 3-dimensional Lie
algebra of the type A,, the lowest-dimensional representative in the class of Cartan Lie
algebras is the/«-dimensional Witt algebra W{{\). Our argument concerning the cohomol-
ogy of the Witt algebra works for the Zassenhaus algebra as well.

We sketch the definition of the Zassenhaus algebra Wx(n) (for the details see [4]). We
recall that the multiplication in the divided power algebra Ox{n) = ( J C O ) | 0 < / < pn — 1)
is given by

The derivation algebra Wx(n) = («9 | u e Ο,(η)> of £,(/?)

«3: ν H» M(3(U)), U,VG Ox{n),

d:x(i)H>x<-'-V) (/>0), 3 : χ ( 0 ) ^ 0 ,
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is called the general Cartan type Lie algebra in one variable (in the terminology due to

Kostrikin and Shafarevich), or the Zassenhaus algebra. One can choose a basis {e, =

x ( ' + " | - 1 ss / < / > " - 2} such that

L— Wx{n) has a grading of the form

The associated filtration will be denoted as follows:

L = £_, 3 e0 D e, z» · · · D e ^ D O, e, = 0 L,.

It should be remarked that the subalgebra Lo = (e 0 ) is a torus in L.
The divided power algebra U — O,(«) has a natural grading of the form

p"-l

t/= 0 t/, £/f= ( x < 0 ) .
; = 0

Thus the associative algebra U has a natural structure of a graded L-module. This module
is reducible and possesses a one dimensional trivial submodule P. We introduce new
graded L-module structures in O,(/i) by putting

(/, v) \-*l(v) + i(Div/)u, ( 6 P ,

where Div(«3) = 3(«) is the divergence of the derivation ud Ε \Υλ(η). The L-module
thus obtained is denoted by Ut. In particular, Uo is the natural L-module U.

Now the nilpotent subalgebra £0 is endowed by a /^-structure of the form e[

o

p] = e0,
e]p] = 0 and (ad e-,)/>" = 0. In particular, Witt's algebra ^,(1) is a Lie p-algebra.
According to Corollary 1 of Theorem 1 the cohomology H*(L, M) of the Zassenhaus
algebra L with coefficients in an irreducible module Μ is nontrivial only in the cases
where

(*-,)£ = 0, (eo)
P

M=(eo)M, (et)
p

M = Q, i > 0.

Although the structure of irreducible representations of Wx{n) in the general cases is
rather complicated (see [6]), the "almost ^-representations" as above admit a good
realization. Their corresponding modules are exhausted by the following list: the 1-dimen-
sional trivial L-module P, the (pn — l)-dimensional L-quotient module U/P and the
ρ "-dimensional L-modules Ut, where t E. Z/pZ, t φ 0, 1, in number/; — 2.

The rest of the paper is devoted to computing the cohomology H*(L, U,) modulo the
cohomology //*(£,, P). To formulate our result we introduce a one-dimensional £0-
module <1,> such that eol = t\ and e,l - 0 for i > 0. We abbreviate H*(L, P) and
H*(£o, <1,» to H*(L) and H*(Q0,l,) respectively. We recall that, given a module V
over a Lie algebra L', we denote by Vv the invariant subspace of V.

THEOREM 5. Let L = Wx{n). For every t & Ρ there exists an isomorphism of spaces

(*>0)

Hk{L,U,) ^ ((//*(£,) θ Η*-'(£,) ®Η"-\£λ) ®Hk-\t,)) ® (l t»
L°.



ON THE COHOMOLOGY OF LIE ALGEBRAS 135

An immediate corollary of Theorem 5 and Corollary 1 to Theorem 1 is the following.

COROLLARY 1. Let Ρ be an algebraically closed field of characteristic ρ > 3, and let Μ be a

finite-dimensional irreducible module over L = W\{n). Then the cohomology H*(L, M) is

trivial except for the following cases.

