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COHOMOLOGY OF TRUNCATED COINDUCED REPRESENTATIONS
OF LIE ALGEBRAS OF POSITIVE CHARACTERISTIC
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A. S. DZHUMADIL'DAEV

ABSTRACT. The author proves that for any «-dimensional Lie algebra of characteristic
ρ > 0 and any k , 0 < k < η , there exists a finite-dimensional module with nontrivial
fc-cohomology; the nontrivial cocycles of such modules become trivial under some
finite-dimensional extension. He also obtains a criterion for the Lie algebra to be
nilpotent in terms of irreducible modules with nontrivial cohomology. The proof of
these facts is based on a generalization of Shapiro's lemma. The truncated induced
and coinduced representations are shown to be the same thing.

Bibliography: 22 titles.

In this paper, unless we specify otherwise, all Lie algebras and their modules are
assumed to be finite dimensional, and except in § 1 we shall always be working over
fields of characteristic ρ > 0.

Let L be an «-dimensional Lie algebra over a field Ρ of characteristic ρ > 0,
and let Μ be an .L-module. We say that Μ is k-special if its k-cohomology
is nontrivial: Hk(L, Μ) ψ 0. We call Μ an annihilable module, and say that
Μ is annihilated in the L-module Ν , if there exists a monomorphism of finite-
dimensional L-modules Μ —> Ν such that the corresponding cohomology homo-
morphism Hk(L, M) -> Hk{L, N) is zero for all k > 0. We say that Μ is strongly
annihilable if there exists a monomorphism of finite-dimensional L-modules Μ —> ./V
such that Hk{L, N) = 0 for all k > 0.

The following facts are true for any Lie algebra L of characteristic ρ > 0:
(i) For any 0 < k < η there exists at least one k-special L-module (Corollary 2

of Theorem 1.3).
(ii) The number of nonisomorphic irreducible special L-modules, which we denote

K{L) , is finite (see [7]).
(iii) Every L-module is annihilable, but there exist L-modules which are not strongly

annihilable (Theorem 3.1).
If the field is algebraically closed, then we have the following characterization of

nilpotent Lie algebras: L is nilpotent if and only if K(L) = 1 .
In the proof of these facts an important role is played by the concepts of a gen-

eralized coinduced module and generalized subalgebra, and by the corresponding
generalized Shapiro lemma. Despite their simplicity, these generalizations are of
independent interest.
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The assertion (i) was stated earlier as a conjecture by Seligman [9]. Jacobson [2]
proved it for k = 1 . The assertion (iii) was proved for k = 2 by Iwasawa [19].
The papers [14]—[16] are devoted to the question of annihilability of 3-cocyles—
more precisely, the question of interpreting the space H3(L, M). When k = 3,
(iii) shows that the entire space H3(L, Μ), ρ > 0, can be realized as a space of
obstructions for L-kernels with center Μ. This fact is also demonstrated in [21].
The group analogue of this result is proved in [20]. In [17] annihilability is proved
for modules of solvable Lie algebras of characteristic zero.

A few words on notation. Let {X) denote the linear span of the set X over the
field Ρ. The following cohomological notation is standard (for details, see [13]):

C*(L,M) = @kC
k(L,M) is the space of cochains, C°(L,M) = M, and

Ck(L,M) = 0 if k<0.

d is the coboundary operator, i.e., d:Ck{L, M) -* Ck+l(L, M) is defined as
follows:

άψ{Χ{, . . . , Xk+l) = £ ( - l ) ' + V ( [ X , * , ] , Xx ,...,Xt,...,Xj,..., Xk+i)

(the ~ means that the corresponding element is omitted).
Z*(L, Μ) = {ψ e C*(L, Μ)\άψ - 0} is the space of cocycles.
B*(L, Μ) = {άψ\ψ G C*(L, M)) is the space of coboundaries.
H*(L, M) = Z*(L, M)/B*(L, M) is the cohomology space.

Recall that Η (L, M) is the space of invariants Μ . Given a space A , we let
V(A) denote a basis.

