## 2p-Commutator on Differential Operators of Order p

## Askar Dzhumadil'daev

## Letters in Mathematical Physics

A Journal for the Rapid Dissemination of Short Contributions in the Field of Mathematical Physics

ISSN 0377-9017
Lett Math Phys
DOI 10.1007/s11005-014-0695-0

Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

# $2 p$-Commutator on Differential Operators of Order $p$ 

ASKAR DZHUMADIL'DAEV<br>Kazakh-British University, Tole bi 59, Almaty 050000, Kazakhstan.<br>e-mail: dzhuma@hotmail.com

Received: 4 January 2014 / Revised: 12 March 2014 / Accepted: 30 March 2014
© Springer Science+Business Media Dordrecht 2014


#### Abstract

We show that a space of one variable differential operators of order $p$ admits non-trivial $2 p$-commutator and the number $2 p$ here can not be improved.


Mathematics Subject Classification (1991). 16S32.
Keywords. Weyl algebra, differential operator, N-commutator, polynomial identity, Amitzur-Levitzki identity.

Let $A$ be an associative algebra over a field $K$ of characteristic 0 . Let $f=$ $f\left(t_{1}, \ldots, t_{n}\right)$ be some non-commutative associative polynomial. Say that $f=0$ is identity on $A$ if $f\left(a_{1}, \ldots, a_{n}\right)=0$ for any substitutions $t_{i}:=a_{i} \in A$. Let $s_{n}$ be a skewsymmetric associative non-commutative polynomial

$$
s_{n}\left(t_{1}, \ldots, t_{n}\right)=\sum_{\sigma \in \operatorname{Sym}_{n}} \operatorname{sign} \sigma t_{\sigma(1)} \cdots t_{\sigma(n)}
$$

For example,

$$
s_{2}\left(t_{1}, t_{2}\right)=t_{1} t_{2}-t_{2} t_{1}=\left[t_{1}, t_{2}\right]
$$

is a Lie commutator.
Suppose that an associative commutative algebra $U$ has $k$ commuting derivations $\partial_{1}, \ldots \partial_{k}$. A linear span of linear operators of a form $u \partial_{i_{1}} \ldots \partial_{i_{p}}$, where $1 \leq$ $i_{1}, \ldots, i_{p} \leq k$, is denoted $D_{k}^{(p)}(U)$. Let $D_{k}(U)=\cup_{p \geq 0} D_{k}^{(p)}(U)$ be space of differential operators on $U$ generated by derivations $\partial_{1}, \ldots, \partial_{k}$. In case of $k=1$ we reduce notation $\partial_{1}$ to $\partial$.

It is known that $D_{k}(U)$ can be endowed by a structure of associative algebra. A multiplication of the algebra $D_{k}(U)$ is given as a composition of differential operators. For example, if $k=1$, then

$$
u \partial^{p} \cdot v \partial^{l}=\sum_{s=0}^{p}\binom{p}{s} u \partial^{s}(v) \partial^{p+l-s}
$$

Certainly this construction can be easily generalized for algebras with several derivations.
We can consider $D_{k}^{(p)}(U)$ as a space of differential operators of order $p$. Well known, that any differential operator of first order is a derivation and a space of derivations $\operatorname{Der}(U)=D_{k}^{(1)}(U)$ forms Lie algebra under commutator,

$$
\begin{aligned}
u \partial_{i}, v \partial_{j} \in D_{k}^{(1)}(U) & \Rightarrow s_{2}\left(u \partial_{i}, v \partial_{j}\right)=u \partial_{i} \cdot v \partial_{j}-v \partial_{j} \cdot u \partial_{i} \\
& \Rightarrow s_{2}\left(u \partial_{i}, v \partial_{j}\right)=u \partial_{i}(v) \partial_{j}-v \partial_{j}(u) \partial_{i} \in D_{k}^{(1)}(U)
\end{aligned}
$$

Main example of the algebra of differential operators appears in the case $U=$ $K\left[x_{1}, \ldots, x_{k}\right]$ and $\partial_{i}=\partial / \partial x_{i}, i=1, \ldots, k$, are partial differential operators. Recall that action of $\partial_{i}$ on a monom $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}}$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbf{Z}_{0}^{k}$, is defined by

$$
\partial_{i} x^{\alpha}=\alpha_{i} x^{\alpha-\epsilon_{i}} .
$$

Here $\mathbf{Z}_{0}$ is a set of non-negative integers and $\epsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbf{Z}_{0}^{k}$ (all components of $\epsilon$ except $i$-th are 0 ).

Denote by $A_{k}$ an algebra of differential operators on polynomials algebra $K\left[x_{1}, \ldots, x_{k}\right]$ generated by $k$ commuting derivations $\partial_{1}, \ldots, \partial_{k}$. The algebra $A_{k}$ is called $k$-th Weyl algebra. Let $\left.A_{k}^{(p)}=\left\langle u \partial^{\alpha}\right||\alpha|=p\right\rangle$ be subspace of $A_{k}$ consisting differential operators of $p$-th order.

Let us consider $A_{k}^{(p)}$ as $N$-ary algebra under $N$-ary multiplication $s_{N}$,

$$
s_{N}\left(X_{1}, \ldots, X_{N}\right)=\sum_{\sigma \in \operatorname{Sym}_{N}} \operatorname{sign} \sigma X_{\sigma(1)} \cdots X_{\sigma(N)} .
$$

In general this notion is not correct. Might happen that $s_{N}$ is not well-defined on $A_{k}^{(p)}$,

$$
s_{N}\left(X_{1}, \ldots, X_{n}\right) \notin A_{k}^{(p)}
$$

for some $X_{1}, \ldots, X_{N} \in A_{k}^{(p)}$. We say that $A_{k}^{(p)}$ admits $N$-commutator $s_{N}$, if

$$
s_{N}\left(X_{1}, \ldots, X_{N}\right) \in A_{k}^{(p)}
$$

for any $X_{1}, \ldots, X_{N} \in A_{k}^{(p)}$.
In [3] it was proved that the space of differential operators of first order $A_{n}^{(1)}$ in addition to Lie commutator $s_{2}$ admits $\left(n^{2}+2 n-2\right)$-commutator and that $s_{N}=0$ is identity if $N \geq n^{2}+2 n$. Let $\mathrm{Mat}_{n}$ be an algebra of $n \times n$ matrices. Amitzur-Levitzky theorem states that $\mathrm{Mat}_{n}$ satisfies the identity $s_{2 n}=0$ and it is a minimal identity [1]. Note that Weyl algebra has no polynomial identity except associativity. So, to construct non-trivial identities we have to consider smaller subspaces of Weyl algebra.