(i) Μ is a pn-dimensional L-module Ur where t G Z//>Z, / Φ 0, 1. In this case

Hk{L, M) = ((//*(£,) θ//*-'(£,) θ #*-'(£,) θ//*-2(£,)) ® (I,))'"1, k^O.

(ii) Μ is the (p" — \)-dimensional L-quotient module U/P. Then there is an exact

sequence of the form

> Hk(L) ->Hk(L,U) -Hk(L,M) ^ Hk + \ L ) - · • · ,

where

Hk{L, U) = (#*(£,) θ //*-'(£,) θ #*-'(£,) Φ H^^fi,))'"1, * > 0.

(iii) M w i/ie one-dimensional trivial L-module.

It is worth explaining the origin of the exact sequence in case (ii). It arises as the long

exact cohomological sequence associated with the short exact sequence of L-modules of

the form 0 -» Ρ -» ί/ -» Μ — 0.

Before proving the theorem we introduce some additional notation. If V = ®,-e Z V, is a

graded space with homogeneous components Vt, then we write | υ | = i if ν G Fj. We

denote by p r r the natural projection of Vonto a subspace V of F. If υ,,...,«„ is a basis

in F, then every ϋ G V can be represented as ν = S^pr, u, where pry u = p r ^ y v. Let Aj

denote the coefficient at t^ for the projection pr^u. The following convention will be

observed: the elements of L will be denoted by /,/,,. . ., the elements of the natural

L-module U will be denoted by u, v, uu ν,,..., and L-module Ut will be denoted by Μ

and its elements by m, m', Finally, the usual (l)M(m) will be shortened to l(m). This

convention will be useful in determining from the context which subspaces the elements /

and m belong to.

Now we endow the L-module Μ — U, with a structure of a module over the associative

algebra U by naturally putting (w, m) H> urn, u G U, m G M. It is obvious that Μ is a

unitary U-module (that is, \m = m for m G M), and that Μ is a free {/-module with a

basis (1) which is the invariant subspace ML' = (m Ε M | e _ | ( w ) = 0). Besides, Μ is a

graded module both over L and U, and these structures agree in that

/(M, m) = l{u)m + ul{m), I G L,u G U,m G M.

Therefore the natural pairing of the cochain spaces

C*(L,U) υ C*(L, M) - C*(L, M)

extends to a pairing of the cohomology spaces

H*(L, U) u H*(L, M) -> H*(L, M).

In particular, the first cohomology space H\L,U) acts in the cohomology space

H*(L, M). The following is the explicit form of the action of an element ψ G C\L, U) on

an element φ Ε Ck(L, Μ):

/ i + 1 ) = Σ (-1) ' + Ι ψ(Ο υ ?(/„...,/;,..·Λ+ι)·
ι=1
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LEMMA 3. The relative cohomology H*(L, L_{, M) is a direct summand in H*(L, M).

There exists an isomorphism H*(L, L ,, Ut) = //*(£ 0, 1,), t G P.

PROOF. Let

&:C*(L,U,)^C*(to,\,)

denote the product of two linear maps, one of them being the restriction map to £ 0 and

the other being the projection onto the subspace (U,)L-' = (1):

,/,)), ψ ec*(L,i i),/,, · . ·Λ e £ 0 , £ > o ,

), m G C°(L,U,) = Ut.

The following diagram is commutative:

Ck(L,U,) t Ck+\L,Ut)

ef A tf I k^O.

c*(e o , i . ) t c * + ' ( e 0 , i f )

Indeed, since U, is a graded L-module, we have pr ( 1 )(/(w)) = pr^^(l(pr([y(m))) for all

/ e £ 0 and m e Ur Thus

for all / e £ 0 and ^eCk(L,U,). Therefore ((ϊψ)" = #(ψ"). But (£ψ) ' = (ί(ψ') is

obvious. Finally, d&\p = &άψ. In other words, 6E is a projection of the cochain complexes.