The author would like to thank A. I. Kostrikin and S. M. Skryabin for valuable
discussions.

§1. Generalized subalgebras and the generalized Shapiro lemma

1. Generalized (co)induced modules. We make the universal enveloping algebra
il(L) of the Lie algebra L into left and right regular il(L)-modules. We say that a
Lie algebra A is a generalized subalgebra of L if il(L) has a subalgebra isomorphic
to iX(A) (which we shall identify with ii(A)) and il(L) is free as a ll(^)-module
(as a regular bimodule). By the Poincare-Birkhoff-Witt theorem, a subalgebra in the
usual sense is obviously a generalized subalgebra.

Let s>/ and 3S be associative algebras with unit, with 3B a subalgebra of sf ,
and let Μ be a ^-module (unless we specify otherwise, modules over associative
algebras will be assumed to be left modules: (bb')m = b{b'm)). We make s/ into a
two-sided ^-module. We introduce an srf-module structure on the tensor product
A ®^ Μ over <% according to the rule a(d ® m) = ad ® m . We introduce an
s/ -module structure on the space of ^-homomorphisms

(s/ , M) = (f:s/ -> M\f{ba) = bf{a) ,aes/,be&)

by means of the formula (a o f)(d) = f(a'a), a, a essf .
In what follows, without special mention we shall make use of the fact that every

module structure over a Lie algebra can be uniquely extended to a module struc-
ture over the universal enveloping algebra, and, conversely, every module over the
universal enveloping algebra is also a module over the Lie algebra.
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Let A be a generalized subalgebra of L, and let Μ be an ^-module. By the
generalized induced module, denoted IndjAf, we mean the L-module il(L)<gi ~ Μ •
We similarly define the generalized coinduced module, denoted CoindjAf, to be
Horn ~(il(L), M). We note that in the case of subalgebras in the usual sense these

definitions coincide with the usual definitions of induced and coinduced modules.
2. The case of characteristic ρ > 0 . Truncated (co)induced modules. Let A be

a subalgebra of codimension 5 in a Lie algebra L over a field Ρ of characteristic
ρ > 0. We choose a basis V(L) = {ex, ... ,en) of L in such a way that the subset
V(A) = {es+,,..., en) is a basis of the subalgebra A. It is known that for any

et e V{L) there exists a central element of the form z( = Σ?=ο ̂ /(O^f e U(L) (see
[2])·

To any subalgebra A we can associate a generalized subalgebra Λ of the same
dimension as L, which is the direct sum of A and an s-dimensional abelian subal-
gebra Ζ . In fact, if we associate each basis element z. of Ζ to a central element
z,• > 1 < / < ^ (we identify z· with z / ), and if we leave alone the elements of the
subalgebra A , we see that the induced map !d(A) —> U{L) is a monomorphism and,
by Lemma 4 in [2], Chapter V, §7, U(L) is a free U(i)-module.

In what follows, given any Λ-module Λ/, we shall suppose that it is made into an
Λ-module by means of the rule ztM = 0, 1 < / < s .

Let I(L) be the ideal of the algebra il(L) which is generated by the elements
zx, ... ,zn, and let 0(L) = il(L)//(L). Since I (A) = I(L) Π U(A), we may take
ii(A) to be a subalgebra of il(L). Thus, we may introduce the L-modules

IndAM = il(L) ®u(yl) Μ, CoindAM = H o m ^ ^ L ) , M).

They are called the truncated induced module and the truncated coinduced module,
respectively. Apparently the first published definition of three modules is due to
Yu. B. Ermolaev.

It is obvious that truncated (co)induced modules are isomorphic to generalized
(co) induced modules if ρ > 0. We prefer to work with the latter concept, since we
have the following generalization of Shapiro's lemma.

3. Cohomology of a generalized coinduced module.

THEOREM. Let A be a generalized subalgebra of the Lie algebra L, and let Μ be

a module over A. Then Hk{L, CoindjAf) = Hk(A, M).

