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MaTeM. C6opHHK Math. USSR Sbornik
TOM 126(168) (1985), Bun. 4 Vol. 54(1986), No. 2

CENTRAL EXTENSIONS OF THE ZASSENHAUS ALGEBRA
AND THEIR IRREDUCIBLE REPRESENTATIONS

UDC 512.5

A. S. DZHUMADIL'DAEV

ABSTRACT. It is shown that the Zassenhaus algebra W^(m) over a field of characteristic
ρ > 3 has, up to equivalence, a unique nontrivial central extension W^rn) (the modular
Virasoro algebra). For the Virasoro algebra we construct a generalized Casimir element. All
the irreducible (^(mi-modules are described. It is shown that there is no simple graded Lie
algebra with zero component Lo = Wx{m).

Bibliography: 16 titles.

In contradistinction to the case of zero characteristic, the problem of classifying simple
Lie algebras over a field of positive characteristic remains unsolved. All the nonclassical
simple Lie algebras known up to now are obtained from irreducible L0-modules by Cartan
extensions, where Lo is a simple algebra or a trivial central extension of a simple Lie
algebra. A natural question arises: is it possible to obtain a new simple Lie algebra by this
method, if Lo is a nontrivial central extension of a simple Lie algebra? This question, in
turn, engenders two problems. The first is to find all central extensions of simple Lie
algebras. We note that in the case of zero characteristic, every central extension of a
finite-dimensional simple Lie algebra splits. The second problem is to describe the
irreducible representations of nontrivial central extensions of simple Lie algebras. Inciden-
tally, this problem is interesting in its own right; according to Proposition 4, for the study
of Cartan extensions it suffices to describe the irreducible representations of the algebra
Lo whose dimensions do not exceed the dimension of this algebra.

In this paper we solve these problems in the case where Lo is a nontrivial central
extension of the Zassenhaus algebra Wx(m).

We recall that a Lie algebra L with central element ζ is called a central extension of the
algebra L if the quotient algebra L/(z) is isomorphic to L. The 2-cohomology space
H2(L, P) can be regarded as the space of nonequivalent central extensions of L. In the
standard cochain complex C*(L, L*) we distinguish a cochain subcomplex C*(L) whose
homology is isomorphic (with the grading shifted by one) to the cohomology of the Lie
algebra L with coefficients in the trivial module. In particular, Hl(L, L*) contains a
subspace isomorphic to H2(L, P). This fact is used in computing the central extensions of
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458 A. S. DZHUMADIL'DAEV

the Zassenhaus algebra (see §1). It has been proved that for ρ > 3, as in the case of
infinite-dimensional Lie algebras of zero characteristic, the Zassenhaus algebra Wx{m) has
a unique (up to equivalence) nontrivial central extension W^m). In analogy with
characteristic zero, we call this algebra a (modular) Virasoro algebra. We recall that in the
Lie algebra W^m) = (e, | -1 < i < pm - 2) the multiplication is given by

. j
Then the multiplication in the Virasoro algebra W-^m) = (e,, ζ | -1 < / < pm — 2) may
be given by the rule

where δ, ; is the Kronecker symbol. As in the Zassenhaus algebra, the rule

L, = <e,), -1 < / < / > " - 2 , ν _ 1 = 0, Lp~ = (z = ep.), <?i = (eJ\j>i)

gives a grading L = W^m) = ®^Lit and a filtration ^ . j D JS?O 3 · · · r> jSf̂ m D 0. We
introduce the subalgebra ^ = (<?,. |1 < / < pm, i Φ 2).

In §2 we construct a nontrivial central element zl5 the generalized Casimir element of
the nilpotent Lie algebra JSPJ. We note that the well-known method of constructing the
Casimir element only applies for semisimple algebras, i.e. Lie algebras with nondegenerate
invariant forms. To construct a generalized Casimir element, it suffices to determine
whether the L-module U(L) contains as a submodule the coadjoint L-module L*. The
properties of the generalized Casimir element zx play an important role in the study of the
irreducible representations of the Virasoro algebra (§3). Let Μ be an irreducible W^m)-
module with respect to the representation χ -> (x)M. For a subalgebra L' containing ζ all
the representations are divided into two types: we refer it to the first type if (z)M = 0, and
to the second type otherwise. The classes of irreducible W/

1(m)-modules of the first type
coincide with the classes of irreducible W1(m)-modules. We give a description of the
irreducible W1(w)-modules of nonextremal height (p > 2). The analogous result for
ρ > 3 is stated in [6]. Let W^m) be the direct sum of a 3-dimensional simple Lie algebra
of type Ax and a nilpotent subalgebra if2. It turns out that the classes of irreducible
modules of the second types over Wx{m) and over W^m) are in one-to-one correspon-
dence. A similar fact in the case of the Lie /7-algebra W^l) was established in [12]. There
the existence of a central element ζλ was proved. We give an explicit construction for zv

and this enables us to give the correspondence more exactly. In §4 we prove that there
does not exist a simple Lie algebra with zero component isomorphic to W^m).