Now we verify that the subspace C*(L, L_,, U,) is mapped by & injectively. Suppose

not. Then ίΕψ = 0 but ρΓ^<^)(ψ( • · ·)) Φ 0, wherey' > 0 is assumed to be the least such

number. Let ψ ε Ck(L, L_x, U,). We rewrite the condition θ(ε_\)-ψ = 0 in a more

transparent form. We have

ι = 1

The projection of the left-hand side of (6) onto the subspace ( x(j~ " ) for some lx,...,lk E.

£ 0 is different from zero. Hence the same is true of one of the summands in the left-hand

side of (6). This, however, contradicts the choice of j . Finally, we see that the restriction of

& to C*(L, L_,, Ut) has trivial kernel.

Now we construct a splitting map &': C*(£ o, 1,) -> C*(L, Ut) for &. We put &Ί - 1

for k = 0. For k > 0 we put

p"-\

( g » ( x < " ) 3 , . . . , x ( l ' ) 9 ) = 2 3 Λ ( χ ( Λ ) ) ••·θ Λ ( ·Χ ( ' * ) )φ(* α ι > 9,. . . ,*° ' ) 3).
7ι Λ = I

It is easy to check that 0(e_,)£B'<p = 0 and i{e_x)&'<p = 0, which means that, in fact, &'

maps C*(£o, 1,) into C*(L, L_t, Ut).

Now we verify that the product of the maps

C * ( £ 0 , l ; ) - C * ( L , t / , ) - C * ( £ 0 , l r )

is an identity map. Let Cr

k(t0, l r) denote a subspace in Ck(t0,1,) whose elements are the

cochains φ such that <p(/,,.. .,lk) = 0 if |/, | Η +\lk\¥= r, r 3= 0, A: > 0. Then the
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graded space C * ( £ o , l r ) = θ ^ Cr

k(t0, l r ) is a cochain complex. Moreover, there is a direct

decomposition

Therefore the above assertion reduces to cochains in Cr*(£0, l r), r 3* 0.
Now let φ e Cr*(£0,1,), k > 0. We must show that

<£<£>(/„...,/,)=«?(/„...,/*) (7)

for all /,,... ,lk ε £0. Since U, is a graded t/-module with basis (1), the cochain έΕ'φ is a
homogeneous map of degree — r; that is,

Therefore

A careful inspection of the definition of (&' shows that 6Ε6Ε'φ(/,,... ,lk) = φ(/,,... ,lk) as
soon as | /, | + · · · + | lk \= r. Now (7) is proved.

So, &' is a splitting map for the projection & and ($,' induces the isomorphism of the
cochain complexes C*(L, L_,, Ut) and C*(£o, 1,). Now the proof of the lemma is
complete.

It is convenient, for the sequel, to give an explicit formula for the coboundary map d:
C*(£o, 1,) - C*(£o, 1,). It is obvious that dy = φ' + φ", where the cochain φ" Ε
Ck+ '(£(,, l r) associated with the cochain φ G Cfc(£0,1,) is given by the rule

φ'(/ , , · · -Λ + ι ) = *Σ Σ (- i ) ' + 1 /,( 9 (/, , . . . ,/; . ,/, + 1 ) ) ,

and φ' is defined as previously (see §1).
It is useful to recall some facts concerning the structure of the cohomology space

H\L, U). The cochains α, β e C\L, U) such that

are the cocycles. Indeed, α = d{x(pn)) is an "almost" coboundary. Moreover, the
cohomology class of α is nontrivial since x</>") £ U. We remark that the subspace
( a ) C H\L, U) may be considered as the cohomology space H\L_U U) of the 1-dimen-
sional subalgebra L_,.

