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Let A be an associative algebra over a field K of characteristic 0. Let f =
f (t1, . . . , tn) be some non-commutative associative polynomial. Say that f = 0 is
identity on A if f (a1, . . . ,an)=0 for any substitutions ti :=ai ∈ A. Let sn be a skew-
symmetric associative non-commutative polynomial

sn(t1, . . . , tn)=
∑

σ∈Symn

signσ tσ(1) · · · tσ(n).

For example,

s2(t1, t2)= t1t2 − t2t1 =[t1, t2]
is a Lie commutator.

Suppose that an associative commutative algebra U has k commuting deriva-
tions ∂1, . . .∂k . A linear span of linear operators of a form u∂i1 . . .∂i p , where 1 ≤
i1, . . . , i p ≤ k, is denoted D(p)

k (U ). Let Dk(U )=∪p≥0 D(p)
k (U ) be space of differen-

tial operators on U generated by derivations ∂1, . . . ,∂k . In case of k =1 we reduce
notation ∂1 to ∂.

It is known that Dk(U ) can be endowed by a structure of associative algebra. A
multiplication of the algebra Dk(U ) is given as a composition of differential oper-
ators. For example, if k =1, then

u∂p ·v∂l =
p∑

s=0

(
p

s

)
u∂s(v)∂p+l−s .
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Certainly this construction can be easily generalized for algebras with several
derivations.

We can consider D(p)
k (U ) as a space of differential operators of order p. Well

known, that any differential operator of first order is a derivation and a space of
derivations Der(U )= D(1)

k (U ) forms Lie algebra under commutator,

u∂i , v∂ j ∈ D(1)
k (U )⇒ s2(u∂i , v∂ j )=u∂i ·v∂ j −v∂ j ·u∂i

⇒ s2(u∂i , v∂ j )=u∂i (v)∂ j −v∂ j (u)∂i ∈ D(1)
k (U ).

Main example of the algebra of differential operators appears in the case U =
K [x1, . . . , xk] and ∂i = ∂/∂xi , i = 1, . . . , k, are partial differential operators. Recall
that action of ∂i on a monom xα = xα1

1 · · · xαk
k , where α = (α1, . . . , αk) ∈ Zk

0, is
defined by

∂i xα =αi xα−εi .

Here Z0 is a set of non-negative integers and εi = (0, . . . ,0,1,0, . . . ,0) ∈ Zk
0 (all

components of ε except i-th are 0).
Denote by Ak an algebra of differential operators on polynomials algebra

K [x1, . . . , xk] generated by k commuting derivations ∂1, . . . ,∂k . The algebra Ak is
called k-th Weyl algebra. Let A(p)

k =〈u∂α||α|= p〉 be subspace of Ak consisting dif-
ferential operators of p-th order.

Let us consider A(p)
k as N -ary algebra under N -ary multiplication sN ,

sN (X1, . . . , X N )=
∑

σ∈SymN

signσ Xσ(1) · · · Xσ(N ).

In general this notion is not correct. Might happen that sN is not well-defined
on A(p)

k ,

sN (X1, . . . , Xn) /∈ A(p)
k

for some X1, . . . , X N ∈ A(p)
k . We say that A(p)

k admits N -commutator sN , if

sN (X1, . . . , X N )∈ A(p)
k

for any X1, . . . , X N ∈ A(p)
k .

In [3] it was proved that the space of differential operators of first order A(1)n in
addition to Lie commutator s2 admits (n2 +2n −2)-commutator and that sN =0 is
identity if N ≥n2 +2n. Let Matn be an algebra of n ×n matrices. Amitzur–Levitzky
theorem states that Matn satisfies the identity s2n = 0 and it is a minimal identity
[1]. Note that Weyl algebra has no polynomial identity except associativity. So, to
construct non-trivial identities we have to consider smaller subspaces of Weyl alge-
bra.

The aim of our paper is to establish that the space of one variable differen-
tial operators of order p admits 2p-commutator. The number 2p here can not
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be improved: if N > 2p, then sN = 0 is identity on A(p)
1 ; if N < 2p, then sN is

not well-defined on A(p)
1 ; if N = 2p, then sN is well-defined on A(p)

1 and non-
trivial. Obtained 2p-ary algebra A(p)

1 under multiplication s2p is simple and left-
commutative. In particular, the 2p-algebra (A(p)

1 , s2p) is homotopical 2p-Lie. To
formulate exact result we have to introduce some definitions.

Let us given an n-ary algebra (A,ψ) with n-ary skew-symmetric multiplication
ψ :∧n A → A. Say that A has (2n −2,1)-type identity (in [4] it is called (n −1)-left
commutative) if it satisfies the identity

∑

σ∈S(2n−2,1)

signσ ψ(aσ(1), . . . ,aσ(n−1),ψ(aσ(n), . . . ,aσ(2n−2),a2n−1))=0

Say that (A,ω) satisfies (1,2n −2)-type identity, if
∑

σ∈S(1,2n−2)

signσ ψ(a1,aσ(2), . . . ,aσ(n−1),ψ(aσ(n), . . . ,aσ(2n−1)))=0,

for any a1, . . . ,a2n−1 ∈ A. Here

S(2n−1,1)={σ ∈ Sn−1,n|σ(2n −1)=2n −1},
S(1,2n−1)=σ ∈ Sn−1,n|σ(1)=1},

where

Sn−1,n ={σ ∈ S2n−1|σ(1)< · · ·σ(n −1), σ (n)< · · ·<σ(2n −1)}
is a set of shuffle (n −1,n)-permutations on the set {1,2, . . . ,2n −1}. Call n-algebra
(A,ψ) left-commutative if it satisfies the (2n − 2,1)-type identity. Similarly, it is
called right-commutative if it has the (1,2n − 2)-type identity. In fact, these two
notions are equivalent (Lemma 22).