In this paper we use the following notation. All vector spaces are considered over a field
Ρ of characteristic ρ > 0 (in §3, Ρ is algebraically closed); (X) is the linear span of a set
X of vectors; U(L) is the universal enveloping algebra of the Lie algebra L, U(L)L =
( / e U(L)\[x,f] = 0, χ e L'> is the space of invariants in U(L) with respect to the
subalgebra L', and Z(L) = U(L)L is the center of U(L); in the case of the Virasoro
algebra L = W^m) this notation is abbreviated to U,UL\ Z. For subalgebras L'
containing the element z, we denote by U(L') the localization of U(L') by the ideal (z);
that is, U(L) is the algebra of fractions of the form fz", / e U(L'), -oo < α < οο. Let
Adx and Ad χ be the adjoint derivations of the universal enveloping algebras corre-
sponding to the adjoint derivations of the algebras W^m) and W^m). The multiplication
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in U(L) is denoted in the same way as the multiplication in the Lie algebra L. Let
ε, = (0,..., 0,1,., 0,..., 0), and for a vector α = (... ,«,·,...), ι e /, we put ea = Π, ef> (I
is a set of indices; the lengths of these vectors are to be determined from the context).

§1. Cohomology of Lie algebras with trivial coefficients

Let L* be a coadjoint module over the Lie algebra L (in arbitrary characteristic), and
let ( , ): L* X L -» Ρ be the natural pairing. In what follows x, x', xx, x2,... £ L. Let
Ck(L, L*) be the space of skew-symmetric multilinear maps L X • • • XL —> L*, k > 0,
C°(L, L*) = L*, and let C*(L, L*) = ® kC

k(L, L*) be the standard cochain complex
of the Lie algebra L with coefficients in the coadjoint module with the coboundary
operator d. We introduce the subspaces

C°(L) = L*,

Ck(L)=(t<=Ck(L,L*)\(t(xl,...,xk_1,xk),xk + l)

+ (^(xi,...,xk-i,xk+i),xk) = θ), k> 0,

Ck(L) = (ψ e Ck(L,L*)\d^ e Ck+\L)),

and the linear map

ι,..., x k ) , x k + 1) = ψ ( Χ ι , . .

Since ψ is skew-symmetric, it is clear that j/ψ e Ck{L); that is, indeed the map sf:
Ck + l(L, P) -* Ck{L) is defined. Conversely, the following mapping is also well defined:

1 ( . . . , xk + l)

where the following conditions hold:

^ ^ ψ = ψ, $(ECk(L), <^ψ = ψ, ψ e C*+1(L,P).

A simple verification shows that the following result holds.

PROPOSITION 1. C*(L) c C*(L), 0 < fc.

Thus, C*(L, L*) contains the cochain subcomplex C*(L) = φ k C k ( L ) . Let

Z*(L) = ( ψ ε Ο*(Ζ-)|ί/ψ = 0), B*(L) = {άω\ω e C*(L)),

be the spaces of cocycles, coboundaries, and cohomology of this complex.

PROPOSITION 2. The following diagram is commutative:

PROOF. Let ψ e Ck(L, P). We note that for any permutation σ e Sk we have

Therefore
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(the caret means that the corresponding element is omitted), and

(ds/Tp(x1,...,xk),xk + l)

1 < / < k

k
. V"1 t ,\i + k\\ . /r η „ \

-I- 5 1 I I i l / l l v V Iv V VI
I !_! \ 1J ψ {[Λ/, A k + i ] , Λ-ι, . . . , A.j, . . . , JikJ

Analogously, SSd^i = ί/^ψ, ψ e Ck~\L), k > 0.
Thus, we have proved the following result.

T H E O R E M 1. Hk + 1(L, P) = Hk(L), k^Q.

Let var,,.: Hk + 1(L, P) -» Hk(L, L*) be the cohomology map induced by the map j / .

COROLLARY 1. Ker vart = Ck'1(L)/Ck'\L), k > 0.

Since C°(L) = C°(L) = L*, we obtain that Kervar^ = 0 if k = 1. In other words, the
following is true:

COROLLARY 2. The space H2(L, P) of central extensions is isomorphic to the subspace of
H1(L, L*) consisting of the cochains which preserve the pairing ( , ):

H2(L,P) = H\L) = ( ψ ε H1(L,L*)\{*(x),y)+(t(y),x) = 0 , V i , ; e L).

In particular if L has a nondegenerate invariant form then L = L* and H1(L) appears
as a direct summand in the space Hl(L, L*) of outer derivations, namely as the subspace
of derivations preserving the form. If in addition all the derivations of L are inner, then
every central extension of L is trivial, which is, by the way, well known in the zero
characteristic case.

Let L = Wx(m). We give the space Ox(m) a module structure by the rule «Θ:
ν >-> ud(v) + 2d(u)v. The resulting module is denoted by U2. We note that the coadjoint
L-module is isomorphic to the L-module U2. Indeed, the form F: U2 X L -> Ρ defined by
the rule

F(u,vd) = Xpn^^uv),

where w — Σ/Qr1
 A,(W)JC(') e Ox(m), is invariant:

F((ud)(v),wd) + F(v, [ud,wd]) = Xp,,_1(ud(v)w + 2d(u)vw + vud(w) - vwd(u))

By Corollary 2 of Theorem 5 of [14] we have the isomorphism

3 : M 3 ^ 3 3 ( M ) ) , Up>3,

pk: ud ^dp\u)\0 < k <m\, ίϊρ = 3,

' ud -» x(p"'-l)u) Θ hpk-1: ud ^ dpk~l(u) 0 < k < m), if ρ = 2.

It can easily be verified that the given cocycles preserve the form F. For example,

F(d3(u),vd) +F(u,d3(vd)) = Xpm_1(d(d2(u)v- 3(w)8(o) + ud2(v)))

= 0, r > 3 .
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Thus, by Theorem 1 the map Hl(L, U2) = H\L) -> H2(L, Ρ), ψ ̂  ^ ψ gives an isomor-
phism. The following theorem is proved.