We also give another interpretation of this subspace. Let Ω* = ®k Ω* denote the de
Rham cochain complex (that is, Ω0 = U and Ω* = 0 for k > 1), and let Ω1 s U ® Λ1 be
the space of outer differential forms with coefficients in the divided power algebra U.
Then the 1-cohomology de Rham space Η\Ώ*) is isomorphic to U/d(U). This latter
space is isomorphic to the subspace spanned by the cohomology class of the cocycle α in
the cohomology space H\L, U).

We will need an explicit definition of the cocycle a:

a(e_,) =x(-p"'l), «(<?,) = 0 , i > 0 .

Now β being a cocycle is equivalent to a well-known property of the divergence operator:
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In fact this result and the nontriviality of the cohomology class of β follow immediately
from Lemma 3, since β G Z\L, L_],U) and since the projection &β uniquely determines
a basic cocycle in the cocycle space Z\L0) which is a subspace in Z'(£o). It will be seen
later that the classes of α and β form a basis in the cohomology space H](L, U).

As we remarked above, for all t G Ρ and k > 0 there exist pairings

H\L, U) u Hk(L, Ut) - Hk+l(L, Ut).

In particular,

H\L,U) u Hk(L, L_,,i/,) -> Hk + l(L,U,).

An explicit formula is
yt+ 1

'•=i W=-i

where ψ Ε Ck(L, L_^, Ut). An explicit form of the pairing

C'(L o )uC*(£ o ,L o , l ,HC* + 1 (£ o , l r ) ,

is
A + l

( / 8 υ φ ) ( / , , . . . Λ + 1 ) = Σ Σ ( - ι ) ί + 1 φ ( / , , . . . , / ; , . . . , / * + > ) •

/ = 1 |/,| = 0

Obviously this pairing induces a pairing of the cohomology spaces

H'(L o )u/ i*(e o ,L o , i , ) -H* + ' ( e o , i f ) .

LEMMA 4. The following isomorphisms are valid:

7/*(e o,L o, l r) s(//*(£ 1)®(l,» /-°, r e f ,

//*(£0,1,) s H*(L0) ® //*(£0, Lo, 1,), ? G i».

In particular,

//*(£0,i,)-(("*(£,)«#*-'(£,)) ® 0 , ) Λ ^>ο.

P R O O F . It is easily seen that the linear map

C * ( £ O , L O , 1 , ) - * C * ( £ , , 1 , ) ,

which is the natural restriction to the subalgebra £ , , gives an isomorphism C * ( £ o , Lo, l f )

-» C * ( £ , , 1,)L°. It is obvious that this map commutes with the coboundary map. Hence

Hk(t0, Lo, lt) « H"{ZV \,)L° ^ ( ^ ( £ , ) ® ( l , ) ) L o .

From Proposition 1 we have the isomorphism

Let φ ε Zk(£0, \,)L°. Then /(βο)φ G Z*~'(£o, Lo, 1,). If φ = άω is a coboundary with
ω G C*~'(£<,, l,)^0, then i(eo)q> is a coboundary in Zk~\t0, Lo, 1,). For,

/(eo)<p = i(e0) ̂ ω = -d(i(e0)o), i(«0)« G C*" 2 (£ 0 , Lo, 1,).
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Thus we have proved the correctness of the map

ψι-> i(eQ)<p.

Using the above formulas for pairings, we can easily prove the correctness of the map

60.'. u * - i i p ι λ \ ^ Η*(Ρ ] \L°

given by %': φ -»β ο φ, and to show that this is a splitting map for <·$. Another obvious

argument computes the kernel of <S:

Ker $ = (φ G tf*(£0, 1,) / 'ο |/(βο)φ = θ ) ^ / / * ( £ , , Ι,)""0.

Now the proof of Lemma 4 is complete.

From Lemma 3 we know that the relative cohomology H*(L, L_],Ut) is a direct

summand in H*(L, [/,). The complement is described in what follows.

LEMMA 5. The following space isomorphism holds:

H*(L,U,) = H*(L_l,U) ® //*(L, L_,,i/,), ( € P .