The aim of our paper is to establish that the space of one variable differential operators of order $p$ admits $2 p$-commutator. The number $2 p$ here can not
be improved: if $N>2 p$, then $s_{N}=0$ is identity on $A_{1}^{(p)}$; if $N<2 p$, then $s_{N}$ is not well-defined on $A_{1}^{(p)}$; if $N=2 p$, then $s_{N}$ is well-defined on $A_{1}^{(p)}$ and nontrivial. Obtained $2 p$-ary algebra $A_{1}^{(p)}$ under multiplication $s_{2 p}$ is simple and leftcommutative. In particular, the $2 p$-algebra $\left(A_{1}^{(p)}, s_{2 p}\right)$ is homotopical $2 p$-Lie. To formulate exact result we have to introduce some definitions.

Let us given an $n$-ary algebra $(A, \psi)$ with $n$-ary skew-symmetric multiplication $\psi: \wedge^{n} A \rightarrow A$. Say that $A$ has ( $2 n-2,1$ )-type identity (in [4] it is called ( $n-1$ )-left commutative) if it satisfies the identity

$$
\sum_{\sigma \in S^{(2 n-2,1)}} \operatorname{sign} \sigma \psi\left(a_{\sigma(1)}, \ldots, a_{\sigma(n-1)}, \psi\left(a_{\sigma(n)}, \ldots, a_{\sigma(2 n-2)}, a_{2 n-1}\right)\right)=0
$$

Say that $(A, \omega)$ satisfies $(1,2 n-2)$-type identity, if

$$
\sum_{\sigma \in S^{(1,2 n-2)}} \operatorname{sign} \sigma \psi\left(a_{1}, a_{\sigma(2)}, \ldots, a_{\sigma(n-1)}, \psi\left(a_{\sigma(n)}, \ldots, a_{\sigma(2 n-1)}\right)\right)=0
$$

for any $a_{1}, \ldots, a_{2 n-1} \in A$. Here

$$
\begin{aligned}
& S^{(2 n-1,1)}=\left\{\sigma \in S_{n-1, n} \mid \sigma(2 n-1)=2 n-1\right\}, \\
& \left.S^{(1,2 n-1)}=\sigma \in S_{n-1, n} \mid \sigma(1)=1\right\},
\end{aligned}
$$

where

$$
S_{n-1, n}=\left\{\sigma \in S_{2 n-1} \mid \sigma(1)<\cdots \sigma(n-1), \sigma(n)<\cdots<\sigma(2 n-1)\right\}
$$

is a set of shuffle $(n-1, n)$-permutations on the set $\{1,2, \ldots, 2 n-1\}$. Call $n$-algebra $(A, \psi)$ left-commutative if it satisfies the $(2 n-2,1)$-type identity. Similarly, it is called right-commutative if it has the $(1,2 n-2)$-type identity. In fact, these two notions are equivalent (Lemma 22).

Say that $(A, \psi)$ is homotopical n-Lie [5] if it satisfies the following identity

$$
\sum_{\sigma \in S_{n-1, n}} \operatorname{sign} \sigma \psi\left(a_{\sigma(1)}, \ldots, a_{\sigma(n-1)}, \psi\left(a_{\sigma(n)}, \ldots, a_{\sigma(2 n-1)}\right)\right)=0 .
$$

For $k$-ary algebra $(A, \psi)$ with $k$-multiplication $\psi: \wedge^{k} A \rightarrow A$ and for a subspace $I \subseteq A$ say that $I$ is ideal of $A$, if $\psi\left(a_{1}, \ldots, a_{k-1}, b\right) \in I$, for any $a_{1}, \ldots, a_{k-1} \in A, b \in$ I. Say that $A$ is simple, if it has no ideal except 0 and $A$.

In our paper, we prove the following result.

THEOREM 1. Let $A_{1}=D(K[x])$ be one variable Weyl algebra over a field $K$ of characteristic 0 . Then

- $s_{2 p+1}=0$ is a polynomial identity on $A_{1}^{(p)}$.
- Any polynomial identity of degree no more than $2 p$ follows from the associativity one
- $s_{N}$ is not well-defined on $A_{1}^{(p)}$ if $N<2 p$
- $s_{2 p}$ is well-defined and non-trivial operation on $A_{1}^{(p)}$
- For any $u_{1}, \ldots, u_{2 p} \in K[x]$, the following formula holds

$$
s_{2 p}\left(u_{1} \partial^{p}, \cdots, u_{2 p} \partial^{p}\right)=\lambda_{p}\left|\begin{array}{cccc}
u_{1} & u_{2} & \cdots & u_{2 p} \\
\partial\left(u_{1}\right) & \partial\left(u_{2}\right) & \cdots & \partial\left(u_{2 p}\right) \\
\vdots & \vdots & \cdots & \vdots \\
\partial^{2 p-1}\left(u_{1}\right) & \partial^{2 p-1}\left(u_{2}\right) & \cdots & \partial^{2 p-1}\left(u_{2 p}\right)
\end{array}\right| \partial^{p},
$$

where $\lambda_{p}$ is a positive integer

- the $2 p$-algebra $\left(A_{1}^{(p)}, s_{2 p}\right)$ is simple and left-commutative.

COROLLARY 2. If $k>2 p$, then $s_{k}=0$ is a polynomial identity on $A_{1}^{(p)}$.
COROLLARY 3. The $2 p$-algebra $\left(A_{1}^{(p)}, s_{2 p}\right)$ is right-commutative

Proof. It follows from Lemma 22.
COROLLARY 4. The $2 p$-algebra $\left(A_{1}^{(p)}, s_{2 p}\right)$ is homotopical $2 p$-Lie.
Proof. By Corollary 2.2 of [4] the algebra $\left(A_{1}^{(p)}, s_{2 p}\right)$ is homotopical $n$-Lie.

COROLLARY 5. Any polynomial identity of Weyl algebra $A_{n}$ follows from the associativity identity.

This result follows also from results of [7].
Proof. Suppose that $A_{n}$ has some polynomial identity $g=0$ that does not follow from associativity identity. We can assume that $g$ is multi-linear. Suppose that it has degree $\operatorname{deg} g=d$. Then $g=0$ induces a polynomial identity for any subspace of $A_{n}$. In particular, $g=0$ is identity on $A_{1}^{(p)}$. Take $p$ such that $2 p>d$. We obtain contradiction with the minimality of identity $s_{2 p}=0$ for $A_{1}^{(p)}$.

COROLLARY 6. Let $U$ be an associative commutative algebra with a derivation $\partial$. Then $s_{2 p}$ is a $2 p$-commutator of $D^{(p)}(U)$ and $s_{N}=0$ is identity on $D^{(p)}(U)$ for any $N>2 p$.

Remark 1. In [9], identities of Lie algebras of vector fields are considered. In [6, 8], growth of Lie algebras of vector fields on the line generated by two vector fields is studied. In other words, they consider Lie algebras of differential operators of order 1. In our paper we consider one variable differential operators of order $p>$ 1. They are not close under composition. They are not close under Lie commutator. They do not form Lie algebra and they are not associative algebras. We study
not only identities, but also their pre-identities. We show that pre-identities generate non-trivial N -commutators.

Remark 2. One can ask about $N$-commutators for the case $n>1$. It seems that situation in general case is more complicated. Amitsur-Levitzki theorem states that $s_{2 n}=0$ is an identity for the matrix algebra $\mathrm{Mat}_{n}$. Let us formulate this theorem in terms of differential operators.