THEOREM 2. The Lie algebra W^m) over a field of characteristic ρ > 2 has 1, m — 1, or
m nonequivalent central extensions according as ρ > 3, ρ = 3, or ρ = 2. In the corre-
sponding algebras with central elements z, u1? o2, wx,... ί/ze multiplications can be defined by
the rules

{e,,e,} = [e,,e7] +(-1)'δ,+ 7 ^,,ζ, /> > 3,

m - l

A: = l

For the Lie /7-algebra Wi(l) this fact was obtained earlier in [12], and also in [7] for
Ρ = Z/pZ* The papers [8] and [9] present erroneous results on H2(W1(m), P) (in [8], p.
39, the equality on the ninth line from the top is false). By analogy with characteristic
zero, the Lie algebra Wx(m) = (e,, ζ | -1 < / < pm — 2) with the multiplication given by
(1) is called a (modular) Virasoro algebra. For the irreducible representations of the
Virasoro algebra of zero characteristic and their connections with other problems, see for
example [10]. In the description of the irreducible representations of a modular Virasoro
algebra an important role is played by the formula for a central element z1 given in the
next section.

§2. A generalized Casimir element of the Virasoro algebra

We call the Lie algebra L a Casimir algebra if the L-module U(L) contains as a
submodule the coadjoint L-module L*. Let V(L) = {e,\ i e /} be a basis for the Casimir
Lie algebra L and let V{L*)= [e* e U(L) \(e*,ej) = 8tJ, i, j e 7} be the dual basis.
Then

c= Σ ete* eZ(L).

This element is called a generalized Casimir element of the Lie algebra L. If L has a
nonsingular invariant form, then this construction coincides with the well-known one.
Despite the simplicity of the generalization, our construction makes sense for the produc-
tion of central elements for the universal enveloping nonclassical Lie algebras. For
example, the Virasoro algebra for ρ > 5 has no nonsingular invariant form, but, as is
shown in this section, U{Wx(m)) has a nontrivial central element.

By the Poincare-Birkhoff-Witt theorem, in the universal enveloping Virasoro algebra U
one can choose a basis

Then in U one can choose a basis

0 < α,·, ίΦρ"1 - 1, apm_1 = 0 .

{ea|0 < a,·, -1 < / < pm - 2, -oo < cy, < oo }.

* Added in translation. After the paper was published, the author learned that a similar result for ρ > 3 was
also obtained in [16].
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We decompose U into the direct sum of proper subspaces with respect to Ad e 0:

We introduce the subspaces U(i) = (ea\otj = 0, i <j <pm). In particular we have an

isomorphism of vector spaces U(pm - 2) = Wx(m). Let w;: U -> U(i) be the natural

projection. We define the linear maps

d/di: U^ U, {d/di)(ea) = a,*?""*·

and

f: (e>, Ψ -1 (mod/>)} -+ U, / > = e«+V(«, + 1)·

Let Fm be the set of vectors α = (av ...,apm) for which a2 = apm_x = 0. We put

ep,«_x = 0 and e r = z. Then U{J?X) = <e" | α e Tm>. Obviously, the multiplication in C/

can be defined by the rule

{/,*} = [/>*]
where

Let ^ ( w ) be the direct sum of the 3-dimensional simple Lie algebra

Ai = («- i .e o .« i | [^- i '^ i ] = eQ, [eo,e±1] = ±e±l)

and the (pm — 2)-dimensional nilpotent subalgebra

(e,.|2 < i < / » " , / # / > " - 1 > ,

isomorphic to the subalgebra ^(W^m)) (the isomorphism is given by the rule e ; ·-» e,,

THEOREM 3. Lei/> > 3. 77ze Virasoro algebra W^m) and its subalgebra ^x are Casimir.

The following recurrence relation is well defined:
p™-2

fo = elt fl+1= Σ (-l)'+7«ik,/,]e I/(/»M-2),
i-2 '

, (2)

/-ο

/Η particular zl is a generalized Casimir element of the Lie algebra Sfv The rule

e0 -» z'^Ade.Jz!, ex-» z"^, e,,

<ZH algebra isomorphism U(Wx{m)) = (/(W^m)).

REMARK. Let Z^" = (xp - x[p]\x e =Sf,> be the /(-center of SCt. It can be shown that

U( <?,)*> = Z<", 2 < ι < ,ρ"1, U(&yi = Z ( ^ ) = Z^IzJ.
In other words every element of Lr(^f1)"s?1 is a polynomial in zx with coefficients in Z^\
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We remark that

Hence z1 e {/(=^1)
i?l if and only if the following "deformation equations" are satisfied:

[e1,f,] = 0, 0 < / , (3)

' 0, 0 < / , 2 < / < / , " - 2 . (4)

(We recall that d/dl = 0.) We suppose that the elements / 0 ,/ι, . . . , Λ n a v e been

constructed. For the existence of fk+l the following condition is necessary:

In other words, fk+l must be given by (2). We must prove the existence of the "integral"

/• «•;[£,·, fk] and the validity of (3) and (4) for fk+1. For the proof of these facts we need the

following remark:

f,^(ea = ei Π e ; > | i > 2 / + l , e , e [ i ? 1 , j S ? 1 ] \ . (5)
\ j>(pm I

For / = 0, this inclusion is trivial. We can assume that it holds for I = k. Then the

assertion for / = k + 1 follows from (2). We remark that in the Virasoro algebra

(ades)
2ei = 0, if s > (pm + l )/2.

The proof of Theorem 3 is based on the following lemma.

LEMMA 1. Let

/ e ( e « | ( a d e i )
2 e , = 0, if as> 2, α ε Tm).