Say that (A,ψ) is homotopical n-Lie [5] if it satisfies the following identity
∑

σ∈Sn−1,n

signσ ψ(aσ(1), . . . ,aσ(n−1),ψ(aσ(n), . . . ,aσ(2n−1)))=0.

For k-ary algebra (A,ψ) with k-multiplication ψ : ∧k A → A and for a subspace
I ⊆ A say that I is ideal of A, if ψ(a1, . . . ,ak−1,b)∈ I, for any a1, . . . ,ak−1 ∈ A,b ∈
I. Say that A is simple, if it has no ideal except 0 and A.

In our paper, we prove the following result.

THEOREM 1. Let A1 = D(K [x]) be one variable Weyl algebra over a field K of
characteristic 0. Then

• s2p+1 =0 is a polynomial identity on A(p)
1 .

• Any polynomial identity of degree no more than 2p follows from the associativity
one

• sN is not well-defined on A(p)
1 if N <2p
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• s2p is well-defined and non-trivial operation on A(p)
1

• For any u1, . . . ,u2p ∈ K [x], the following formula holds

s2p(u1∂
p, · · · ,u2p∂

p)=λp

∣∣∣∣∣∣∣∣∣

u1 u2 · · · u2p

∂(u1) ∂(u2) · · · ∂(u2p)
...

... · · · ...

∂2p−1(u1) ∂2p−1(u2) · · · ∂2p−1(u2p)

∣∣∣∣∣∣∣∣∣

∂p,

where λp is a positive integer
• the 2p-algebra (A(p)

1 , s2p) is simple and left-commutative.

COROLLARY 2. If k>2p, then sk =0 is a polynomial identity on A(p)
1 .

COROLLARY 3. The 2p-algebra (A(p)
1 , s2p) is right-commutative

Proof. It follows from Lemma 22.

COROLLARY 4. The 2p-algebra (A(p)
1 , s2p) is homotopical 2p-Lie.

Proof. By Corollary 2.2 of [4] the algebra (A(p)
1 , s2p) is homotopical n-Lie.

COROLLARY 5. Any polynomial identity of Weyl algebra An follows from the
associativity identity.

This result follows also from results of [7].

Proof. Suppose that An has some polynomial identity g =0 that does not follow
from associativity identity. We can assume that g is multi-linear. Suppose that it
has degree deg g = d. Then g = 0 induces a polynomial identity for any subspace
of An . In particular, g =0 is identity on A(p)

1 . Take p such that 2p>d. We obtain
contradiction with the minimality of identity s2p =0 for A(p)

1 .

COROLLARY 6. Let U be an associative commutative algebra with a derivation ∂.

Then s2p is a 2p-commutator of D(p)(U ) and sN =0 is identity on D(p)(U ) for any
N >2p.

Remark 1. In [9], identities of Lie algebras of vector fields are considered. In [6,8],
growth of Lie algebras of vector fields on the line generated by two vector fields
is studied. In other words, they consider Lie algebras of differential operators of
order 1. In our paper we consider one variable differential operators of order p>
1. They are not close under composition. They are not close under Lie commuta-
tor. They do not form Lie algebra and they are not associative algebras. We study
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not only identities, but also their pre-identities. We show that pre-identities gener-
ate non-trivial N -commutators.

Remark 2. One can ask about N -commutators for the case n> 1. It seems that
situation in general case is more complicated. Amitsur–Levitzki theorem states that
s2n = 0 is an identity for the matrix algebra Matn . Let us formulate this theorem
in terms of differential operators.

We consider two kinds of multiplications on differential operators. Let Wn =
D(1)

n (U ) be a space of differential operators of first order. The first kind multipli-
cation is defined on Wn by the rule

a∂i ◦b∂ j =b∂ j (a)∂i .

The algebra (Wn,◦) is right-symmetric,

X ◦ (Y ◦ Z)− (X ◦Y )◦ Z = X ◦ (Z ◦Y )− (X ◦ Z)◦Y, ∀X,Y, Z ∈ Wn .

It has subalgebra generated by differential operators of a form xi∂ j , where i, j =
1, . . . ,n. As a subalgebra of right-symmetric algebra it is certainly right-symmetric,
but in this case the right-symmetric identity is not minimal. The algebra Wn,0 =
〈xi∂ j |1≤ i, j ≤n〉 is not only right-symmetric, but also associative,

X ◦ (Y ◦ Z)− (X ◦Y )◦ Z =0, ∀X,Y, Z ∈ L0.

The algebra Wn,0 is isomorphic to the associative matrix algebra Matn . Amitsur–
Levitzki found identity for the subalgebra Wn,0 of right-symmetric algebra Wn . So,
we see that Amitsur–Levitzki theorem is in fact a result about identities of right-
symmetric algebras. Generalization of identities of Wn,0 for whole right-symmetric
algebra Wn was studied in [2].

The second kind multiplication is a composition of differential operators. It is
an associative multiplication. But under composition Wn and Wn,0 are not close.
For example, composition of operators x1∂1 · x1∂1 = x2

1∂2
1 + x1∂1 is not an operator

of first order. Appears natural problem about identities of the space Ln,p generated
by operators of a form xα∂β, where α,β ∈Zn

0, and |α|= |β|= p. As a vector space
Ln,1 = Wn,0. One checks that s2n =0 is identity for the subspace Ln,1, if n =1,2,3.
For n = 4 this statement is wrong. One checks that s9 = 0 is not identity and that
s10 =0 is identity for L4,1. Moreover, s2n−1, as (2n −1)-ary operation on differen-
tial operators are not well-defined operations for Ln,1, if n ≤ 4. It seems that it is
a common situation: if n>1, the space Ln,p has non-trivial N -commutator if and
only if N =2 and p =1.