The proof is a repetition of the proof of Shapiro's lemma. According to Proposi-
tion 7.2 in [3], Chapter X, if we use one of the definitions of Lie algebra cohomology

(Hk(L,S) = Extk

u{L)(P,S)) we have

Hk(L, Coind^M) s Extk

u{L)(P, CoindjM) = Ex4 ( ~(F, M) = Hk(A , M).

COROLLARY 1 (p > 0). If A is a subalgebra of L and Μ is an Α-module, then

k I

Hk(L, Coind~M) = (g)/\{L/A)®Hk~'(A, Μ),
1=0

where /\ {L/A) is the Ith exterior power of the space L/A.

PROOF. The following isomorphisms are compatible with the actions of the co-
boundary operators in C*(Z, P) and C*(A, M) (the prime denotes the adjoint
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module):

C*(A, M) £? Λ*(Ζ θ Α)' ® Μ S Λ*(Ζ)' ® (Λ*(Λ)' Ο Α/)

Thus, by the Kiinneth formula,

H*(A, M) 3 77* (Ζ , P) ® H*(A , M) = A*(L/A) ® 77* (Λ , A/).

COROLLARY 2 (/? > 0). Tsvery η-dimensional Lie algebra has a finite-dimensional
module with nontrivial k-cohomology, for any 0 < k < η.

PROOF. We take A to be the zero subalgebra. Then the L-module V - Coind^T3

has the required property.
In the next section we construct cocycles whose classes form a basis for the space

H*(L, V). We then prove a refinement of Corollary 2.

§2. Existence of a special module of the form Μ ® Ν

1. Statement of the basic result.

THEOREM {p > 0). For any η-dimensional Lie algebra L and for any finite-
dimensional L-module Μ there exists a finite-dimensional L-module Ν such that
Hk (L, Μ ® Ν) φ 0 for all η > k > 0.

Before proving the theorem, we introduce some notation. Let ε, be the vector
with 1 in the rth coordinate and zeros everywhere else (the number of coordinates
will be clear from the context), let m = £V miej, where the positive integer mi is
determined from z( (see §1), and let Γη = Γη(οο) = {a = Σ ,α ( ε ( | 0 < α(-, i =
Ι, ... , η} and Γη(ιη) = {α € Γπ |0 < α( <ρ" 1 ' , / = 1, ... , «} . In addition, instead
of Π,^Γ' a m * Π, ^ί·"'' > where a £ Γη , we shall write simply ea and x{a). Recall
that multiplication in the divided power algebra On(oo) = (x \a € Γ (οο)) is defined
by

and that this algebra contains the finite-dimensional subalgebra On[m) = {x(a)\a e
Γη(ιη)> of dimension pm , where m = Σ), w,. Further, recall that a derivation
D € Der On(oo) is said to be special if D{x{a)) = £ \ x("~e/)£>(;c(.) for any α e Γη(οο).
The Lie algebra of special derivations of U = On{m) is called a general Cartan Lie
algebra and is denoted Wn{m). For more details about these algebras, see [1].

The space V = Coind0.P has an algebra structure relative to the bilinear map
which is adjoint to the comultiplication, and every element of L acts as a derivation
on V [11]. Moreover, under the isomorphism of associative algebras

n:V^U = OB(OO), n{f) = ]T x(n)f(e") (1)
«6Γ,,

the derivation X71 e Deri/, corresponding to I € I is special [10]. Recall that
X"{u) = n(Xn~\u)), u e U . Let pr: On(oo) -> On{m) be the natural projection. It
is easy to verify that

^ C / = On(m), «(/) = ^ xMf(e"),
r«er,,(ni)
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gives an isomorphism of algebras, under which
m-\

e* = pre* - £ Wxf'^df , i=l,...,n. (2)

In particular, the L-module Ό is filtered:

*i(jc(a)) - x(a-El) € ΌΗ = {χ{β)\ \β\ >\a\,fie ΓΛ(ΐη)>, Η = Σ α,. (3)
1 = 1

2. Admissible systems of central elements. If Μ is an L-module, we let (X)M

denote the endomorphism corresponding to the element X € il(L). For example,
(e^ - e[ and (e()~ = e* . We let id denote the identity endomorphism of a
space (which space will be clear from the context). We shall omit the Μ in the
notation (X)Mv in cases when this will not lead to confusion. We shall say that a
set of central elements {z,, ... , zn} is an admissible system for Μ if {zt)M = 0,
1 < i < η. Recall that a polynomial of the form ζ(.(α) = Υ^,>ολί(ί)α' e P[a] is
called a p-polynomial.