Then

PROOF. If (ad e f)
2e, = 0, as > 2, then it is obvious that

k , e a ] = NiJ_iaJ_ie''-'J->+'' + Ν^β—'+«+' + Xt,

where X,. e <e |̂y8 e Tm, yS,- = ay->. Analogously,

<*,.[*,.,*"-'] = a,-(iV,,7_,.ay._,.ea-E- + ̂  + NitJ{aj - l)e'-2'J+"*J + Y,),

where Y, e <e^ |^ e Tm, ̂ . = a > - 1>, and dXJdj = aft.

The following congruence is established by induction on / + j :

NLJ = (-l)'^--,·-,-,,· + ( - l ) X J , - _ i _ y (mod/,). (6)

It follows from the next lemma that (2) is well defined:

LEMMA 2. {d/dly^e^f^ = 0, 2 < i < pm - 2.
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PROOF. We put at = (d/di)p~1[ei,fk]. By (5), when computing dajdj we can use
Lemma 1:

d I d \p d r „ ! ( d_\p l\ sLf] + xr ^ ,

ill \[e"dj \ iJ~'d{j - i)

= (by conditions (3), (4))

= (by formula (6) and conditions (3), (4))

= (- i) 1 + y ifd^"1

eb ~:J

Since (d/d't)p = 0, this means that a, e (e a |a, = 0 (mod/?), V;>. Hence at e i/(0). Since
a, e t/(1>, this is possible only for a, = 0.

LEMMA 3.

(-iy(d/dj)[e,,fk] = (-l)y(rf/ifi)[e >,/A], 2 < /, y </»" - 2.

PROOF. By (3)-(6) and Lemma 1, we have

PROOF OF THEOREM 3. We note that

By Lemma 3

(-ly^d/dj)^,/,] = (-l)\(d/df)[*,,/ft], 2 < i <y </»" - 2.

Moreover, dir^di = Vjd/di and

/ Σ ( ι ) Ι
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Hence for any / > j we have

4i s>j s dJ

(Let id be the identity map.) Then

7̂  (id - vi_1)—Jk + l = {-\)'^ii-i[iT-i—:[ei,fk\,
dj Ji dj

since π,/- = 0 for j > i. Thus,

for any 2 < / ̂  pm — 2. In other words, condition (4), / = k + 1, is satisfied.
To verify condition (3), / = k + 1, we put b = [evfk + l\. According to (3)-(5), by

Lemma 1, for any 2 < j < pm - 2 we have

db/dj = [e,, dfk + 1/dj] + N^dfr^Mj - 1)

= (-\)J[ex,\e],fk\\ -(-lYN^ej^Jt]

= (by condition (3)) = (-l)J{Nlp,,_j - N.^^e-j, fk\.

Since

Ni.P»-j =(pm-J+ 2)(pm -J ~ l ) / 2 = (j + l)(j - 2)/2 = JV l iy·^ (mod/;),

this means that

b G (e ' l f t = 0, ̂  = 0 (mod/;), 2 ^ ' J G Tm).

Hence b e ί/<0». On the other hand, ft e [t/(1),i/(1)] c t/<2). For /? > 2 this is possible
only for b = 0. Thus, / i + 1 satisfies (3) and (4).

The inclusion (5) implies that t = (pm - 3)/2. Hence at the /th step our procedure
terminates, and we obtain the element zx e U(££'l)

s'\ By the same computations as
above, one can verify that the map

e* -> dzjdi e t / ( ^ ) , 1 < / < ̂ m , / ̂  2,

gives an embedding of the coadjoint ^-module in the ̂ -module ί / (^) . Hence the
element

is a generalized Casimir element of the algebra &x.
The action of the Virasoro algebra in the coadjoint module is given by the rule

e_l°ef = -ef+l, -1 < / < pm - 3, e 4 » e p V 2 = 0,

e,»z* = ( - l ) ' \ V , , 2 < / < / » " - 2 , e,°z* = 0, -1 < / < 1,

and the generalized Casimir element of the Virasoro algebra has the form

C =

pm-2

Σ
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But the derivation of an explicit formula for z* would require extensive computations,
and we construct a central element in U(Wx(m)) in a somewhat different way (we shall
require some points of these constructions in future). We put

Hi ι ~~ Ζ ι Ζ ^ Ο Λ Ο C_ ι f-J~i j Hi _Λ "• l/\ .Clc_i I Hi ι l J |C_m 2 ^ ·

We remark that

Hence

and

{ £ _ „ £ , } = { e . ! , ^ } = Eo, {ex,E0} = {ex,{e_x,Ex}} = -{e0, Ex} = -Ex,

{ F F \ — ( ο Λ- ο ο 7" ' F ] = ί ο (e F \\ — (e> F \ ο 7 - 1 = F
l ^ - l ' ^ O ] ~ \ e-l ' elep"'-2z ' *-Ό j { e - l ' \e-l' n l I S I el> *-Ό J ep"'-2z ^ - 1 '

{«;,£_!} = {^.{e.!,^}} = -{<?,•-!, £(>} +{*-!,{<?„ £o}} = 0 , »> 3,

Λ f« I ^— / Λ J Λ fi \ — t* Ο 7 \ — 1 Ο fa \ fa I 0 Ο \ 7 — I I
e2' £ -l) ~ \e2> le-l> ^0/ -^l^'-a2 J l e l i c 0/ ^ Ι Ι ^ Ι ' ^ ' - Σ / 2 ~ υ ·

Thus, [/ contains the subalgebra A = (E_x, Eo, Ex) isomorphic to the three-dimensional
simple Lie algebra of type Ax, and the subalgebras A and U{£P2) pairwise commute.
Moreover, the elements e_x, e0, and ex can be represented as linear combinations of the
elements E_x, Eo, and Ex with coefficients from U(^C2). In other words, we can choose
such a basis in U:

Π £/*' Π e?\ -oo < α,- < oo, 0 < α,, - 1 < ί < ρ " - 2 j .