Proof of Theorem 1 is based on super-Lagrangians calculus. We do it in next
section. The key observation here is the following fact: If X is a base element
of super-Lagrangians algebra, then ∂(X) is a linear combination of base elements
with non-negative integer coefficients. This result allows us to construct a non-
trivial part of s2p−1(X1, . . . , X2p−1) of order more than p. This result allows also
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to prove that s2p(X1, . . . , X2p) is a non-trivial differential operator of order p for
some differential operators X1, . . . , X2p of order p.

1. Super-Lagrangians Algebra

Let Z0 be set of non-negative integers, E set of sequences with non-negative inte-
ger components, and

Ek ={α= (α1, α2, . . . , αk)|0≤α1<α2< · · ·<αk, αi ∈Z0},
Ek,0 ={α∈ Ek |α1 =0},

Ek(l)={α∈ Ek ||α|=
k∑

i=1

αk = l},

Ek,0(l)=
{
α∈ Ek,0||α|=

k∑

i=1

αk = l

}
.

We endow Ek by lexicographic order, α≤β if α1 =β1, . . . , αi−1 =βi−1, but αi <βi .

This order is prolonged to order on E by α<β if α∈ Ek, β ∈ El , k< l.
Let us consider Grassman algebra U generated by formal symbols ∂i (a), where

i ∈ Z0. We suppose that the generator a is odd and the derivation ∂ is even. So,
elements ∂i (a) are odd for any i ∈Z0.

For α= (α1, α2, . . . , αk)∈ Ek set

aα =∂α1(a1) · · ·∂αk (ak).

The algebra U is super-commutative and associative,

aαaβ = (−1)klaβaα.

aα(aβaγ )= (aαaβ)aγ ,

for any α ∈ Ek, β ∈ El , γ ∈ Es . In particular, aαaβ = 0, if α and β have common
components. For example,

a(2,3,5)a(1,3)=0, a(1,2,3,5)a(0,4)=−a(0,1,2,3,4,5).

Let L be an algebra of super-differential operators on U under composition.
Then operators of a form aα∂i , where α ∈ E, i ∈ Z0, collect a base of L. Compo-
sition of operators is defined as usual

u∂k ·v∂l =
k∑

i=0

(
k

i

)
u∂i (v)∂k+l−i ,

where elements u∂i (v)∈U are calculated in terms of super-multiplication in super-
algebra U . For example, if X =a(2,4,5)∂2 and Y =a(0,1,3)∂3, then
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∂(a(0,1,3))=a(0,2,3)+a(0,1,4),

∂2(a(0,1,3))=∂(∂(a(0,1,3)))=∂(a(0,2,3)+a(0,1,4))

=a(1,2,3)+a(0,2,4)+a(0,2,4)+a(0,1,5)=a(1,2,3)+2a(0,2,4)+a(0,1,5),

and

X ·Y =a(2,4,5)a(0,1,3)∂5 +2a(2,4,5)∂(a(0,1,3))∂4 +a(2,4,5)∂2(a(0,1,3))∂3

=a(0,1,2,3,4,5)∂5 +2a(2,4,5)(a(0,2,3 +a(0,1,4))∂4

+a(2,4,5)(a(1,2,3)+2a(0,2,4)+a(0,1,5))∂3

=a(0,1,2,3,4,5)∂5,

since

a(2,4,5)a(0,2,3)=a(2,4,5)a(0,1,4)=a(2,4,5)a(1,2,3)=a(2,4,5)a(0,2,4)=a(2,4,5)a(0,1,5)=0.

Let X =∑l
i=k Xi ∈L, where Xi = (∑α∈E λα,i a

α)∂i , k ≤ i ≤ l and Xk �=0. Take β ∈
E such that λβ,k �= 0 and λα,k = 0 if α>β. So, X has highest term λβ,k xβ∂k . Call
it leader of X and denote leader(X). For example,

X =2a(0,1,5)∂2 +5a(0,2,3)∂3 −3a(0,2,4)∂2 ⇒ leader(X)=−3a(0,2,4)∂2.

Denote by Uk a linear span of base elements aα, where α∈ Ek . Similarly define
linear spaces Uk,0 Uk(n) and Uk,0(n) as linear span of base elements aα, where cor-
respondingly α∈ Ek,0, α∈ Ek(n), and α∈ Ek,0(n)

Let U+
k ⊂Uk and U+

k (n)⊂Uk(n) are subsets generated by linear combinations of
eα with non-negative integer coefficients,

U+
k =

⎧
⎨

⎩
∑

α∈Ek

λαaα|λα ∈Z0

⎫
⎬

⎭ ,

U+
k (n)=

⎧
⎨

⎩
∑

α∈Ek (n)

λαaα|λα ∈Z0

⎫
⎬

⎭ .

Note that U+
k ,U

+
k (n) are semigroups under addition,

0∈U+
k , 0∈U+

k (n),

and

u, v∈U+
k ⇒u +v∈U+

k ,

u, v∈U+
k (n)⇒u +v∈U+

k (n).

Let

Lk =〈aα∂i |α∈ Ek, i ∈Z0〉,
Lk(n)=〈aα∂i | i +|α|=n, α∈ Ek, i ∈Z0〉.