We consider two kinds of multiplications on differential operators. Let $W_{n}=$ $D_{n}^{(1)}(U)$ be a space of differential operators of first order. The first kind multiplication is defined on $W_{n}$ by the rule

$$
a \partial_{i} \circ b \partial_{j}=b \partial_{j}(a) \partial_{i}
$$

The algebra ( $W_{n}, \circ$ ) is right-symmetric,

$$
X \circ(Y \circ Z)-(X \circ Y) \circ Z=X \circ(Z \circ Y)-(X \circ Z) \circ Y, \quad \forall X, Y, Z \in W_{n} .
$$

It has subalgebra generated by differential operators of a form $x_{i} \partial_{j}$, where $i, j=$ $1, \ldots, n$. As a subalgebra of right-symmetric algebra it is certainly right-symmetric, but in this case the right-symmetric identity is not minimal. The algebra $W_{n, 0}=$ $\left\langle x_{i} \partial_{j} \mid 1 \leq i, j \leq n\right\rangle$ is not only right-symmetric, but also associative,

$$
X \circ(Y \circ Z)-(X \circ Y) \circ Z=0, \quad \forall X, Y, Z \in L_{0}
$$

The algebra $W_{n, 0}$ is isomorphic to the associative matrix algebra Mat ${ }_{n}$. AmitsurLevitzki found identity for the subalgebra $W_{n, 0}$ of right-symmetric algebra $W_{n}$. So, we see that Amitsur-Levitzki theorem is in fact a result about identities of rightsymmetric algebras. Generalization of identities of $W_{n, 0}$ for whole right-symmetric algebra $W_{n}$ was studied in [2].

The second kind multiplication is a composition of differential operators. It is an associative multiplication. But under composition $W_{n}$ and $W_{n, 0}$ are not close. For example, composition of operators $x_{1} \partial_{1} \cdot x_{1} \partial_{1}=x_{1}^{2} \partial_{1}^{2}+x_{1} \partial_{1}$ is not an operator of first order. Appears natural problem about identities of the space $L_{n, p}$ generated by operators of a form $x^{\alpha} \partial^{\beta}$, where $\alpha, \beta \in \mathbf{Z}_{0}^{n}$, and $|\alpha|=|\beta|=p$. As a vector space $L_{n, 1}=W_{n, 0}$. One checks that $s_{2 n}=0$ is identity for the subspace $L_{n, 1}$, if $n=1,2,3$. For $n=4$ this statement is wrong. One checks that $s_{9}=0$ is not identity and that $s_{10}=0$ is identity for $L_{4,1}$. Moreover, $s_{2 n-1}$, as $(2 n-1)$-ary operation on differential operators are not well-defined operations for $L_{n, 1}$, if $n \leq 4$. It seems that it is a common situation: if $n>1$, the space $L_{n, p}$ has non-trivial $N$-commutator if and only if $N=2$ and $p=1$.

Proof of Theorem 1 is based on super-Lagrangians calculus. We do it in next section. The key observation here is the following fact: If $X$ is a base element of super-Lagrangians algebra, then $\partial(X)$ is a linear combination of base elements with non-negative integer coefficients. This result allows us to construct a nontrivial part of $s_{2 p-1}\left(X_{1}, \ldots, X_{2 p-1}\right)$ of order more than $p$. This result allows also
to prove that $s_{2 p}\left(X_{1}, \ldots, X_{2 p}\right)$ is a non-trivial differential operator of order $p$ for some differential operators $X_{1}, \ldots, X_{2 p}$ of order $p$.

## 1. Super-Lagrangians Algebra

Let $\mathbf{Z}_{0}$ be set of non-negative integers, $E$ set of sequences with non-negative integer components, and

$$
\begin{aligned}
E_{k} & =\left\{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \mid 0 \leq \alpha_{1}<\alpha_{2}<\cdots<\alpha_{k}, \alpha_{i} \in \mathbf{Z}_{0}\right\}, \\
E_{k, 0} & =\left\{\alpha \in E_{k} \mid \alpha_{1}=0\right\}, \\
E_{k}(l) & =\left\{\alpha \in E_{k}| | \alpha \mid=\sum_{i=1}^{k} \alpha_{k}=l\right\} \\
E_{k, 0}(l) & =\left\{\alpha \in E_{k, 0}| | \alpha \mid=\sum_{i=1}^{k} \alpha_{k}=l\right\} .
\end{aligned}
$$

We endow $E_{k}$ by lexicographic order, $\alpha \leq \beta$ if $\alpha_{1}=\beta_{1}, \ldots, \alpha_{i-1}=\beta_{i-1}$, but $\alpha_{i}<\beta_{i}$. This order is prolonged to order on $E$ by $\alpha<\beta$ if $\alpha \in E_{k}, \beta \in E_{l}, k<l$.

Let us consider Grassman algebra $\mathcal{U}$ generated by formal symbols $\partial^{i}(a)$, where $i \in \mathbf{Z}_{0}$. We suppose that the generator $a$ is odd and the derivation $\partial$ is even. So, elements $\partial^{i}(a)$ are odd for any $i \in \mathbf{Z}_{0}$.

For $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in E_{k}$ set

$$
a^{\alpha}=\partial^{\alpha_{1}}\left(a_{1}\right) \cdots \partial^{\alpha_{k}}\left(a_{k}\right) .
$$

The algebra $\mathcal{U}$ is super-commutative and associative,

$$
\begin{aligned}
a^{\alpha} a^{\beta} & =(-1)^{k l} a^{\beta} a^{\alpha} . \\
a^{\alpha}\left(a^{\beta} a^{\gamma}\right) & =\left(a^{\alpha} a^{\beta}\right) a^{\gamma},
\end{aligned}
$$

for any $\alpha \in E_{k}, \beta \in E_{l}, \gamma \in E_{S}$. In particular, $a^{\alpha} a^{\beta}=0$, if $\alpha$ and $\beta$ have common components. For example,

$$
a^{(2,3,5)} a^{(1,3)}=0, \quad a^{(1,2,3,5)} a^{(0,4)}=-a^{(0,1,2,3,4,5)} .
$$