Thus

0(Wx(m))s U(A)U(SC2)s U(A1®£P2)s U(Wx(m)).

Moreover, the Casimir element of the Lie algebra A is central in U:

z = £_1£1 - El/2 - Eo/2 e Z(U).

Obviously, c e (z2tz) c Z(Wx(m)). It can be verified that this element is indeed a
generalized Casimir element of the Virasoro algebra. Theorem 3 is proved.

EXAMPLE. Let ρ = 5 and m — \. Then

Ex - ex + ejz'1, Eo = e0 + 2e2e3z'x, E_x = e_x +{exe3 + 2e\)z~x - ejz'2,

c = e^x(exz + el) - eo(eoz + 2e2e3 - z) + ex(e_xz + 2exe3 + 2e\)

-e2(2eoe3 + exe2 + e3) + e3(le_xe3 + 3eoe2 + e2 + e2) + z(e_1e1 + 2e2 + 2e0).

In the sequel we shall need the following properties of the element zx:

LEMMA 4. Let ρ ^ 3 and let Ex = Zl>Qf,z~l, Eo = E / > o g , z " ' , and E_x = Ll>oh,z-',

where f 0 , . . . , /„ go,...,gt, h0,..., ht+x e U(pm - 2). Then the elements / 0 , fx,...,f,

commute pairwise. The same is true for the elements go, gx,- • •, g, and ho+ hxz~x,
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PROOF. We show that {/, fj} = 0, 0 < i, j. The remaining assertions of the lemma are

proved analogously. It suffices to establish that Φ(/,, fj) = 0. Then from the condition

{ zx, fj} = 0 we would obtain that

0= Σ {fi,fj}z-'= Σ [Ζ,,/;]*"'.

whence [/,, fj\ = 0. We argue by induction on / + j = 0,1, For i + j = 0, the asser-

tion is trivial. We assume that it is proved for i + j - 1. By (3) and (4) we have

(/>"'-1)/2 ι J \ P"'~2

Hfi>fj)= Σ -\J,J
1 = 0 ^

(pm~\)/2 ,

1 = 2 V

Let 2 < / < ( / > " " - l)/2. By (5) it is obvious that (df,/dl)e, = /, and

Analogously, for 2 < / < (pm - l)/2,

f f 1 ^ f — { ^ f

Thus,

Φ ( / , , / , ) = < ' Σ > Α

/ = 2

According to the inclusion (5),

Hence [e,, [[epm_h /,_i], fj-i\] = 0, as we were required to prove.
To describe the irreducible representations of the Virasoro algebra it is useful to give the

explicit formulas

Λ = V ((-i)'O-+ 2)(/- ik+ l V_,)/4,
i = 2

ρ"·-2 ρ"·-3

8ι= Σ ((-l)'^.V-,)/2, K = exer_2- Σ
ι=2 (=2

§3. The irreducible representations of the Virasoro algebra

In this section we assume that Ρ is algebraically closed.
Let Μ be an irreducible PF1(w)-module with respect to the representation χ -* (χ)Μ.

By Schur's lemma each of the endomorphisms (e,) M , i Φ 0, and (eg — eo)M has a unique
eigenvalue 0,, / Φ 0, or θξ. We call the ordered set of these eigenvalues (θ_νθ0,...,θρΠ,),
θρ>»-\ = 0, the invariant of the ^ 1(/u)-module M. Analogously, for the
irreducibleW/

1(w)-module M, we call the set (θ_νθ0,...,θρ»,), where 6t, i Φ 0, and θξ are
the eigenvalues of the endomoφhisms (e^^, i Φ 0, and (eft - eo)M, the invariant of the
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H/

1(m)-module Μ. We say that Μ has height q if 0, = 0, ;' > q, and 0?_1 =£ 0. As was

shown in [15], Proposition 3, this is equivalent to the definition of height in the sense of

A. N. Rudakov: 3PqM = 0 and S'q_lM Φ 0. For every subalgebra L' in Wx{m) or in

\νλ(ηί) which contains z, we call Μ or Μ and L'-module of the first type if (z)M = 0 or

(ζ) Μ = 0, and of the second type otherwise.

Every irreducible H>r

1(w)-module structure can be extended to an irreducible Wx{m)-

module structure by assuming (z)M = 0, and conversely, every irreducible W/

1(m)-module

of the first type is an irreducible W/

1(w)-module. All irreducible H/

1(w)-modules of

nonextremal height 1 < q ̂  pm — 2 are induced by irreducible «S?0-modules of height q;

that is, by irreducible .S?0/JS? -modules. We give a proof of this fact based on the ideas of

[15]. In the latter, this is done for the Witt algebra ^ ( 1 ) . In the case of the Zassenhaus

algebra W^m) it remained to prove that every linear combination of the form

/ = Σ λ ea-,(v) = 0
a = 0

is trivial (we recall that every irreducible if0(W/

1(rn))-submodule is induced by a one-

dimensional module (υ) over the weight subalgebra s/. We can assume that s is divisible

by p. We represent it in the form 5 = prs', where ρ and s' are coprime. \i q < pm - pm~x,

then eq+pr_1 e s/, and from the condition

0 = eq+pr_x{f) = Ks'eie^eE^'-'Kv) + g, g^ {ek.M\k < pr(s' - 1)>,

we obtain the contradiction Xss'0(eq_1) = 0. Now let q > pm — pm~l. Then there is an

i > pr for which ei e s/ but β;._^ ί s/ otherwise we would have j / = ^Co; and this is

possible only when q has the form pJ — 1 and 2 J — 2 for ρ = 2). Thus, for the dual

element ef_p, e j / w e have

0 = ef^eXf) = Xss'0([e*_pr, e ^

where g' e ( e ^ O ^ / t < ̂ r ( i ' - 1)). We obtain the contradiction Xss' = 0.