Denote by L(≥p) a space of differential operators of order no less than p.
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PROPOSITION 7. For any p ≥ 0 the subspace L(≥p) generates left-ideal on the
algebra L,

LL(p)⊆L(p).
Algebras U and L are graded,

Uk(n)Ul(m)⊆Uk+l(n +m),

Lk(n)Ll(m)⊆ Lk+l(n +m),

Uk(n)Ll(m)⊆ Lk+l(n +m),

Lk(n)Ul(m)⊆ Lk+l(n +m),

for any k, l,n,m ∈Z0.

Proof. Evident.

LEMMA 8. Let p ≥ 0. If u ∈ Uk(n), then a∂p(u)∈ Uk+1,0(n + p). Moreover, if u ∈
U+

k (n), then a∂p(u)∈U+
k+1,0(n + p).

Proof. Our Lemma is an easy consequence of the following statements:

u ∈Uk(n)⇒∂(u)∈Uk(n +1),

u ∈U+
k (n)⇒∂(u)∈U+

k (n +1).

To prove these statements we use induction on p.

For p =0 our statement is trivial. Let p =1. If u =aα=∂α1(a) · · ·∂αk (a), then by
Leibniz rule ∂(u) is a sum of monoms of a form

ui =∂α1(a) · · ·∂αi−1(a)∂αi +1(a)∂αi+1(a) · · ·∂αk (a), 1≤ i ≤ k.

If αi+1 =αi +1, then by super-commutativity condition ui =0. If αi+1>αi +1, then
ui is a base monom. Therefore, if α∈ Ek(n), then ∂(aα) is a linear combination of
base monoms aβ, where β ∈ Ek(n + 1) with coefficients that are equal to 0 or 1.
Hence

u ∈Uk(n)⇒∂(u)∈Uk(n +1),

u ∈U+
k (n)⇒∂(u)∈U+

k (n +1).

So, base of induction is valid.
Suppose that

u ∈Uk(n)⇒∂p−1(u)∈Uk(n + p −1).

Then as we established above

∂p(u)=∂(∂p−1(u))∈Uk(n + p)
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By similar reasons

u ∈U+
k (n)⇒∂p−1(u)∈U+

k (n + p −1)⇒∂p(u)=∂(∂p−1(u))∈U+
k (n + p).

LEMMA 9. For any k ∈ Z0 the k-th power (a∂p)k ∈L is a linear combination with
non-negative integer coefficients of operators of a form aα∂i , where α∈ Ek, |α|+ i =
pk and i ≥ p.

Proof. By grading property of U and L (Proposition 7) it is clear that (a∂p)k

is a linear combination of super-differential operators of a form aα∂i , where α ∈
Ek(pk − i) and i ≥ p. By Lemma 8 coefficients are non-negative integers.

LEMMA 10. If N >2p, then (a∂p)N =0 and

(a∂p)2p =λpa(0,1,2...,2p−1)∂p,

for some non-negative integer λp.

Proof. If α∈ EN , and N =2p +1, then

|α|≥
N−1∑

i=0

i = N (N −1)/2= (2p +1)p = pN .

Therefore, by Lemma 9 (a∂)2p+1 =0. So, (a∂p)N =0, if N >2p.

If N =2p and α∈ EN then by the same reasons,

|α|≥ p(2p −1),

and

(a∂p)N = leader((a∂p)N )=λpa(0,1,...,2p−1)∂p,

for some λp ∈Z0.

To prove Theorem 1 we have to establish that λp > 0. It will be done in next
section.

2. Positivity of λ p

LEMMA 11. Let δ(k) be maximal element in Ek+1,0(pk). Then

δ(k)=
{
(0, p − l, p − l +1, . . . , p −1, p +1, . . . , p + l −1, p + l), if k =2l,
(0, p − l, p − l +1, . . . , p −1, p, p +1, . . . , p + l −1, p + l), if k =2l +1.
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Proof. Note first of all that δ(k)∈ Ek+1,0(pk). Indeed,

|δ(k)|=
{

2pl, if k =2l is even,
p(2l +1), if k =2l +1 is odd

⇒|δ(k)|= pk.

Suppose that β≥ δ(k) for some β= (β1, . . . , βk+1)∈ Ek+1,0(pk). Then

β2 ≥ p − l,

where l =�n/2�.
For 1< i ≤ k let us call βi+1 −βi as i-rise of β and denote ri (β). If ri (β)≥3 for

some 1< i ≤k, then we can find γ ∈ Ek+1,0(pk) such that β<γ. Take for example,
γ j =β j , if j �= i, i +1 and γi =βi +1, γi+1 =βi+1 −1. Therefore,

ri (β)≤2, 1< i ≤ k.

If ri (β)= 2 for some i then r j (β)= 1 for any j �= i, 1< j ≤ k. Let us prove it
by contradiction. Suppose that ri (β)= 2 and r j (β)= 2 for i �= j,1< i, j ≤ k. Then
there exists μ∈ Ek+1,0(pk), such that β <μ. Take for example, μs =βs , if s �= i, j,
and μi =βi +1, μ j+1 =β j+1 −1.

Let k =2l +1. If rs+1(β)>1, for some 0≤ s ≤k −1. then β2+s > p − l + s. There-
fore, |β|>∑p+l

i=p−l i > pk. Hence, ri (β)=1 for any 1< i ≤, and, β= δ(k).
Let k =2l. If rs+1(β)>1, for some 0≤ s ≤ l −1, then β2+s > p − l + s. Therefore,

s+1∑

i=1

βi ≥
s+1∑

i=1

δ(k)i ,

l+1∑

j=s+2

βs >

l+1∑

j=s+2

δ(k) j ,

2l+1∑

t=l+2

βt ≥
2l+1∑

t=l+2

δ(k)t .