LEMMA. For any finite dimensional L-module Μ there exist p-polynomials zt(a)
€ P[a], 1 < / < n, such that the elements zi = z,-(e,·) e il(L), 1 < i < «, are central
and {zt)M = 0, 1 < / < n.

The proof is the same as the proof of Lemma 5 in [2], Chapter VI, §5. Because
Μ is finite dimensional, for any z(. there exists a polynomial g^a) € P[a] such
that gjdzjuf) = 0. Since any polynomial is a divisor of some p-polynomial, the
assertion follows. _

3. Nontrivial cocycles of the module U . We set

Sqie = xf'~[)e*(xj), 1 < ι < n.

By (2), the cochain Sq- e C\L, U) is a cocycle:

, . , / . π, ( ρ ' " ' — l ) w i\H, , , Ufi, lp'"' — 1)% π , - «

d S q ^ e , e ) = e (x)p ')(e ) ( x , ) - ( e ) ( x ) p ')e (xt) - 0 .
Here is an invariant definition of the cocycle Sq (: one can introduce an L-module
structure on U = V (but with formulas for the map from V to U which are not
as nice as (1)) such that it naturally contains U as an L-submodule; since the class
of the element xf in U/U is L-invariant, the cochain dxf —which is the
image of x(

(p J under the Bockstein homomorphism Z°(L, U/U) —> ZX(L, U)—is
a cocycle; this is the cocycle Sq; .

We let Λ denote the multiplication in C*(L, U) which is induced by the mul-
tiplication in U: if ψ G C (L, LJ) and φ € C (L, U), then the cochain ψ Αφ €
Ck+'{L, U) is defined by

{ψ Αφ){Χ^ ... , Xk+I) = Σ^τ)ψ{Χχ(χ), ... , XT(k))9{XT{k+x), ... , XT(k+l))T ( k + l ) )
X

(the summation is taken over all permutations τ e SkJrl for which τ(1) < · · · < z(k)
and r(k +1) < · · · < x(k + l)). Given an L-module Μ, we extend this multiplication
to a pairing

C\L, U)x C*(L, C / ® M ) ^ C * ( L , Ό ® Μ),

where the action of U on U <8> Μ is given as follows: u{v ®m) = uv®m.
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LEMMA. Suppose that {z,, . . . , zn] is an admissible system of central elements

for the L-module Μ, and the submodule of L-invariants ML is not zero. Then

Hk\L ,U' <g> Μ) φθ for any 0 < k < η .

P R O O F . We prove that the classes of the cocycles Sq A • • · Λ Sq. <g> m , where
Ί 't-

0 Φ- m e ML and 1 < / , < · · · < ik < η , are linearly independent in Hk{L, U®M).
Suppose that for some ai . e Ρ, 1 < / , < • · • < ζ , < « , we have

Σ α, ,...,/Sq, A---ASq,- ®m = dAeBk(L, U®M). (4)

Given an ordered fc-tuple / = ( / , , . . . , ik), we let (ik+l, ... , in) denote the ordered

(n -k)-tuple which is complementary to i in the set {1 , ... , n} . We multiply both

sides of (4) by the cocycle Sq. A · · · Λ Sq, e Z"~k(L, U). We have

± a , , Sq, A---ASqn = rf(AASq, Λ • · • Λ Sq,. ).

Thus, it is sufficient to prove the lemma in the case k = η .