Let $\mathcal{L}$ be an algebra of super-differential operators on $\mathcal{U}$ under composition. Then operators of a form $a^{\alpha} \partial^{i}$, where $\alpha \in E, i \in \mathbf{Z}_{0}$, collect a base of $\mathcal{L}$. Composition of operators is defined as usual

$$
u \partial^{k} \cdot v \partial^{l}=\sum_{i=0}^{k}\binom{k}{i} u \partial^{i}(v) \partial^{k+l-i}
$$

where elements $u \partial^{i}(v) \in \mathcal{U}$ are calculated in terms of super-multiplication in superalgebra $\mathcal{U}$. For example, if $X=a^{(2,4,5)} \partial^{2}$ and $Y=a^{(0,1,3)} \partial^{3}$, then

$$
\begin{aligned}
\partial\left(a^{(0,1,3)}\right) & =a^{(0,2,3)}+a^{(0,1,4)} \\
\partial^{2}\left(a^{(0,1,3)}\right) & =\partial\left(\partial\left(a^{(0,1,3)}\right)\right)=\partial\left(a^{(0,2,3)}+a^{(0,1,4)}\right) \\
& =a^{(1,2,3)}+a^{(0,2,4)}+a^{(0,2,4)}+a^{(0,1,5)}=a^{(1,2,3)}+2 a^{(0,2,4)}+a^{(0,1,5)}
\end{aligned}
$$

and

$$
\begin{aligned}
X \cdot Y= & a^{(2,4,5)} a^{(0,1,3)} \partial^{5}+2 a^{(2,4,5)} \partial\left(a^{(0,1,3)}\right) \partial^{4}+a^{(2,4,5)} \partial^{2}\left(a^{(0,1,3)}\right) \partial^{3} \\
= & a^{(0,1,2,3,4,5)} \partial^{5}+2 a^{(2,4,5)}\left(a^{(0,2,3}+a^{(0,1,4)}\right) \partial^{4} \\
& +a^{(2,4,5)}\left(a^{(1,2,3)}+2 a^{(0,2,4)}+a^{(0,1,5)}\right) \partial^{3} \\
= & a^{(0,1,2,3,4,5)} \partial^{5}
\end{aligned}
$$

since

$$
a^{(2,4,5)} a^{(0,2,3)}=a^{(2,4,5)} a^{(0,1,4)}=a^{(2,4,5)} a^{(1,2,3)}=a^{(2,4,5)} a^{(0,2,4)}=a^{(2,4,5)} a^{(0,1,5)}=0
$$

Let $X=\sum_{i=k}^{l} X_{i} \in \mathcal{L}$, where $X_{i}=\left(\sum_{\alpha \in E} \lambda_{\alpha, i} a^{\alpha}\right) \partial^{i}, k \leq i \leq l$ and $X_{k} \neq 0$. Take $\beta \in$ $E$ such that $\lambda_{\beta, k} \neq 0$ and $\lambda_{\alpha, k}=0$ if $\alpha>\beta$. So, $X$ has highest term $\lambda_{\beta, k} x^{\beta} \partial^{k}$. Call it leader of $X$ and denote leader $(X)$. For example,

$$
X=2 a^{(0,1,5)} \partial^{2}+5 a^{(0,2,3)} \partial^{3}-3 a^{(0,2,4)} \partial^{2} \Rightarrow \text { leader }(X)=-3 a^{(0,2,4)} \partial^{2}
$$

Denote by $U_{k}$ a linear span of base elements $a^{\alpha}$, where $\alpha \in E_{k}$. Similarly define linear spaces $U_{k, 0} U_{k}(n)$ and $U_{k, 0}(n)$ as linear span of base elements $a^{\alpha}$, where correspondingly $\alpha \in E_{k, 0}, \alpha \in E_{k}(n)$, and $\alpha \in E_{k, 0}(n)$

Let $U_{k}^{+} \subset U_{k}$ and $U_{k}^{+}(n) \subset U_{k}(n)$ are subsets generated by linear combinations of $e^{\alpha}$ with non-negative integer coefficients,

$$
\begin{aligned}
U_{k}^{+} & =\left\{\sum_{\alpha \in E_{k}} \lambda_{\alpha} a^{\alpha} \mid \lambda_{\alpha} \in \mathbf{Z}_{0}\right\}, \\
U_{k}^{+}(n) & =\left\{\sum_{\alpha \in E_{k}(n)} \lambda_{\alpha} a^{\alpha} \mid \lambda_{\alpha} \in \mathbf{Z}_{0}\right\} .
\end{aligned}
$$

Note that $U_{k}^{+}, U_{k}^{+}(n)$ are semigroups under addition,

$$
0 \in U_{k}^{+}, \quad 0 \in U_{k}^{+}(n)
$$

and

$$
\begin{aligned}
u, v \in U_{k}^{+} & \Rightarrow u+v \in U_{k}^{+} \\
u, v \in U_{k}^{+}(n) & \Rightarrow u+v \in U_{k}^{+}(n)
\end{aligned}
$$

Let

$$
\begin{aligned}
L_{k} & =\left\langle a^{\alpha} \partial^{i} \mid \alpha \in E_{k}, i \in \mathbf{Z}_{0}\right\rangle \\
L_{k}(n) & \left.=\left\langle a^{\alpha} \partial^{i}\right| i+|\alpha|=n, \alpha \in E_{k}, i \in \mathbf{Z}_{0}\right\rangle
\end{aligned}
$$

Denote by $\mathcal{L}^{(\geq p)}$ a space of differential operators of order no less than $p$.

PROPOSITION 7. For any $p \geq 0$ the subspace $\mathcal{L}^{(\geq p)}$ generates left-ideal on the algebra $\mathcal{L}$,

$$
\mathcal{L} \mathcal{L}^{(p)} \subseteq \mathcal{L}^{(p)}
$$

Algebras $\mathcal{U}$ and $\mathcal{L}$ are graded,

$$
\begin{aligned}
U_{k}(n) U_{l}(m) & \subseteq U_{k+l}(n+m), \\
L_{k}(n) L_{l}(m) & \subseteq L_{k+l}(n+m), \\
U_{k}(n) L_{l}(m) & \subseteq L_{k+l}(n+m), \\
L_{k}(n) U_{l}(m) & \subseteq L_{k+l}(n+m),
\end{aligned}
$$

for any $k, l, n, m \in \mathbf{Z}_{0}$.

Proof. Evident.

LEMMA 8. Let $p \geq 0$. If $u \in U_{k}(n)$, then $a \partial^{p}(u) \in U_{k+1,0}(n+p)$. Moreover, if $u \in$ $U_{k}^{+}(n)$, then $a \partial^{p}(u) \in U_{k+1,0}^{+}(n+p)$.

Proof. Our Lemma is an easy consequence of the following statements:

$$
\begin{gathered}
u \in U_{k}(n) \Rightarrow \partial(u) \in U_{k}(n+1) \\
u \in U_{k}^{+}(n) \Rightarrow \partial(u) \in U_{k}^{+}(n+1)
\end{gathered}
$$

To prove these statements we use induction on $p$.
For $p=0$ our statement is trivial. Let $p=1$. If $u=a^{\alpha}=\partial^{\alpha_{1}}(a) \cdots \partial^{\alpha_{k}}(a)$, then by Leibniz rule $\partial(u)$ is a sum of monoms of a form

$$
u_{i}=\partial^{\alpha_{1}}(a) \cdots \partial^{\alpha_{i-1}}(a) \partial^{\alpha_{i}+1}(a) \partial^{\alpha_{i+1}}(a) \cdots \partial^{\alpha_{k}}(a), \quad 1 \leq i \leq k
$$