Hence,

|β|=
s+1∑

i=1

βi +
l+1∑

j=s+2

β j +
2l+1∑

t=l+2

βt >

s+1∑

i=1

δ(k)i +
l+1∑

j=s+2

δ(k) j +
2l+1∑

t=l+2

δ(k)t

=|δ(k)|= pk.

If rs+1(β)>1, for some l< s ≤ k +1, then β2+s > p − l + s, and,

s+1∑

i=1

βi ≥
s+1∑

i=1

δ(k)i ,

2l+1∑

j=s+2

β j >

2l+1∑

j=s+2

δ(k)i .
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Therefore,

|β|=
s+1∑

i=1

βi +
2l+1∑

j=s+2

β j >

s+1∑

i=1

δ(k)i +
2l+1∑

j=s+2

δ(k) j =|δ(k)|= pk.

Hence

rs+1(β)>1⇒ s = l,

and β= δ(k).
Recall that α = (α1, . . . , αk) ∈ Zk

0 is called composition of n with length k if∑k
i=1 αi =n. Denote by Ck(n) set of compositions of n of length k. For α∈Ck(n)

denote by sort(α) the composition α written in non-decreasing order. Note that
sort(α) gives us a partition of n. For example, sort((2,0,2,3,1))= (0,1,2,2,3).
For σ = (0, σ2, . . . , σk+1)∈ Ek+1,0(n) set σ̄ = (σ2, . . . , σk)∈ Ek(n).

For α∈ Ek, β ∈ Ek+1 set

M(α, β)={γ ∈ Ek |sort(α+γ )= β̄}.
For α∈Zk

0, β ∈Zl
0 define α�β ∈Zk+l

0 as a prepend α to β

α�β= (α1, . . . , αk, β1, . . . , βl).

Let

00 = ( ),
0i = (0,0, . . . ,0)︸ ︷︷ ︸

i times

, i >0.

For α∈Zk
0 set

(|α|
α

)
=

k∏

i=1

(
α1 +· · ·+αk

α1, . . . , αk

)
= (α1 +· · ·+αk)!

α1! · · ·αk ! .

Let

G0 ={( )},
Gk ={(i)�0i−1 �α|α∈ Gk−i , i =1,2, . . . , k}, k>0.

EXAMPLE.

G1 ={(1)}, G2 ={(2,0), (1,1)}, G3 ={(3,0,0), (2,0,1), (1,2,0), (1,1,1)}.

LEMMA 12. If k =2l −1 is odd,

M(δ(k −1), δ(k))={(p − l + i)�0i−1 �α�0l−1|α∈ Gl−i , i =1,2, . . . , l}.
If k =2l is even,

M(δ(k −1), δ(k))={(p − l)�0l−1 �α|α∈ Gl}.
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Proof. Evident.

EXAMPLE. If p =5, then

M(δ(2), δ(3))= M((0,4,6), (0,4,5,6))={(4,1,0), (5,0,0)},
M(δ(3), δ(4))= M((0,4,5,6), (0,3,4,6,7))={(3,0,1,1), (3,0,2,0)}.

LEMMA 13.

∑

α∈Gk

sign (α+ (0,1, . . . , k −1))
(

k

α

)
=1

Proof. Induction on k. For k =1 our statement is evident. Suppose that it is true
for k −1. Note that

Gk =∪k
i=1{(i)�0i−1 � Gk−i }.

For α∈ Gk−i ,

(i)�0i−1 �α+ (0,1, . . . , k −1)= (i,1,2, . . . , i −1, α1 + i, . . . , αk−i + k −1),

and,

sign ((i)�0i−1 �α+ (0,1, . . . , k −1))= (−1)i−1sign (α+ (0,1, . . . , k − i −1)).

Further, for α∈ Gk−i ,

(
k

(i)�0i−1 �α

)
=

(
k

(i)�α

)
=

(
k

i

)(
k − i

α

)
.

Therefore,

∑

α∈Gk

sign (α+ (0,1, . . . , k −1))
(

k

α

)
=

k∑

i=1

∑

α∈Gk−i

(−1)i−1sign (α+ (0,1, . . . , k − i −1))
(

k

I

)(
k − i

α

)
=

k∑

i=1

(−1)i−1
(

k

i

) ∑

α∈Gk−i

sign (α+ (0,1, . . . , k − i −1))
(

k − i

α

)
=

(by inductive suggestion)

k∑

i=1

(−1)i−1
(

k

i

)
=1.
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LEMMA 14.
l−1∑

i=0

(−1)i
(

p

i

)
= (−1)l−1

(
p −1
l −1

)
.

Proof. Induction on l. If l =1, then our statement is evident. Suppose that it is
true for l −1≥1. Then

l−1∑

i=0

(−1)i
(

p

i

)
=

l−2∑

i=0

(−1)i
(

p

i

)
+ (−1)l−1

(
p

l −1

)

= (−1)l−1
(

p −1
l −2

)
+ (−1)l−1

(
p

l −1

)

= (−1)l−1
((

p

l −1

)
−

(
p −1
l −2

))
= (−1)l−1

(
p −1
l −1

)
.

LEMMA 15. If k =2l −1, then

l∑

i=1

∑

α∈Gl−i

sign ((p − l + i)�0i−1 �α�0l−1

+(0,1, . . . , l −1, l, . . . ,2l −2))
(

p

(p − l + i)�α

)
=

(
p −1
l −1

)
.

If k =2l, then

∑

α∈Gl

sign (α+ (0,1, . . . , l −1))
(

p

(p − l)�α

)
=

(
p

l

)
.

Proof. Let k =2l −1. For α∈ Gl−i let �(α)∈Z2l−1
0 be defined as

�(α)=(p − l + i)�0i−1 �α�0l−1+(0, p − l+1, . . . , p −1, p +1, . . . , p + l −1).