So suppose that k = η and Sq, A · · · A Sqn <g> m = άω e B"(L, Ό <g> M). Since

Sq, Λ · · · Λ &!„(*,, . . . , en) = χκ">, θ = }Jj>m< - \)ε.
( = 1

and
η

, ... , έ,, ... , e)), δ - ieA-., - t r (ade) id
( = 1

(the caret means that the corresponding element is omitted), it follows that

( = 1

for some «. € U <8> Μ. We shall show that (5) is impossible.
We note that (z,.)~ = 0, 1 < / < η , since (z,.)~ = 0:

(ζ,, ο f)(X) = f(Xzt) = f{z-tX) - z(.(/(X)) = 0, Ζ € U(L), feV.

Hence, ( z , · ) ^ = (z,-)^ <8 id + id ® (ζ,)Μ = 0 and

f' I f' t < m,)

(we may suppose that A,.(/M,·) / 0 ). Thus, for any α e Γη(ηι)

i,/6(jVer»J?iO). (6)

On the other hand, by (3), the set of elements δ"(χ{θ) ® υ), we F(M), α e Γπ(ιη),

forms a basis of the space U <8> Μ . If we write «,. as a linear combination of basis

elements and use (6), we obtain a contradiction with (5): S χ written linearly in
terms of the other elements of the basis. The lemma is proved.
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REMARK. It is clear from this proof that the classes of the cocycles Sq, Λ · • • ASq, ,

1 < i{ < • < ik < η, are linearly independent in Η (L, U). By Corollary 1 of

Theorem 1.3, they form a basis of Hk(L, U).
4. Proof of Theorem 2.1. According to Lemma 2.2, we may suppose that (ζ()Μ =

0, 1 < / < «. Then (ZJ)M®M< = 0, where M1 is the adjoint L-module. In

addition, (M ® M')L Φ 0, since Μ ® M' = End Μ and the identity endomorphism

of the module Μ is L-invariant. Thus, if we take Ν = U ® Μ1, by Lemma 2.3 we

have

Hk{L, M®N)^Hk{L, ϋ®{Μ®Μ'))φϋ,

as was to be shown.
§3. Annihilabiliry of modules

1. Statement of the basic result.

THEOREM [p > 0). For any finite-dimensional Lie algebra, all of its finite-
dimensional modules are annihilable, but there exist finite-dimensional modules which
are not strongly annihilable.

More precisely, we prove that the cohomology homomorphisms

Hk{L,M)^Hk{L,V®M), k>0,

corresponding to the natural monomorphism Μ —> V®M, are zero for any admis-
sible system of central elements. We also prove that the trivial module is not strongly
annihilable. We first prove the latter assertion.

2. A property of modules with nontrivial cohomology.

L E M M A . If Hk(L,M)^0, then H'{L,M)^0 for some l^k.

PROOF. For any finite-dimensional L-module Μ, the Euler characteristic

where ck is the dimension of Ck(L, Μ), is equal to zero. In fact,

Ck(L,M) = AkL'®M, ck=

( L' is the coadjoint L-module), and hence

Thus, the Euler-Poincare formula takes the form

k

Hence, the condition Hk{L, Μ) φ 0 implies that H!(L,M)^0,
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COROLLARY. If the trivial L-module is contained as a submodule in the L-module

M, then H'{L, Μ)φΟ for some ΙφΟ.

3. The modules CndAf, Cnd+M, CndAf, Cnd + M, and their cohomological
properties. Let pr be the natural projection from it(L) to the trivial L-module Ρ,
and let il+(L) = LiX{L) be the kernel. For the L-module Μ, the exact sequence of
L-modules

0-»U+(L)-»il(L) £/»-*()

gives another exact sequence of L-modules

0 -> Hom(P, M) = Μ P-C Hom(il(L), M) -* Hom(it+ (L),M)-*0, (7)

where the module structures in the homomorphism spaces Hom(U(L), M) and
Hom(il+(L), M) are defined as follows:

(enf)(X) = (e ο f){X) + (e)Mf(X), X € ii(L) or X € il+(L).