If $\alpha_{i+1}=\alpha_{i}+1$, then by super-commutativity condition $u_{i}=0$. If $\alpha_{i+1}>\alpha_{i}+1$, then $u_{i}$ is a base monom. Therefore, if $\alpha \in E_{k}(n)$, then $\partial\left(a^{\alpha}\right)$ is a linear combination of base monoms $a^{\beta}$, where $\beta \in E_{k}(n+1)$ with coefficients that are equal to 0 or 1 . Hence

$$
\begin{gathered}
u \in U_{k}(n) \Rightarrow \partial(u) \in U_{k}(n+1) \\
u \in U_{k}^{+}(n) \Rightarrow \partial(u) \in U_{k}^{+}(n+1)
\end{gathered}
$$

So, base of induction is valid.
Suppose that

$$
u \in U_{k}(n) \Rightarrow \partial^{p-1}(u) \in U_{k}(n+p-1)
$$

Then as we established above

$$
\partial^{p}(u)=\partial\left(\partial^{p-1}(u)\right) \in U_{k}(n+p)
$$

By similar reasons

$$
u \in U_{k}^{+}(n) \Rightarrow \partial^{p-1}(u) \in U_{k}^{+}(n+p-1) \Rightarrow \partial^{p}(u)=\partial\left(\partial^{p-1}(u)\right) \in U_{k}^{+}(n+p)
$$

LEMMA 9. For any $k \in \mathbf{Z}_{0}$ the $k$-th power $\left(a \partial^{p}\right)^{k} \in \mathcal{L}$ is a linear combination with non-negative integer coefficients of operators of a form $a^{\alpha} \partial^{i}$, where $\alpha \in E_{k},|\alpha|+i=$ $p k$ and $i \geq p$.

Proof. By grading property of $\mathcal{U}$ and $\mathcal{L}$ (Proposition 7) it is clear that $\left(a \partial^{p}\right)^{k}$ is a linear combination of super-differential operators of a form $a^{\alpha} \partial^{i}$, where $\alpha \in$ $E_{k}(p k-i)$ and $i \geq p$. By Lemma 8 coefficients are non-negative integers.

LEMMA 10. If $N>2 p$, then $\left(a \partial^{p}\right)^{N}=0$ and

$$
\left(a \partial^{p}\right)^{2 p}=\lambda_{p} a^{(0,1,2 \ldots, 2 p-1)} \partial^{p}
$$

for some non-negative integer $\lambda_{p}$.

Proof. If $\alpha \in E_{N}$, and $N=2 p+1$, then

$$
|\alpha| \geq \sum_{i=0}^{N-1} i=N(N-1) / 2=(2 p+1) p=p N .
$$

Therefore, by Lemma $9(a \partial)^{2 p+1}=0$. So, $\left(a \partial^{p}\right)^{N}=0$, if $N>2 p$.
If $N=2 p$ and $\alpha \in E_{N}$ then by the same reasons,

$$
|\alpha| \geq p(2 p-1)
$$

and

$$
\left(a \partial^{p}\right)^{N}=\operatorname{leader}\left(\left(a \partial^{p}\right)^{N}\right)=\lambda_{p} a^{(0,1, \ldots, 2 p-1)} \partial^{p}
$$

for some $\lambda_{p} \in \mathbf{Z}_{0}$.
To prove Theorem 1 we have to establish that $\lambda_{p}>0$. It will be done in next section.

## 2. Positivity of $\lambda_{p}$

LEMMA 11. Let $\delta(k)$ be maximal element in $E_{k+1,0}(p k)$. Then

$$
\delta(k)= \begin{cases}(0, p-l, p-l+1, \ldots, p-1, p+1, \ldots, p+l-1, p+l), & \text { if } k=2 l, \\ (0, p-l, p-l+1, \ldots, p-1, p, p+1, \ldots, p+l-1, p+l), & \text { if } k=2 l+1 .\end{cases}
$$

Proof. Note first of all that $\delta(k) \in E_{k+1,0}(p k)$. Indeed,

$$
|\delta(k)|=\left\{\begin{array}{ll}
2 p l, & \text { if } k=2 l \text { is even, } \\
p(2 l+1), & \text { if } k=2 l+1 \text { is odd }
\end{array} \Rightarrow|\delta(k)|=p k .\right.
$$

Suppose that $\beta \geq \delta(k)$ for some $\beta=\left(\beta_{1}, \ldots, \beta_{k+1}\right) \in E_{k+1,0}(p k)$. Then

$$
\beta_{2} \geq p-l,
$$

where $l=\lfloor n / 2\rfloor$.
For $1<i \leq k$ let us call $\beta_{i+1}-\beta_{i}$ as $i$-rise of $\beta$ and denote $r_{i}(\beta)$. If $r_{i}(\beta) \geq 3$ for some $1<i \leq k$, then we can find $\gamma \in E_{k+1,0}(p k)$ such that $\beta<\gamma$. Take for example, $\gamma_{j}=\beta_{j}$, if $j \neq i, i+1$ and $\gamma_{i}=\beta_{i}+1, \gamma_{i+1}=\beta_{i+1}-1$. Therefore,

$$
r_{i}(\beta) \leq 2, \quad 1<i \leq k
$$

If $r_{i}(\beta)=2$ for some $i$ then $r_{j}(\beta)=1$ for any $j \neq i, 1<j \leq k$. Let us prove it by contradiction. Suppose that $r_{i}(\beta)=2$ and $r_{j}(\beta)=2$ for $i \neq j, 1<i, j \leq k$. Then there exists $\mu \in E_{k+1,0}(p k)$, such that $\beta<\mu$. Take for example, $\mu_{s}=\beta_{s}$, if $s \neq i, j$, and $\mu_{i}=\beta_{i}+1, \mu_{j+1}=\beta_{j+1}-1$.

Let $k=2 l+1$. If $r_{s+1}(\beta)>1$, for some $0 \leq s \leq k-1$. then $\beta_{2+s}>p-l+s$. Therefore, $|\beta|>\sum_{i=p-l}^{p+l} i>p k$. Hence, $r_{i}(\beta)=1$ for any $1<i \leq$, and, $\beta=\delta(k)$.