Note that

�(α)= (p − l + i, p − l +1, . . . , p − l + i −1, α1 + p − l + i, . . . , αl−i

+p −1, p +1, . . . , p + l −1). (1)

By (1)

sort(�(α))= (p − l +1, . . . , p − l + i −1, p − l + i)

� sort(α1 + p − l + i, . . . , αl−i + p −1, p +1, . . . , p + l −1).

Hence,

sort(�(α))= δ(k), α∈ Gl−i

�
sort(α1 + p − l + i, . . . , αl−i + p −1, p +1, . . . , p + l −1)

= (p − l + i +1, . . . , p −1, p, p +1, . . . , p + l −1).
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Therefore, the condition sort(�(α))= δ(k) is equivalent to the condition

sort(α1 + p − l + i, . . . , αl−i + p −1)= (p − l + i +1, . . . , p −1, p). (2)

By (1)

sign�(α)= (−1)i−1sign (p − l +1, . . . , p − l + i, α1 + p − l + i, . . . , αl−i

+p −1, p +1, . . . , p + l −1).

Therefore, by (2)

sign�(α)= (−1)i−1sign (α1 + p − l + i, . . . , αl−i + p −1)

= (−1)i−1sign (α1, α2 +1, . . . , αl−i + l − i −1). (3)

Hence,

l∑

i=1

∑

α∈Gl−i

sign�(α)
(

p

(p − l + i)�α

)
=

[by (3)]

l∑

i=1

∑

α∈Gl−i

(−1)i−1sign (α+ (0,1, . . . , l − i −1))
(

p

l − i

)(
l − i

α

)
=

l∑

i=1

(−1)i−1
(

p

l − i

) ∑

α∈Gl−i

sign (α+ (0,1, . . . , l − i −1))
(

l − i

α

)
=

(by Lemma 13)

l∑

i=1

(−1)i−1
(

p

l − i

)
=

l−1∑

j=0

(−1)l− j−1
(

p

j

)
=

(by Lemma 14)

(
p −1
l −1

)
.

So, our Lemma in case of odd k is proved.
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Let k =2l. Then

∑

α∈Gl

sign (α+ (0,1, . . . , l −1))
(

p

(p − l)�α

)
=

∑

α∈Gl

sign ((α1, α1 +1, . . . , αl + l −1)
(

p

l

)(
l

α

)
=

(
p

l

) ∑

α∈Gl

sign ((α1, α1 +1, . . . , αl + l −1)
(

l

α

)
=

(by Lemma 12)
(

p

l

)
.

Our Lemma is proved completely.

LEMMA 16. Let μk be coefficient at aδ(k−1) of the element a∂p(aδ(k−2)), if k>1,
and μ1 =1. If 1≤ k ≤2p, then

μk =

⎧
⎪⎨

⎪⎩

(p
l

)
, if k =2l +1 is odd,

(p−1
l−1

)
, if k =2l is even.

Proof. Follows from Lemmas 12 and 15.

EXAMPLE. If p =5, then

The following two lemmas can be proved in a similar way as Lemmas 12 and 15.

LEMMA 17. Let δ1(k) be maximal element in Ek+1,0(pk −1). Then
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δ1(k)=
{
(0, p − l, p − l +2, . . . , p + l −1), if k =2l,
(0, p − l, p − l +1, . . . , p, p +2, . . . , p + l), if k =2l +1.

LEMMA 18. Let γk be coefficient at aδ1(k−1) of a∂p−1(aδ(k−2)). Then

γk = p

(
p −1

�(k −2)/2�
)

if 2≤ k ≤2p −1.

LEMMA 19. Let νk be coefficient at aδ(k−1) of the element (a∂p)k−1(a). Then

leader((a∂p)k)=νkaδ(k−1)∂p.

Proof. Follows from Lemma 11.

LEMMA 20. For any 0≤ k ≤2p,

νk ≥μkνk−1.

(Definition of μk see Lemma 16, and definition of νk see Lemma 19).

Proof. By Lemmas 8 coefficient at aδ(k−1) of the element (a∂p)k−1(a) is a
non-negative integer that is no less than another non-negative integer (a∂p)k−1

(νk−1aδ(k−2)). By Lemma 16 the last number is equal to νk−1μk .

EXAMPLE. Let p =3. Then

μ1 =1,μ2 =1,μ3 =3,μ4 =2,μ5 =3,μ6 =1

and

(a∂3)2 =3a(0,1)∂5 +3a(0,2)∂4 +a(0,3)∂3,

leader((a∂3)2)=a(0,3)∂3, ν2 =1,

(a∂3)3 =18a(0,1,2)∂6 +27a(0,1,3)∂5 +15a(0,1,4)∂4 +3a(0,1,5)∂3

+9a(0,2,3)∂4 +3a(0,2,4)∂3,

leader((a∂3)3)=3a(0,2,4)∂3, ν3 =3,

(a∂3)4 =126a(0,1,2,3)∂6 +189a(0,1,2,4)∂5 +99a(0,1,2,5)∂4 +18a(0,1,2,6)∂3

+75a(0,1,3,4)∂4 +24a(0,1,3,5)∂3 +6a(0,2,3,4)∂3,

leader((a∂3)4)=6a(0,2,3,4)∂3, ν4 =6,

(a∂3)5 =432a(0,1,2,3,4)∂5 +432a(0,1,2,3,5)∂4 +108a(0,1,2,3,6)∂3 +90a(0,1,2,4,5)∂3,

leader((a∂3)5)=90a(0,1,2,4,5)∂3, ν5 =90,

(a∂3)6 =90a(0,1,2,3,4,5)∂3.

leader((a∂3)6)= (a∂3)6 =a(0,3)∂3, ν6 =90.
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LEMMA 21. For any X1, . . . , X N ∈ A(p)
1 ,

sN (X1, . . . , X N )=0,

if N >2p and

s2p(∂
p, x∂p, x2/2 ∂p, . . . , x2p−1/(2p −1)!∂p)=λp∂

p.