Here <? ο / e Hom(H(L), M) or e o / e Hom(U+(L), M) is defined just as in the
coinduced module: (e ο f)(X) = f(Xe). We let CndM and Cnd + M denote the
L-modules obtained from the spaces Hom(il(L), M) and Hom(il+(L), M) using
the rule (e, f) *-* eOf. We take central elements zx, ... , zn so that (zt)M = 0,
1 < / < η (this is possible by Lemma 2.2). Obviously,

(zpf)(X) = (zpf)(X), X € H(L) or X € U+(L).

We can now introduce the finite-dimensional submodules

CndM = ( / eHom(U(L) ,M) |z .D/ = 0, \<i<n) cCndAf,

Cnd+Af = (f€ Hom(lt+(L), M)\ztUf = 0, 1 < ι < n) C Cnd+M.

We note that the homomorphism pr* factors through CndAf:

(pr*m)X - (prX)m, pr* m € Cnd Μ c Cnd Μ, me Μ.

Since Cnd+M = CndM Π Cnd+M, by (7) we have an exact sequence

0 -> Μ P-C CndM -> Cnd+7W -» 0.

Let η: Cnd+M -* Cnd+M be the natural imbedding, and let

* & = pr*: Μ -* CndM £ V®M,

which are L-module monomorphisms. By Proposition 1 of [4], Chapter 3,
Ηk (L, Cnd M) = 0, k > 0. Hence the following homomorphism vanishes:

^:Hk(L, M)->Hk(L, CndAf), k > 0.

In other words, Μ is annihilated in the infinite-dimensional module Cnd Μ. Our
goal is to prove that CndM can be "truncated" in such a way that Μ "vanishes"
in the finite-dimensional submodule Cnd Μ.
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LEMMA. For any finite-dimensional L-module Μ and any admissible system of
central elements {z,, . . . , zn) the cohomology homomorphism ^ ://*(L, Cnd+M)
-• /T(L, Cnd+M) is zero.

PROOF. Let {zt)M = 0, \ < i < η (such a system of central elements exists by

Lemma 2.2). We shall prove that for any ψ e Zk(L, Cnd+A/) the cohomology class

of this cocycle has a representative φ such that φ e Zk(L, Cnd+M).
Suppose that for 0 < / < η we have the conditions

0, l<i<n. (8)

Let ρ be a representation of the Lie algebra L in the space of cochains
C*(L, Cnd+M), and let i(e) be the exterior multiplication operator for e € L:

i(e): Ck(L, Cnd+M) -» C*~' (L, Cnd+M),

ί(β)ψ(Χι, ... , ΛΓΑ_,)

We introduce the cochain

In [5] it was shown that ρ(ζ,)ψ — άωι. In other words,

ζ,Πψ = άω,. (9)

We define a cochain Δ, € Ck~l(L, Cnd+M) by the rule

Δί )(6

αζβ) = ίω>{---){εαζβ~εΐ)' i f ^ ' > 0 '
Λ \0, if ^ = 0

(a e r n (m), β € Γπ(οο), α + β φ 0, ω,(· · · )(1) = 0).

Here and below we use the three dots to indicate (k - 1) arguments X,, ... , Xk_x

eL.
We shall show that

ζ,ΠΑ, = ω,, zpAj = 0 , / < / < « . (10)

From (7) it follows that

Σ / Ι = 0. (11)
ί>0

We must prove that for any α e Γπ(ηι) and β e rn(oo), a + β φ 0, we have

The first of these is obvious from the definition of a,. The other equality is also
obvious in the case β{ - 0 , and if βι > 0 , then by (11)

,( ) ( , ) ,( J i , ) ( , , ( · · ))(e a z / ? - £ ' ) = 0.

According to (9) and (10), for ν'/ = Ψ - d&t we have
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If we repeat this procedure for I = n, ... , 1, ψη = ψ, we find that φ — ψ0 e

Ζ (L, Cnd+M). The lemma is proved.
4. Proof of Theorem 3.1. We consider the commutative diagram with exact rows

This diagram

• Η

• Η

0

0

I id

-> Μ - ^

gives rise to another

k~\L,
I

k~\L,

Cnd+M) —
n.