Let $k=2 l$. If $r_{s+1}(\beta)>1$, for some $0 \leq s \leq l-1$, then $\beta_{2+s}>p-l+s$. Therefore,

$$
\begin{aligned}
\sum_{i=1}^{s+1} \beta_{i} & \geq \sum_{i=1}^{s+1} \delta(k)_{i} \\
\sum_{j=s+2}^{l+1} \beta_{s} & >\sum_{j=s+2}^{l+1} \delta(k)_{j} \\
\sum_{t=l+2}^{2 l+1} \beta_{t} & \geq \sum_{t=l+2}^{2 l+1} \delta(k)_{t}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
|\beta| & =\sum_{i=1}^{s+1} \beta_{i}+\sum_{j=s+2}^{l+1} \beta_{j}+\sum_{t=l+2}^{2 l+1} \beta_{t}>\sum_{i=1}^{s+1} \delta(k)_{i}+\sum_{j=s+2}^{l+1} \delta(k)_{j}+\sum_{t=l+2}^{2 l+1} \delta(k)_{t} \\
& =|\delta(k)|=p k .
\end{aligned}
$$

If $r_{s+1}(\beta)>1$, for some $l<s \leq k+1$, then $\beta_{2+s}>p-l+s$, and,

$$
\begin{aligned}
\sum_{i=1}^{s+1} \beta_{i} & \geq \sum_{i=1}^{s+1} \delta(k)_{i}, \\
\sum_{j=s+2}^{2 l+1} \beta_{j} & >\sum_{j=s+2}^{2 l+1} \delta(k)_{i} .
\end{aligned}
$$

Therefore,

$$
|\beta|=\sum_{i=1}^{s+1} \beta_{i}+\sum_{j=s+2}^{2 l+1} \beta_{j}>\sum_{i=1}^{s+1} \delta(k)_{i}+\sum_{j=s+2}^{2 l+1} \delta(k)_{j}=|\delta(k)|=p k .
$$

Hence

$$
r_{s+1}(\beta)>1 \Rightarrow s=l,
$$

and $\beta=\delta(k)$.
Recall that $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbf{Z}_{0}^{k}$ is called composition of $n$ with length $k$ if $\sum_{i=1}^{k} \alpha_{i}=n$. Denote by $C_{k}(n)$ set of compositions of $n$ of length $k$. For $\alpha \in C_{k}(n)$ denote by $\operatorname{sort}(\alpha)$ the composition $\alpha$ written in non-decreasing order. Note that $\operatorname{sort}(\alpha)$ gives us a partition of $n$. For example, $\operatorname{sort}((2,0,2,3,1))=(0,1,2,2,3)$. For $\sigma=\left(0, \sigma_{2}, \ldots, \sigma_{k+1}\right) \in E_{k+1,0}(n)$ set $\bar{\sigma}=\left(\sigma_{2}, \ldots, \sigma_{k}\right) \in E_{k}(n)$.

For $\alpha \in E_{k}, \beta \in E_{k+1}$ set

$$
M(\alpha, \beta)=\left\{\gamma \in E_{k} \mid \operatorname{sort}(\alpha+\gamma)=\bar{\beta}\right\} .
$$

For $\alpha \in \mathbf{Z}_{0}^{k}, \beta \in \mathbf{Z}_{0}^{l}$ define $\alpha \smile \beta \in \mathbf{Z}_{0}^{k+l}$ as a prepend $\alpha$ to $\beta$

$$
\alpha \smile \beta=\left(\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{l}\right) .
$$

Let

$$
\begin{aligned}
& \mathbf{0}_{0}=(), \\
& \mathbf{0}_{i}=\underbrace{(0,0, \ldots, 0)}_{i \text { times }}, \quad i>0 .
\end{aligned}
$$

For $\alpha \in \mathbf{Z}_{0}^{k}$ set

$$
\binom{|\alpha|}{\alpha}=\prod_{i=1}^{k}\binom{\alpha_{1}+\cdots+\alpha_{k}}{\alpha_{1}, \ldots, \alpha_{k}}=\frac{\left(\alpha_{1}+\cdots+\alpha_{k}\right)!}{\alpha_{1}!\cdots \alpha_{k}!} .
$$

Let

$$
\begin{aligned}
& G_{0}=\{()\}, \\
& G_{k}=\left\{(i) \smile \mathbf{0}_{i-1} \smile \alpha \mid \alpha \in G_{k-i}, \quad i=1,2, \ldots, k\right\}, \quad k>0 .
\end{aligned}
$$

## EXAMPLE.

$$
G_{1}=\{(1)\}, \quad G_{2}=\{(2,0),(1,1)\}, \quad G_{3}=\{(3,0,0),(2,0,1),(1,2,0),(1,1,1)\} .
$$

LEMMA 12. If $k=2 l-1$ is odd,

$$
M(\delta(k-1), \delta(k))=\left\{(p-l+i) \smile \mathbf{0}_{i-1} \smile \alpha \smile \mathbf{0}_{l-1} \mid \alpha \in G_{l-i}, i=1,2, \ldots, l\right\} .
$$

If $k=2 l$ is even,

$$
M(\delta(k-1), \delta(k))=\left\{(p-l) \smile \mathbf{0}_{l-1} \smile \alpha \mid \alpha \in G_{l}\right\} .
$$

## Proof. Evident.

EXAMPLE. If $p=5$, then

$$
\begin{aligned}
& M(\delta(2), \delta(3))=M((0,4,6),(0,4,5,6))=\{(4,1,0),(5,0,0)\} \\
& M(\delta(3), \delta(4))=M((0,4,5,6),(0,3,4,6,7))=\{(3,0,1,1),(3,0,2,0)\}
\end{aligned}
$$

## LEMMA 13.

$$
\sum_{\alpha \in G_{k}} \operatorname{sign}(\alpha+(0,1, \ldots, k-1))\binom{k}{\alpha}=1
$$

Proof. Induction on $k$. For $k=1$ our statement is evident. Suppose that it is true for $k-1$. Note that

$$
G_{k}=\cup_{i=1}^{k}\left\{(i) \smile \mathbf{0}_{i-1} \smile G_{k-i}\right\} .
$$

For $\alpha \in G_{k-i}$,

$$
(i) \smile 0_{i-1} \smile \alpha+(0,1, \ldots, k-1)=\left(i, 1,2, \ldots, i-1, \alpha_{1}+i, \ldots, \alpha_{k-i}+k-1\right) \text {, }
$$

and,

$$
\operatorname{sign}\left((i) \smile 0_{i-1} \smile \alpha+(0,1, \ldots, k-1)\right)=(-1)^{i-1} \operatorname{sign}(\alpha+(0,1, \ldots, k-i-1))
$$

Further, for $\alpha \in G_{k-i}$,

$$
\binom{k}{(i) \smile 0_{i-1} \smile \alpha}=\binom{k}{(i) \smile \alpha}=\binom{k}{i}\binom{k-i}{\alpha} .
$$

Therefore,

$$
\begin{aligned}
& \sum_{\alpha \in G_{k}} \operatorname{sign}(\alpha+(0,1, \ldots, k-1))\binom{k}{\alpha}= \\
& \sum_{i=1}^{k} \sum_{\alpha \in G_{k-i}}(-1)^{i-1} \operatorname{sign}(\alpha+(0,1, \ldots, k-i-1))\binom{k}{I}\binom{k-i}{\alpha}= \\
& \sum_{i=1}^{k}(-1)^{i-1}\binom{k}{i} \sum_{\alpha \in G_{k-i}} \operatorname{sign}(\alpha+(0,1, \ldots, k-i-1))\binom{k-i}{\alpha}=
\end{aligned}
$$