Proof. Suppose that Xi = ui∂
p, where ui ∈ K [x]. Let us make specialization of

a in super-algebra U . Take a = (∑N
i=1 uiξi )∂

p, where ξi are odd super-generators.
Then

(a∂p)N = sN (u1∂
p, . . . ,uN ∂p)ξ1 · · · ξN .

By Lemma 10 (a∂p)N =0, if N >2p. Therefore, sN =0 is identity if N >2p.
Now consider the case N = 2p. Set a = ∑2p−1

i=0 xi/ i !ξi+1 where ξi are odd ele-
ments and ∂ acts on xi as usual, ∂(xi )= i xi−1. Then

(a∂p)2p = s2p(∂
p, x∂p, x2/2∂p, . . . , x2p−1/(2p −1)!∂p)ξ1ξ2 · · · ξ2p

Further,

a(0,1,2...,2p−1)=∂0(a)∂1(a) · · ·∂2p−1(a)

=
⎛

⎝
2p−1∑

i=0

xi/ i !ξi+1

⎞

⎠

⎛

⎝
2p−1∑

i=0

xi−1/(i −1)!ξi+1

⎞

⎠ · · · (ξ2p−1 + xξ2p)ξ2p

= ξ1ξ2 · · · ξ2p.

Therefore, by Lemma 10

s2p(∂
p, x∂p, x2/2 ∂p, . . . , x2p−1/(2p −1)!∂p)ξ1ξ2 · · · ξ2p = (a∂p)2p

=λpξ1ξ2 · · · ξ2p∂
p.

Hence

s2p(∂
p, x∂p, x2/2 ∂p, . . . , x2p−1/(2p −1)!∂p)=λp∂

p.

3. Equivalence of Left-Commutative and Right-Commutative Identities

LEMMA 22. (2n −2,1)-type and (1,2n −2)-type identities are equivalent.

Proof. We have to prove that any n-algebra (A,ψ) with (2n −2,1)-type identity

lcom =0,

Author's personal copy



ASKAR DZHUMADIL’DAEV

where

lcom(t1, . . . , t2n−1)

=
∑

σ∈S(2n−2,1)

signσψ(tσ(1), . . . , tσ(n−1),ψ(tσ(n), . . . , tσ(2n−2), tσ(2n−1))),

satisfies the identity

rcom =0,

where

rcom(t1, . . . , t2n−1)=
∑

σ∈S(1,2n−2)

signσ ψ(t1, tσ(2), . . . , tσ(n−1),ψ(tσ(n), . . . , tσ(2n−1))),

and vice versa, any n-ary algebra with identity rcom = 0 satisfies also the identity
lcom =0.

Let us prove that

n rcom(t1, . . . , t2n−1)= rcom1(t1, . . . , t2n−1), (4)

(n −1) lcom(t1, . . . , t2n−1)= lcom1(t1, . . . , t2n−1), (5)

where

rcom1(t1, . . . , t2n−1)=
2n−1∑

i=2

(−1)i+1 lcom(t1, . . . , t̂i , . . . , t2n−1, ti )

−(n −1) lcom(t2, . . . , t2n−1, t1),

lcom1(t1, . . . , t2n−1)=
2n−2∑

i=1

(−1)i+1 rcom(ti , t1, . . . , t̂i , . . . , t2n−1)

−(n −2) rcom(t2n−1, t1, . . . , t2n−2).

Note that rcom(t1, . . . , t2n−1) and rcom1(t1, . . . , t2n−1) are skew-symmetric under
2n − 2 variables t2, . . . , t2n−1. Therefore, it is enough to prove that coefficients
at ψ(t1, . . . , tn−1,ψ(tn, . . . , t2n−2, t2n−1)) and ψ(t2, . . . , tn,ψ(t1, tn+1, . . . , t2n−1)) of
rcom(t1, . . . , t2n−1) and rcom1(t1, . . . , t2n−1) are equal.

It is easy to see that, if n ≤ i ≤ 2n − 1, then the coefficient at ψ(t1, . . . , tn−1,ψ

(tn, . . . , t2n−1)) of

(−1)i+1 lcom(t1, . . . , t̂i , . . . , t2n−1, ti )

is equal to 1. If 1 ≤ i < n, then this coefficient is 0. Therefore, the coefficient at
ψ(t1, . . . , tn−1,ψ(tn, . . . , t2n−1)) of rcom1(t1, . . . , t2n−1) is equal to n.

Further, if n ≤ i ≤2n −1, then the coefficient at ψ(t2, . . . , tn,ψ(t1, tn+1, . . . , t2n−1))

of

(−1)i+1 lcom(t1, . . . , t̂i , . . . , t2n−1, ti )
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is equal to 0. If 1 ≤ i < n, then this coefficient is 1. Therefore, the coefficient at
ψ(t2, . . . , tn,ψ(t1, tn+1, . . . , t2n−1)) of rcom1(t1, . . . , t2n−1) is equal to 0.

Hence, relation (4) is proved completely.
By similar arguments one establishes (5).
Relations (4) and (5) show that identities rcom and lcom are equivalent.

4. Proof of Theorem 1

By Lemma 21 sN =0 is identity on A(p)
1 if N >2p. By Lemma 20

λp =ν2p ≥μ2p · · ·μ2ν1>0.