CndM) —

CndM
I

CndM

—>

->

commutative

- Hk(L,
l i d

- Hk(L,

M)
*

M)

Cnd+Af -
In

Cnd+M -

diagram

-> // f c(L ;

+ 0

+ 0.

,CndM)
I

,CndM)

whose rows are long exact cohomology sequences (δ and <5 are the Bockstein ho-
momorphisms). Let (zt)M = 0, \ < i < η . Then ^ is an epimorphism, by Lemma
3.3. As already noted, J^ = 0 for k > 0. Hence, the Bockstein homomorphism ($
is an epimorphism for k > 0. Thus, the composition of two epimorphisms

is also an epimoφhism. Consequently, from the commutativity of the diagram we
see that the Bockstein homomorphism δ is an epimorphism. In other words, because
of the exactness of the top row,

^ k>0,

is the zero homomorphism.
From the corollary to Lemma 3.2 it follows that the trivial module is not strongly

annihilable.

§4. Cohomological criterion for nilpotence
of a Lie algebra in characteristic ρ > 0

Let R(L) be the minimal p-span of the Lie algebra L [6]. We give it a /7-structure
as follows: e^ = 0 if adei. = 0. Recall that an L-module Μ is said to be a p-module
over L (even if L does not have a p-structure) if Μ is a p-module over R(L).
Let K{L) be the number of nonisomorphic finite-dimensional irreducible modules
with nontrivial cohomology. As shown in [7] and in §2, we have 0 < K(L) < oo.

We now give a characterization of the class of Lie algebras for which K(L) = 1.

THEOREM. Let Ρ be an algebraically closed field of characteristic ρ > 0. The
following conditions are equivalent:

(i) L is nilpotent.
(ii) every irreducible p-module over L is trivial.
(iii) every irreducible special L-module is trivial.
(iv) every irreducible l-special L-module is trivial.
(v) for any L-module Μ the condition Hl(L, M) / 0 implies that H°(L, M)

Recall that all algebras and modules are assumed to be finite dimensional.
PROOF. The implication (i) => (ii) is proved in [22]. In this connection, see also

[6]. The implication (ii) =>· (iii) follows from results in [6]. We note that (i) =s> (iii)
is also obtained in [18]. The fact that (iii) => (iv) is obvious.
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We shall prove (iv) => (v) by induction on t = dim Μ. If t = 1 and H[ (L, Μ) Φ
0, then Μ is an irreducible 1-special module, and so, by (iv), Μ is the trivial L-
module. Hence, in this case H°(L, Μ) Φ 0. Suppose that the implication holds
for t - 1 ; and is false for t, i.e., we have Hl(L,M) φ 0 and H°{L, M) = 0
for some L-module Μ of dimension t. Then Μ contains an L-submodule Ν
different from Μ and 0, since otherwise, by (iv), Μ would have to be the trivial
module, contradicting the condition H°(L, M) = ML = 0. Furthermore, NL = 0,
and so, by the induction assumption, Η (L, N) = 0. Thus, the first few terms in
the cohomology sequence corresponding to the short exact sequence 0-» JV-*M-»
M/N —> 0, have the form

0 -» //' (L, N) = 0 - Hl(L, M) = 0 - H°(L, M/N)

Hence, on the one hand, we have H°(L, M/N) = 0, and on the other hand, because
ξ is a monomorphism, we have Hl(L, M/N) = 0. These equalities contradict the
induction assumption. This gives the induction step, and proves the implication
(iv) => (v).