The considerations of [13] regarding the irreducible representations of the Witt algebra

Wx{\) of maximal height q = ρ - 1 go through with appropriate natural modifications

also in the case of the Lie algebra W^m). An irreducible i^1(m)-module of maximal

height is also irreducible as an »Se'0(IF1(OT))-module. We only add that the Zassenhaus

algebra is a Casimir algebra: the embedding of the coadjoint W/

1(w)-module in the

W/

1(w)-module υ{\νχ{ηι)) is given by the rule

e, - ( - 1 ) / + 1 ( Α ύ Ο ί + 1 ( # : ί ) / 2 ) , -l<i<p»- 2,

and hence the generalized Casimir element of the Zassenhaus algebra has the form

For ρ > 3 the irreducible W1(w)-modules are also studied in [6].

We begin the description of the irreducible W/

1(m)-modules of the second type. Let A

and Β be arbitrary Lie algebras, Mx an A -module, and M2 a 5-module. On the tensor

product Mx ® M2 we introduce a module structure over the direct sum Α θ Β by the rule

(a + b)(ul <8> u2) = αυλ ® υ2 + v1 ® bv2-
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LEMMA 5. Let Ml and M2 be irreducible A- and B-modules. Then the A ffi B-module
Ml ® M2 is also irreducible.

PROOF. Let Μ be a nonzero Α θ 5-submodule of Μλ Ο M2. Then

M(v2) = (υλ e Μ1\υ1 ® v2 e Μ) Φ (θ)

for some v2 ε M2. Since M(u2) is invariant with respect to A, this implies that Mx =
M(v2). In addition, M(bv2) 2 M(u2) for any ft e B. Hence Μ = Mi ® M2.

In the case 5 = JiC^W^m)), the reverse is also true. To prove this, we give a description
of the irreducible ^-modules of the second type. The algebra <S?2 *

s nilpotent, its
subalgebra ssf= SC(p^+l)/2 = (et \(pm + l)/2 < / < pm) is abelian, and, moreover,
[e,,ej]ej/, i +j>pm, and

0, /+7>/> m , ί ( [ β , , ν , _ , ] ) ^ 0 , 2 < ι <(/»"

According to the results of [15] this means that for any irreducible =S?2-module M2 of the
second type the subalgebra stf is a weight subalgebra, and M2 is induced by the
one-dimensional ja^module

0 < α, < ρ 'M2 = Ind» (jK,. + 1 ) / 2 , < 0 » = ΓΊ
= 2

\

In particular, independently of the 0;, 2 < i < pm — 2, the dimension of M2 is equal to
/?(/>"'-3)/2. Let Μ be an irreducible W/

1(w)-module and Mx the space of eigenvectors with
respect to the weight subalgebra ^?(/,<"+1)/2· Then Mx is an ^-module and, as was shown
above,

_ I (p"'-l)/2 \

M=l Σ ef'{v)\v e Μ λ = M1 ® M2.

It is obvious that Mv as an ^Ij-module, is irreducible, and this isomorphism is a module
isomorphism over A1 θ =S?2. In particular, the dimension of every irreducible W/

1(m)-mod-
ule has the form ip(p"'~3)/2, 0 < / < p.

Every structure of an irreducible W1(w)-module for which (z)M Φ 0 can be uniquely
extended to the structure of an irreducible module over U; and conversely, to every
irreducible [/-module there corresponds an irreducible W/

1(m)-module of the second type.
By Theorem 3

Thus there is a one-to-one correspondence between the irreducible modules of the second
type over W^m) and over W^m). We shall find the relations between the invariants of
the corresponding irreducible modules. We recall that the elements E_lt Eo, and Ex (see
the proof of Theorem 3) are polynomials (although noncommutative) in the elements ey,
-1 < j < pm, and z"1. To emphasize this, for Et we sometimes write E^e). We show that

i ( £ 1 ( e ) ) = £ 1 ( ^ e ) ) . (7)

In other words, to compute the eigenvalue of the automorphism Ex (this is unique), it
suffices to make the substitution e, >-» θί = θ(ε^), 1 < / < pm, in the polynomial E^e).

Let /, = Σαμαε
α, μα <= P. If ea = Π,β,α',μα Φ 0, then by the inclusion (5) we have

{e"',e"i} = 0. Therefore Μ contains a vector υ which is an eigenvector for all the e"1,
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1 < ( < pm, and

θ(βα)ν = ea(v) = US(e,)a'v
i

According to (5) and the Jacobson formula,

since in the Lie algebra W^m) the commutators { · • • {e(i, eJ2},..., e, } are zero if none

of the numbers ilt..., ip are of the form pk — 1, 0 < k < m. Hence by Lemma 4

= Σ Σ/»£ ν*.
We note that the elements of the universal enveloping Virasoro algebra appearing in the

sum Ef, namely (ea)pz~lp, are central (see (5)). By Schur's lemma, the corresponding

module endomorphisms are scalar. Hence

- Σ ΣμρΛβ)αρθ{ζγ
Ιρ.