Therefore, by Lemma 21 s2p =0 is not polynomial identity and s2p induces on A(p)
1

a non-trivial 2p-commutator.
By Lemma 20 for any 1≤ k ≤2p −2

νk ≥μk · · ·μ2ν1>0.

Therefore, by Lemmas 8, 17 and 18 the differential (p +1)-th order parts of (a∂p)k

are non-zero for any 2≤ k ≤2p −1. Therefore, sk is not well-defined on A(p)
1 .

Suppose that A(p)
1 has identity of degree no more than 2p. Then it has skew-

symmetric multi-linear consequence. In particular, it has a skew-symmetric poly-
nomial identity of degree 2p. But s2p =0, as we mentioned above, is not identity.
Contradiction.

Suppose that I is a non-trivial ideal of A(p)
1 under 2p-commutator s2p. Take 0 �=

X =u∂p ∈ I with minimal degree s =deg u. Let us prove that s =0 and X =η∂p ∈ I
for some 0 �= η ∈ K . Suppose that it is not true, and s> 0. If s ≥ 2p − 1, then by
Lemma 21

s2p(∂
p, x∂p, . . . , x2p−2∂p, X)=λp

(
s

2p −1

) 2p−1∏

i=0

i ! xs−2p+1∂p ∈ I,

or,

xs−2p+1∂p ∈ I.

We obtain contradiction with minimality of s. If 0< s<2p −1, then

s2p(∂
p, x∂p, . . . , xs−1∂p, X, xs+1∂p, . . . , x2p−1∂p)=λp

2p−1∏

i=0

i !∂p ∈ I,

or,

∂p ∈ I.

Once again we obtain contradiction with minimality of s.
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So, we establish that X =η∂p ∈ I, for some 0 �=η∈ K . Then for any l ≥0,

s2p(X, x∂, . . . , x2p−2∂p, xl+2p−1∂p)=ηλp

(
l +2p −1

2p −1

) 2p−1∏

i=0

i ! xl∂p ∈ I.

In other words, xl∂p ∈ I for any l ≥ 0. This means that I = A(p)
1 . So, (A(p)

1 , s2p) is
simple 2p-algebra.

By Theorem 1.1 (ii) of [4] the algebra (An(p), s2p) is left-commutative. Presenta-
tion of 2p-commutator as a Vronskian up to scalar λp follows from Lemma 21.

5. Expressions for λ p

In this section, we give some formulas for λp. For s>0 let us define a polynomial

fs(x1, . . . , x2p−1)

=
∑
σ∈Sym2p

signσ
(
xσ(1)(xσ(1)+ xσ(2)) · · · (xσ(1)+ xσ(2)+· · ·+ xσ(2p−1))

)s

∏
1≤i< j≤2p(xi − x j ).

Then fs(x1, . . . , x2p−1) is a symmetric polynomial of degree (2p −1)(s − p). In par-
ticular, f p(x1, . . . , x2p−1)=λp is constant. The number λp appears also in calculating
2p-commutator,

s2p(u1∂
p, · · · ,u2p∂

p)=λp

∣∣∣∣∣∣∣∣∣

u1 u2 · · · u2p

∂(u1) ∂(u2) · · · ∂(u2p)
...

... · · · ...

∂2p−1(u1) ∂2p−1(u2) · · · ∂2p−1(u2p)

∣∣∣∣∣∣∣∣∣

∂p.

Then

λp =
∑
σ∈Sym2p

signσ (σ(1)(σ (1)+σ(2)) · · · (σ (1)+σ(2)+· · ·+σ(2p −1)))p

∏
1≤i< j≤2p(i − j).

For example,

λ1 =1, λ2 =2, λ3 =90, λ4 =586,656, λ5 =1,915,103,977,500.

λ6 =7,886,133,184,567,796,056,800.

Another way to calculate λp. Let Mp be a set of matrices M = (mi, j ) of order
(2p −1)× (2p −1) such that

• mi, j ∈Z0

• mi, j =0 if i > j
• Sums by rows are constant,

∑2p−1
j=1 mi, j = p for any i

• Sums by columns r j = ∑2p−1
i=1 mi, j , are positive and different for all j =

1,2, . . . ,2p −1.
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In particular,

M = (mi, j )∈Mp ⇒m1,1 = r1>0 and m2p−1,2p−1 = p.

For M ∈ Mp denote by r(M) the permutation r1 . . . r2p−1 constructed by column
sums.

EXAMPLE. p =2. Then

M2 =
⎧
⎨

⎩A =
⎛

⎝
1 1 0
0 1 1
0 0 2

⎞

⎠ , B =
⎛

⎝
1 0 1
0 2 0
0 0 2

⎞

⎠ ,C =
⎛

⎝
1 1 0
0 2 0
0 0 2

⎞

⎠ , D =
⎛

⎝
2 0 0
0 1 1
0 0 2

⎞

⎠

⎫
⎬

⎭.

r(A)=123, r(B)=123, r(C)=132, r(D)=213.

If M ∈Mp, then a sequence r1 . . . r2p−1 induces a permutation, where ri =∑
j mi, j

are sums by columns. In particular, 1≤ ri ≤2p −1 for any 1≤ i ≤2p −1. Then

λp =
∑

M∈Mp

sign r(M)
2p−1∏

i=1

(
p

mi,1, . . . ,mi,2p−1

)
,

λp = p!2p−1

∏2p−1
j=1 j !

∑

M∈Mp

sign r(M)
∏

j

(
r j

m1, j , . . . ,m j, j

)
.

Here
(

n

n1, . . .nk

)
= n!

n1! · · ·nk !
is a multinomial coefficient.
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