/« particular,

Hk(L,U,) = Hk(L, L_,,[/,) θ Hk~\L, L_t,Ut), k^O.

PROOF. We introduce an endomorphism of the space U, denoted by / (the "integral"

map). We put

J x i » = x<i+n ( 0 < i < p n - 1 ) ,

and then extend the map linearly to the whole of Ut. The motivation of our notation is the

following. It is obvious that 9/w = u if pr^JC(/)n_1^« = 0; that is, / is an "almost" inverse

operation to taking a derivative 3: Ut -* i/r

Let ψ be a cohomology class in Hk(L, Ut). We prove the existence of a representative

ψ Ε Zk(L, Ut) in ψ such that the following normalization condition holds:

ψ(*_,,/„...,/,-,) = Μ/,,···Λ-ι)*°'"~1\ (8)
where λ G C*~'(£ o , P). Let ψ' be a representative in ψ such that the above condition is

violated. We must find a coboundary du G Bk(L, Ut) such that ψ = ψ' — άω satisfies (8).

To do this we will construct elements ω(/,,.. . , / Λ _ , ) , / , , . . . ,/Λ_, G L being homogeneous

elements, by induction on the number q = | / , | + • • · +\lk_^ \. In this way we can

construct a cochain ω £ Ck~\L,Ut). We put i(e_x)u = 0. This, in particular, gives a

basis for the above induction.

Now we suppose that for q — 1 all the elements ω(/,,.. . ,/^..,) have been constructed.

Let /,,..., lk_, G £ 0 be linearly independent elements with | /, | + · · · +1 lk_, | = q. Then

where a = Σ,-(—l)'w([e_,,/,·], lu...,li,...,lk_l) is a well-determined (by the induction
hypothesis) element in Ut. It remains to put
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The induction step is proved. Thus condition (8) can be satisfied.
Now we prove that

X G Z * - ' ( £ O , 1 , ) .

Let λ = 2 r S s 0 λΓ, where \r ε Ck~ '(£ 0,1,). By induction on r we prove that dXr = 0. Since
the cocycle space Z*~'(£ o , 1,) is finite dimensional, this will give d\ — 0.

There is nothing to prove if r < 0. Suppose for r — 1 our statement is true. Then the
condition of being a cocycle d\p(e_{, lx,...,lk) = 0, where |/, | + · · · +\lk\= r, can be
rewritten as follows:

Σ Σ (-0 Η

Σ Σ
; = l |/,| = 0

?_„/„...,/;.,...,/,))

A- /

and [e 0 , <?_,] = -<?_,, this condition andSince ( β ο ) ^ * ^ " " 0 ) = ~x(p"~l) +
the normalizing condition (8) give

A:

Σ Σ (-ι)'+ι(('/)(ΐ,>λ,('
ι = 1 |/J = 0

Using the expression for the coboundary d in the cochain complex C*(£o, 1,), we can
rewrite this as

It is obvious that this is possible only if

The induction step is proved. Hence λ e Z*~ '(£0,1,).
Using the pairing formula for the cocycle a, it is easy to verify that α υ ί 'λ = « υ λ

if λ e Ck~'(£(,, 1,). Hence each cocycle ψ Ε Zk{L,Ut) can be represented in the
form ψ = α u <£'λ + φ, where λ e Z*~'(£o, 1,) and φ ε Zk(L, Ut). We remark that
/(<?_,)(ψ - α u λ) = 0; that is, ί(^_,)φ = 0. Then, by (2),

0(*_,)φ = ί/(ι(ί_,)φ) + ι(ί-,)(<ίφ) = 0.

In other words, φ e Zk(L, L_x, U,). Thus, in every class of cocycles belonging to the
complement of the relative cohomology space Hk(L, L_l,Ut) in Hk{L,U,) there is a
cocycle ψ representable in the form ψ = α υ έΕ'λ, λ ε Z / c"'(£0,1,). It is obvious that if
the class of λ is nontrivial, the same is true of ψ.