We prove that (v) => (i) by induction on η = dimL. For η = \ the implication
is obvious. Suppose that it holds for η - 1. Suppose that L is an «-dimensional
Lie algebra satisfying (v). We shall prove that every proper subalgebra A of L also
satisfies the condition. Let Μ be a 1-special L-module. By Theorem 1.3 (more
precisely, Corollary 1), Coind~M is also a 1-special L-module. Hence, by (v), we

have {Coir\a~M)L Φ 0, and consequently, by Corollary 1 of Theorem 1.3, MA Φ

0. In other words, the condition Hl{A, Μ) φ 0 implies that MA φ 0. By the
induction assumption, this means that every proper subalgebra A of L is nilpotent.
We now show that the Lie algebra L itself is nilpotent. Suppose that this were not
the case. Then L would contain a two-dimensional nonabelian subalgebra L =
{X, Y\[X, Y] = Y). Since L is not nilpotent, this is possible only if L = Z .
Then the one-dimensional L-module (v) for which Xv = ν and Υ υ = 0 has the
following property: // '(L, (ν)) φ 0, but H°(L, {v}) = 0. In fact, the class of the
cocycle ψ e Zl(L, {υ)), given by ψ{Χ) = 0 and ψ(Υ) = ν , is nontrivial. Thus, we
have constructed a module (v) which contradicts (v). Hence, L is nilpotent, and
(v) => (i).

The proof of the theorem is complete.

§5. Connection between truncated induced
and truncated coinduced modules

Given a subalgebra A of a Lie algebra L and an element a G A, we let a d a ^
denote the restriction of ad a to A . We set trL/4a = trada - tr(ada\A). To every

Λ-module Μ we associate the adjoint ^-module M1 and the twisted ^-module Μ
with action of A defined as follows: (a)jj = (a)m — trL/Aa .

THEOREM (p > 0). Let A be a subalgebra of the Lie algebra L, and let Μ be a
module over A . Then
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PROOF. Let s be the codimension of A, and let θ = J2\(pm' - 1)ε(. We choose
a basis of Coind ~M consisting of elements fa υ such that

I, otherwise,

where α, β e Ts{m) and v e V(M). It is obvious that (|a| = f Σ\ <*,)

a € A, \α\<\θ\, ae Ts(m) => eaa e </ίί(Λ) | \β\ <\θ\,βε Ts{m)),

e a + (trL,Aa)e e {e U(A)\ \β\ < \θ\, β € Γ$(ΐη)).

Hence, for any ae A and υ e Μ,

In other words, Coind ~M contains the Λ-submodule (fe v\v e V(M)) = M. Since

ea

of^v-fe_a<ve(fa,y\\a'\>\e-a\,a'ers(m),v'eV(M)),

the set {ea ο fQ v\a e Ts(ta), ν e V(M)} also forms a basis of the space Coind~M.
Thus, the map

G: ind^M -> CoindjM, G(e" ®v) = ea ofo y, a e Γ5(m), ν e V(M),

gives an isomorphism of spaces. We verify that

G(Xea®v) = XoG(ea®v), XeL, asT^m), veV(M).

We represent Xea in the form

X e = L·, λα,β,αβ α-

Then

C u e (8>υ)= > Α Λ G(e ®{a)-jrv)

= Σλ«,β ,α^ ° fe Λα^ν = Σλα,β ,α^α ° fe ,v =X°G(en®v).
β,α β,a

Thus, G gives an isomorphism of modules. The theorem is proved.
The theorem shows that, as in the case of finite groups, the concept of a truncated

induced module and that of a truncated coinduced module coincide. In particular,
every truncated induced module has an (L, C/)-module structure, i.e., along with its
L-module structure Ind ~M can be given the structure of a module over the divided

power algebra U = Coindj/· in such a way that

l { u m ) = l ( u ) m + u l ( m ) , l e L , ueU, meM.

In the terminology of [12], in this situation one says that IndjM has a transitive
imprimitivity system with base L/A . In the case of Cartan Lie algebras of charac-
teristic ρ > 0 this fact was established in [8]. An (L, t/)-module structure can be
introduced in a truncated (generalized) coinduced module in exactly the same way
as in the case of coinduced modules [11].
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In the preceding we have assumed that the central elements have p-form. By
modifying somewhat the definition of the twisted module, one can prove Theorem 5
in the general case.
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