(by inductive suggestion)

$$
\sum_{i=1}^{k}(-1)^{i-1}\binom{k}{i}=1
$$

## LEMMA 14.

$$
\sum_{i=0}^{l-1}(-1)^{i}\binom{p}{i}=(-1)^{l-1}\binom{p-1}{l-1}
$$

Proof. Induction on $l$. If $l=1$, then our statement is evident. Suppose that it is true for $l-1 \geq 1$. Then

$$
\begin{aligned}
\sum_{i=0}^{l-1}(-1)^{i}\binom{p}{i} & =\sum_{i=0}^{l-2}(-1)^{i}\binom{p}{i}+(-1)^{l-1}\binom{p}{l-1} \\
& =(-1)^{l-1}\binom{p-1}{l-2}+(-1)^{l-1}\binom{p}{l-1} \\
& =(-1)^{l-1}\left(\binom{p}{l-1}-\binom{p-1}{l-2}\right)=(-1)^{l-1}\binom{p-1}{l-1} .
\end{aligned}
$$

LEMMA 15. If $k=2 l-1$, then

$$
\begin{aligned}
& \sum_{i=1}^{l} \sum_{\alpha \in G_{l-i}} \operatorname{sign}\left((p-l+i) \smile \mathbf{0}_{i-1} \smile \alpha \smile \mathbf{0}_{l-1}\right. \\
& \quad+(0,1, \ldots, l-1, l, \ldots, 2 l-2))\binom{p}{(p-l+i) \smile \alpha}=\binom{p-1}{l-1} .
\end{aligned}
$$

If $k=2 l$, then

$$
\sum_{\alpha \in G_{l}} \operatorname{sign}(\alpha+(0,1, \ldots, l-1))\binom{p}{(p-l) \smile \alpha}=\binom{p}{l} .
$$

Proof. Let $k=2 l-1$. For $\alpha \in G_{l-i}$ let $\Gamma(\alpha) \in \mathbf{Z}_{0}^{2 l-1}$ be defined as

$$
\Gamma(\alpha)=(p-l+i) \smile \mathbf{0}_{i-1} \smile \alpha \smile \mathbf{0}_{l-1}+(0, p-l+1, \ldots, p-1, p+1, \ldots, p+l-1) .
$$

Note that

$$
\begin{align*}
\Gamma(\alpha)= & \left(p-l+i, p-l+1, \ldots, p-l+i-1, \alpha_{1}+p-l+i, \ldots, \alpha_{l-i}\right. \\
& +p-1, p+1, \ldots, p+l-1) . \tag{1}
\end{align*}
$$

By (1)

$$
\begin{aligned}
\operatorname{sort}(\Gamma(\alpha))= & (p-l+1, \ldots, p-l+i-1, p-l+i) \\
& \smile \operatorname{sort}\left(\alpha_{1}+p-l+i, \ldots, \alpha_{l-i}+p-1, p+1, \ldots, p+l-1\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \operatorname{sort}(\Gamma(\alpha))=\overline{\delta(k)}, \quad \alpha \in G_{l-i} \\
& \quad \hat{\imath} \\
& \operatorname{sort}\left(\alpha_{1}+p-l+i, \ldots, \alpha_{l-i}+p-1, p+1, \ldots, p+l-1\right) \\
& =(p-l+i+1, \ldots, p-1, p, p+1, \ldots, p+l-1)
\end{aligned}
$$

Therefore, the condition $\operatorname{sort}(\Gamma(\alpha))=\overline{\delta(k)}$ is equivalent to the condition

$$
\begin{equation*}
\operatorname{sort}\left(\alpha_{1}+p-l+i, \ldots, \alpha_{l-i}+p-1\right)=(p-l+i+1, \ldots, p-1, p) \tag{2}
\end{equation*}
$$

By (1)

$$
\begin{aligned}
\operatorname{sign} \Gamma(\alpha)= & (-1)^{i-1} \operatorname{sign}\left(p-l+1, \ldots, p-l+i, \alpha_{1}+p-l+i, \ldots, \alpha_{l-i}\right. \\
& +p-1, p+1, \ldots, p+l-1)
\end{aligned}
$$

Therefore, by (2)

$$
\begin{align*}
\operatorname{sign} \Gamma(\alpha) & =(-1)^{i-1} \operatorname{sign}\left(\alpha_{1}+p-l+i, \ldots, \alpha_{l-i}+p-1\right) \\
& =(-1)^{i-1} \operatorname{sign}\left(\alpha_{1}, \alpha_{2}+1, \ldots, \alpha_{l-i}+l-i-1\right) . \tag{3}
\end{align*}
$$

Hence,

$$
\sum_{i=1}^{l} \sum_{\alpha \in G_{l-i}} \operatorname{sign} \Gamma(\alpha)\binom{p}{(p-l+i) \smile \alpha}=
$$

[by (3)]

$$
\begin{aligned}
& \sum_{i=1}^{l} \sum_{\alpha \in G_{l-i}}(-1)^{i-1} \operatorname{sign}(\alpha+(0,1, \ldots, l-i-1))\binom{p}{l-i}\binom{l-i}{\alpha}= \\
& \sum_{i=1}^{l}(-1)^{i-1}\binom{p}{l-i} \sum_{\alpha \in G_{l-i}} \operatorname{sign}(\alpha+(0,1, \ldots, l-i-1))\binom{l-i}{\alpha}=
\end{aligned}
$$

(by Lemma 13)

$$
\begin{aligned}
& \sum_{i=1}^{l}(-1)^{i-1}\binom{p}{l-i}= \\
& \sum_{j=0}^{l-1}(-1)^{l-j-1}\binom{p}{j}=
\end{aligned}
$$

(by Lemma 14)

$$
\binom{p-1}{l-1}
$$

So, our Lemma in case of odd $k$ is proved.

Let $k=2 l$. Then

$$
\begin{aligned}
& \sum_{\alpha \in G_{l}} \operatorname{sign}(\alpha+(0,1, \ldots, l-1))\binom{p}{(p-l) \smile \alpha}= \\
& \sum_{\alpha \in G_{l}} \operatorname{sign}\left(\left(\alpha_{1}, \alpha_{1}+1, \ldots, \alpha_{l}+l-1\right)\binom{p}{l}\binom{l}{\alpha}=\right. \\
& \binom{p}{l} \sum_{\alpha \in G_{l}} \operatorname{sign}\left(\left(\alpha_{1}, \alpha_{1}+1, \ldots, \alpha_{l}+l-1\right)\binom{l}{\alpha}=\right.
\end{aligned}
$$

(by Lemma 12)

$$
\binom{p}{l} .
$$

Our Lemma is proved completely.