To finish we have to prove that if ψ — du is a coboundary then the same is true of λ.
So, we assume that

α u &'\ = du. (9)

We proceed by induction over the number of arguments k = 0,1,2, There is nothing
to do if k = 0. Assuming the statement true for k — 1, we prove it for k. According to
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Proposition 1 the cohomology of C*(L, M) is isomorphic to that of C*(L, M)1'", the

subcomplex of invariants under the action of the torus Lo. Thus, in addition to (9) we may

assume that

i(eo)u = O, θ(βο)ω = 0.

Then from (9), using (2), we find that

α υ i(eo)&'\= -ί/(/(<?0)ω),

(because i(eo)(a ^ &'X) - a u (i(eo)&'X)). Since i(eo)&'X G Zk'2(L, L_,, Ut) by the

induction hypothesis, for some σ G Ck~3(L, L_,, Ut) we have i(eo)&'X — da. Then, by

Lemma 4,

&'X = -ά(βν σ) + &'X

for some λ e Zk~ '(£ 0 , Lo, l f). Thus (9) can be rewritten in the form

avA'X = dK, (10)

where κ = ω - α ο (β ο σ) e Ck~\L,Ut).

The following implication is true:

i(eo)X = O, θ(εο)λ = 0 ^ i(eo)(a u &'X) = 0, θ(βο)(α υ &'\) = 0.

Hence i(eo)dK = 0 and θ(εο)άκ = 0. By Proposition 1 we may restrict ourselves to the

case where θ(εο)κ = 0. Then d(i(eo)ic) = 0. In other words, κ = β υ i(eQ)ic + ώ for some

ώ e C* - I (L, i/,) such that i"(eo)w = 0, 6(eo)cb - 0 and du> - da. Thus (10), and hence

(9), can be rewritten in the form

α υ # ' λ = </ώ, (11)

where i(eo)u> = 0, θ(βο)ώ = 0 and λ ε Zk~ '(£„, Lo, 1,), the difference of λ and λ being a

coboundary. Now we remark that in proving the normalizing condition (8) we did not use

the fact that ψ is a cocycle. Hence we may apply the same procedure for the cochain ώ.

Hence we may assume that the following normalizing condition holds:

!(*_,)« = μ ν,χΟ"- 1), μ ε < 7 * - 2 ( β 0 , 1 , ) . (12)

We recall the formula for pairing the cochain μ and the 0-cochain xip"~]>:

(μ ο ^"->)(/ 1 , . . . ,/,_ 2 )= μ (/ Ι , . . . ,/,_>(/-"-· ) .

Moreover, we can have our previous normalizing condition:

ί(εο)ώ = Ο, *(«„)« = 0. (13)

Then from (11) and (12), using (2), we find that

&'λ υ *<'"-'> + ά(μ υ χ(ρ"-χ)) = θ{β_λ)ω (14)

(because/(e_,)(ο υ ($'λ) = &'Χ υ Λ : ^ " " 1 ' ) .

Now we derive from (14) the fact that X -l· άμ = 0. Clearly this will complete our

induction over k and then the whole proof of the lemma. We will verify that

for an arbitrary choice of linearly independent homogeneous elements l],...,lk_] G £ 0 .

We will proceed by induction over q = | /, | + • · · + | /*_ r | . Our assertion is true if at least

one of the elements lx,. ..,lk_{ is in the torus Lo. This was essentially verified above (we
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recall (13), and also the fact that λ e Z A ^ ' ( £ 0 , Lo, 1,)). This, in particular, forms the basis

for the induction. Now we assume that the assertion is true for q — 1, and prove it for q.

As we noted above, /,,..., /A _, may be taken in £,.