Having taken the pth roots of these equalities, we obtain (7).

The following relations are established using Lemma 4 and the inclusion (5) by

analogous considerations:

θ(Ε0(β)) = Ε0(θ(β))-((Ε0 - eo)(e(e)))1/p, (8)

iV-2- Σ (-ι
-1

), (9)

where

Ε' = Ε_λ — h0 — hxz~l = Σ htz~'.

EXAMPLE, ρ = 5, m = 1. Then

0(£\) = 0χ + 03205~\ Θ(ΕΟ) = ΘΟ

e(E_l) = e{e_1+{e1e3 +

We summarize our investigations.

THEOREM 4. Let Ρ be an algebraically closed field of characteristic ρ > 3. There is a

one-to-one correspondence between the following classes of irreducible modules:

(i) over W^m), ( z ) w Φ 0;

(ii) over W^m), (ζ)Μ Φ 0; and

(iii) the set of pairs (Mv M2), where Mx is an irreducible module over the three-dimen-

sional simple Lie algebra of type Ax, and M2 is an irreducible £C2(W1(m))-module for which

(z)Ml * 0.

Here to a pair (Mv M2) there corresponds the irreducible Wx(m)-module Μ = Mx ® M2.

The invariants of the irreducible Wx(ni)-module Μ, (ζ)Μ Φ 0, and of the corresponding

Wx{m)-module Μ, (ζ)^Φ 0, are connected by the relations θί = #,, 2 < i < pm, and

0, = 0(£,(<?)), ( = 0 , + 1 , where the 0(£,(e)) are given by (7)-(9). Every irreducible

a(?

2(Wl(m))-module of the second type is induced by a one-dimensional ̂ ρ"· + ΐ)/;

The dimension of an irreducible W-^mYmodule of the second type has the form ip

where 0 < / < / > .
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The analog of the correspondence (i)«-» (iii) in the case of the Lie /j-algebra Wx(l) is

established in [12]. The irreducible ^-modules are described in [3]. We recall some of the

results of this paper. Every irreducible ^-module over Αγ = (eo,e±1 \[eo,e+1] = ±e +l,

[e_l,e + l] = e0) is induced by a one-dimensional (e 0,e 1)-module (v) for which eou =

y(eo)v, y(e0) e Z/pZ. They are all obtained by reduction modulo ρ from the standard

^j-modules of dimension at most p, where the maximal dimension is attained only in the

case where y(e0) = -1/2. Using these facts, from Theorem 4 we obtain the following

corollaries:

COROLLARY 1 (p > 3). The least dimension of an irreducible Wx(m)-module Μ of the

second type is p'~p'"~3)/2, and Μ has this least dimension if and only if

E^ie)) = 0, E0(e(e))p = (Eo - eo)(6(e)),

e(ho + hlz~l)+E'(e(e)) = Q, γ ( £ 0 ) = 0,

where E' = Σ.ι>2

ηιζ' an^ E_x = Σ/>0Α/Ζ"'.

COROLLARY 2 (/? > 3). The greatest dimension of an irreducible W^mymodule Μ is

p( p'" ~1>/2, and Μ has the greatest dimension if and only if Μ belongs to one of the following

classes of modules: of height q = pm - 1 (that is, 6pm_2 Φ 0, (z)M = 0), or of height

<7 = pm + 1 (that is (z)M Φ 0) for which

El{e(e)){E(i{e(e)y-{E0 - eo)(e)(e)){e{ho + h.z'1) + Ε'(θ(β))) Φ Ο

or

(e)) = 0, Eo(e(e))p=(Eo-eo)(e(e)),

+ hlZ-
1) + E'{0{e)) = 0, y(Eo) = -1/2.

In the study of Cartan extensions we need from these descriptions of irreducible

ll/

1(w)-modules only one fact: that the dimension of every irreducible W/

1(w)-module of

the second type is greater than the dimension of the Lie algebra W^m), (p, m) Φ (5,1).

§4. Cartan extensions

Almost all the nonclassical simple Lie algebras of positive characteristic known up to

now are the Lie algebras of Cartan types [1]. They are all graded: 7 = 0 L,·,

[Lj, L-] c Lj+j, where L_x is an irreducible L0-module and in the case where the grading

has depth q = 2 (in the case of contact Lie algebras) there is a nonsingular skew-symmet-

ric form F: L_x X L_i -> L_2\ moreover, dimL_ 2 = 1. For the Lie algebras of Cartan

types, L o is a simple classical algebra or a trivial central extension of such. Now we

suppose that we are given a Lie algebra Lo, an irreducible L0-module L_lt and, in the case

q = 2, a skew-symmetric nonsingular form F: L_x X L^ -> L_2, dimL_ 2 = 1. Is it

possible to construct the spaces Lx, L2,... in such a way that a new simple Lie algebra

® ( > _ Lj would result (that is, one which does not fit the Kostrikin-Shafarevich conjec-

ture)? To answer this question one must first compute the first Cartan extension L(Q\ We

recall that

4 " = ( ψ ε Uom(L_1,L0)\i(x)y = ^{y)x)

for q = 1. Since there is a natural imbedding L(Q} 3 Lu if L^] = 0, then we immediately

obtain that (Bt>_ Li is not a simple Lie algebra. In the following cases it is impossible to

obtain new simple Lie algebras by such methods: Lo = W^l), q = 1 (see [2]); L o =