So, we consider restrictions of the cochains λ, μ and ώ to £,. It is easily seen that

Thus (14) is equivalent to the system of equations

+ Y(-iya( v,, e,,...,*,.,...,*,, ,), (15)
7 = 1

where e, G L,, /, > 0, / = 1,... ,& — 1. Let /I, , Ε Ρ denote the coefficient at the

basis monomial χ(ρ"~ι+'^ +'* ι) m the representation of co(e,,.. .,e, ) in the form of

a linear combination of basic vectors of Ut. Now we derive conditions imposed on these

coefficients by equations (15). It is easy to verify that we get the following equations, each

corresponding to a certain choice of (/,,...,/ fc _ , ) :

if z, + · · · +/A_) = q. By the induction hypothesis we have

7 = 1

if /, + · · · + i A _ ] < q. Now we say that the collections (/', — 1, i2,. • • ,ik-]), (ΐ'ι, i 2 ~

1,. . . ,/ f c _,) , . . . , (/ , , i2,- · -,'/t-i ~ 1) are associated with the collection ( ί , , . . . , / λ _ , ) . If

(/',,.. . ,/ t _i) and (/,,...,/'J|._,) are associated with each other and the same is true of

(i\,... ,i'k^i) and (i\\.. .,/£_,), then we say that (/,,... ,/\_,) and (i\\... ,/*;'-1) are also

associated. Let (;',,... Jk-{) be an arbitrary but fixed collection such that /, + · · · +ik_{

= q and 0 < / , , . . . ,0 < iA_,. We pick up all equations corresponding to the collections

(i'\,---,i'k-\) associated with (/,,...,/\_,) and such that i\ + · · • +i'k~\ = q' < q, and

add them. Then all the right-hand side terms are annihilated, and, in the left-hand side,

only one term remains, namely, (λ + β?μ)(β,. ,...,e,- ). Thus the induction argument is

complete, proving the whole of the lemma.

Theorem 5 follows immediately from Lemmas 4 and 5.

It should be remarked that our proof lets us effectively construct bases of the

cohomology space H*(L, Ut) once we are given a basis of H*(£,, \,)L°. Indeed, if the class

of ψ is basic in # * ( £ , , 1,)L°, then the classes 6Ε'ψ, α u έΕ'ψ, β w έΕ'ψ and « u ( j 8 u 6Ε'ψ)

are basic in H*(L, £/,) and span it. Now we give an alternative statement of Theorem 5.

THEOREM 5'. Let L be the Zassenhaus algebra Wx{n), and let t e P. The cohomology

space H*(L, U,) can be represented as the tensor product of its subspaces

We remark that H\L) = L/[L, L] = 0 whereas the dimension of the space
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is η + 1. Since, by Theorem 5, the 1-cohomology space has a decomposition

H\L,Ut)^{H\L_x,U)®H\Loj) ® (1,) L" θ (//>(£,) ® (l,))'"1,

we immediately derive the following result.

COROLLARY 2. Lef L = W,(H) and t <Ξ P. Then H°(L,Ut) is trivial if t Φ 0. The
\-cohomology space H\L,Ut) is trivial with the following exceptions:

Hl(L,U) s// ' (L_ l , i/) ® H](L0) has dimension 2 if t = 0;

H\L, t/,) = (<?,) ΛΟΪ dimension \ if t = 1;

H](L,U2) = ( e i ) ^α·ϊ dimension 1 // ί = 2;

//'(L,i7^|) s ( v - i 1° < k < n ) has dimension η - \ift= -\.

It should be remarked that £/_, is an L-module isomoφhic to the adjoint L-module.
Thus, in the latter case we deal with a well-known result saying that the outer derivation
space H\L, L) is generated by derivations in the set {dp |0 < k < «}, and, in particular,
it is (n — l)-dimensional. Now if t = 0, then we see that the classes of the cocycles a and
β are linearly independent, proving what was promised above.

In conclusion I wish to thank A. I. Kostrikin for his attention to this work.
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