Wx(m), q = 1, and L_x is an irreducible Lo-module of nonextremal height (this follows
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from the results of [4] and [6]); and L o = Wx{m) θ Ρ, q = 2, (ρ, m) Φ (5,1) (see [5]). In

[5], in the exceptional case (p,m) = (5,1) a new simple Lie algebra of depth 2 is

constructed, for which Lo = Wx(l) θ P. We study the case Lo = W^m). Our arguments

are general. For example, they imply that the foregoing facts remain valid if L o = Wx(m)

and L_j is an L0-module of maximal height. Direct computations show that in the case

q = 1 and Lo = Wx(m) θ Ρ, for Lj,1' (this is nontrivial only for dimL_j < pm) we have

the condition [L_v L^] c [Lo, Lo]. So if L0/Z(L0) = Wx(m), dim Z ( L 0 ) < 1, then a

new simple Lie algebra can arise only in the case L o = WX{Y) θ Ρ, ρ = 5, q = 2.

If L o is a nontrivial central extension of a simple algebra, then there does not exist a

graded simple Lie algebra of depth 2. This follows from the following proposition.

PROPOSITION 3. Let L_x be an irreducible L0-module, and let F: L_x X L_x —> L_2 be a

skew-symmetric nonsingular form on it. If dimL_ 2 = 1 and [L^, L_2] Φ 0, then [Lo, Lo]

Φ Lo.

PROOF. We assume that [Lo, Lo] = Lo. Then L_2 is a one-dimensional trivial L0-mod-

ule. Hence for any x_x e L_x

F([x_2, xx], x_j) = [x_2, [xj, x_x]] = 0 , ^ e L%\

Since the form F is nondegenerate, F[x_2, JCJ = 0. Contradiction.

In the computation of Cartan extensions, the following simple assertion plays an

important role.

PROPOSITION 4. Let L_x be an arbitrary L0-module and let L^ be the first Cartan

extension of depth 1. Assume that for some x_x e L_x and xx e L^ the endomorphism

([x_x, X\\)L is nonsingular. Then the linear map L_x -> L o given by the rule υ ^> [xx, v] is

injective. In particular, d i m L ^ < dimL 0 .

PROOF. For any u, υ e L_x, by definition [[xx, x_x], v] = [[xv v], x_x]. Hence from the

condition [xx, υ] = 0 it follows that ν = 0.

COROLLARY 1. Let L be a simple Lie algebra of Cartan type over an algebraically closed

field Ρ of characteristic ρ > 5, and let Μ be an irreducible L-module which is not ap-module.

If dim Μ > dim L, then the first Cartan extension of depth 1 is trivial.

PROOF. If [L ( 1 ), M] = 0, then the assertion is true. Since [L ( 1 ), M] is an ideal in L, we

can assume that L = [L(1\ M].

Let V(L) be the standard basis in L, and let | |: L -> Ζ be a map giving the grading

L = Θ ; > Lj, Li = (u e L\ \v\ = />. Let Τ be the standard torus, and let LQ θ Τ and

LQ ® Τ be Borel subalgebras in Lo. Let J5?~ = ^ θ φ . < 0 Lt and 3"+ =

LQ® ® i < 0 J-i- We assume that for any χ e L, the endomorphisms (x)M are nonsingular.

Let μ(χ)ρ be an eigenvalue of the endomorphism (xp — x^)M. If ad Λ: is nilpotent, then

μ(χ)= Σθ(χ^)'".

Since in the minimal />-hull of a Lie algebra of Cartan type [1], [15], the />-map χ >-* xip]

satisfies the condition \x[p]\ > \x\, χ e^7"1", or \x[p]\ < \x\, χ ejS?~, from this formula we

obtain that μ(χ) = 0 for any χ e «Sf ±. For basis elements of the torus the p-map is given
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as eg = e0. Hence for ν e Ker(eo)M we have μ(βο)
ρυ = (eg - eo)v = 0. In other words,

Μ is a /^-module over L. The resulting contradiction shows that ([v,f])M is nonsingular

for some υ e Μ and / e L (1).

It is very likely that the following holds.

CONJECTURE. Let L be a simple Lie algebra of Cartan type over an algebraically closed

field of characteristic ρ > 5. If the height of an irreducible L-module Μ is greater than 1, or

in the case of height at most 1, Μ contains an irreducible JiC0-submodule of dimension greater

than 1, then dim Μ > dini-L. Hence it suffices to study Cartan extensions of irreducible

p-modules over L.

COROLLARY 2. Let Lo = Wx(m), and let L_x be an irreducible LQ-module of height

pm - 1. Then L^ = 0, ρ > 3, (ρ, m) Φ (3,1).

PROOF. AS we established in §3, dim Μ > Lo. Let Lo = W^m), ρ > 3. We put |JC| = i

if χ G if; but χ £ £?i+1. Every ideal J in Lo contains z. Indeed, there exists χ e J for

which jjc| > 2 (otherwise the element [ e 3 , x ] e / has this property); then / 2

([JC, e ^ . . ^ ] ) 3 z. Let L_j be an irreducible L0-module. Since [L(Q\ L_J is an ideal in Lo,

we have ζ e [L(Q\ L_J. If ( z ) L t Φ 0, then by Theorem 4 and Proposition 4, Z^1' = 0 ( m

the case (p, m) = (5,1) this is established by direct verification). If (z)L_ = 0 , then an

easy induction on i shows that [z, L,] = 0. Thus we have proved the following.

THEOREM 5. For ρ > 3 there is no simple graded Lie algebra Θ ; > _ Lt, q < 2 (in the

case q = 2 it is assumed that dimL_ 2 = 1), for which Lo = W^m).
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