LEMMA 16. Let $\mu_{k}$ be coefficient at $a^{\delta(k-1)}$ of the element $a \partial^{p}\left(a^{\delta(k-2)}\right)$, if $k>1$, and $\mu_{1}=1$. If $1 \leq k \leq 2 p$, then

$$
\mu_{k}=\left\{\begin{array}{lc}
\binom{p}{l}, & \text { if } k=2 l+1 \text { is odd }, \\
\binom{p-1}{l-1}, & \text { if } k=2 l \text { is even. }
\end{array}\right.
$$

Proof. Follows from Lemmas 12 and 15.
EXAMPLE. If $p=5$, then

| $k$ | $\delta(k-1)$ | $\mu_{k}$ |
| :---: | :--- | :---: |
| 1 | $(0)$ | 1 |
| 2 | $(0,5)$ | 1 |
| 3 | $(0,4,6)$ | 5 |
| 4 | $(0,4,5,6)$ | 4 |
| 5 | $(0,3,4,6,7)$ | 10 |
| 6 | $(0,3,4,5,6,7)$ | 6 |
| 7 | $(0,2,3,4,6,7,8)$ | 10 |
| 8 | $(0,2,3,4,5,6,7,8)$ | 4 |
| 9 | $(0,1,2,3,4,6,7,8,9)$ | 5 |
| 10 | $(0,1,2,3,4,5,6,7,8,9)$ | 1 |

The following two lemmas can be proved in a similar way as Lemmas 12 and 15.

LEMMA 17. Let $\delta_{1}(k)$ be maximal element in $E_{k+1,0}(p k-1)$. Then

$$
\delta_{1}(k)= \begin{cases}(0, p-l, p-l+2, \ldots, p+l-1), & \text { if } k=2 l \\ (0, p-l, p-l+1, \ldots, p, p+2, \ldots, p+l), & \text { if } k=2 l+1\end{cases}
$$

LEMMA 18. Let $\gamma_{k}$ be coefficient at $a^{\delta_{1}(k-1)}$ of $a \partial^{p-1}\left(a^{\delta(k-2)}\right)$. Then

$$
\gamma_{k}=p\binom{p-1}{\lfloor(k-2) / 2\rfloor}
$$

if $2 \leq k \leq 2 p-1$.

LEMMA 19. Let $v_{k}$ be coefficient at $a^{\delta(k-1)}$ of the element $\left(a \partial^{p}\right)^{k-1}(a)$. Then

$$
\text { leader }\left(\left(a \partial^{p}\right)^{k}\right)=v_{k} a^{\delta(k-1)} \partial^{p}
$$

Proof. Follows from Lemma 11.

LEMMA 20. For any $0 \leq k \leq 2 p$,

$$
v_{k} \geq \mu_{k} v_{k-1}
$$

(Definition of $\mu_{k}$ see Lemma 16, and definition of $v_{k}$ see Lemma 19).

Proof. By Lemmas 8 coefficient at $a^{\delta(k-1)}$ of the element $\left(a \partial^{p}\right)^{k-1}(a)$ is a non-negative integer that is no less than another non-negative integer $\left(a \partial^{p}\right)^{k-1}$ $\left(v_{k-1} a^{\delta(k-2)}\right)$. By Lemma 16 the last number is equal to $v_{k-1} \mu_{k}$.

EXAMPLE. Let $p=3$. Then

$$
\mu_{1}=1, \mu_{2}=1, \mu_{3}=3, \mu_{4}=2, \mu_{5}=3, \mu_{6}=1
$$

and

$$
\begin{aligned}
& \left(a \partial^{3}\right)^{2}=3 a^{(0,1)} \partial^{5}+3 a^{(0,2)} \partial^{4}+a^{(0,3)} \partial^{3}, \\
& \text { leader }\left(\left(a \partial^{3}\right)^{2}\right)=a^{(0,3)} \partial^{3}, \quad \nu_{2}=1, \\
& \left(a \partial^{3}\right)^{3}=18 a^{(0,1,2)} \partial^{6}+27 a^{(0,1,3)} \partial^{5}+15 a^{(0,1,4)} \partial^{4}+3 a^{(0,1,5)} \partial^{3} \\
& \quad+9 a^{(0,2,3)} \partial^{4}+3 a^{(0,2,4)} \partial^{3}, \\
& \text { leader }\left(\left(a \partial^{3}\right)^{3}\right)=3 a^{(0,2,4)} \partial^{3}, \quad \nu_{3}=3, \\
& \left(a \partial^{3}\right)^{4}=126 a^{(0,1,2,3)} \partial^{6}+189 a^{(0,1,2,4)} \partial^{5}+99 a^{(0,1,2,5)} \partial^{4}+18 a^{(0,1,2,6)} \partial^{3} \\
& \quad+75 a^{(0,1,3,4)} \partial^{4}+24 a^{(0,1,3,5)} \partial^{3}+6 a^{(0,2,3,4)} \partial^{3}, \\
& \text { leader }\left(\left(a \partial^{3}\right)^{4}\right)=6 a^{(0,2,3,4)} \partial^{3}, \quad v_{4}=6, \\
& \left(a \partial^{3}\right)^{5}=432 a^{(0,1,2,3,4)} \partial^{5}+432 a^{(0,1,2,3,5)} \partial^{4}+108 a^{(0,1,2,3,6)} \partial^{3}+90 a^{(0,1,2,4,5)} \partial^{3}, \\
& \text { leader }\left(\left(a \partial^{3}\right)^{5}\right)=90 a^{(0,1,2,4,5)} \partial^{3}, \quad v_{5}=90, \\
& \left(a \partial^{3}\right)^{6}=90 a^{(0,1,2,3,4,5)} \partial^{3} . \\
& \operatorname{leader}\left(\left(a \partial^{3}\right)^{6}\right)=\left(a \partial^{3}\right)^{6}=a^{(0,3)} \partial^{3}, \quad v_{6}=90 .
\end{aligned}
$$

LEMMA 21. For any $X_{1}, \ldots, X_{N} \in A_{1}^{(p)}$,

$$
s_{N}\left(X_{1}, \ldots, X_{N}\right)=0,
$$

if $N>2 p$ and

$$
s_{2 p}\left(\partial^{p}, x \partial^{p}, x^{2} / 2 \partial^{p}, \ldots, x^{2 p-1} /(2 p-1)!\partial^{p}\right)=\lambda_{p} \partial^{p} .
$$

Proof. Suppose that $X_{i}=u_{i} \partial^{p}$, where $u_{i} \in K[x]$. Let us make specialization of $a$ in super-algebra $\mathcal{U}$. Take $a=\left(\sum_{i=1}^{N} u_{i} \xi_{i}\right) \partial^{p}$, where $\xi_{i}$ are odd super-generators. Then

$$
\left(a \partial^{p}\right)^{N}=s_{N}\left(u_{1} \partial^{p}, \ldots, u_{N} \partial^{p}\right) \xi_{1} \cdots \xi_{N} .
$$

By Lemma $10\left(a \partial^{p}\right)^{N}=0$, if $N>2 p$. Therefore, $s_{N}=0$ is identity if $N>2 p$.
Now consider the case $N=2 p$. Set $a=\sum_{i=0}^{2 p-1} x^{i} / i!\xi_{i+1}$ where $\xi_{i}$ are odd elements and $\partial$ acts on $x^{i}$ as usual, $\partial\left(x^{i}\right)=i x^{i-1}$. Then

$$
\left(a \partial^{p}\right)^{2 p}=s_{2 p}\left(\partial^{p}, x \partial^{p}, x^{2} / 2 \partial^{p}, \ldots, x^{2 p-1} /(2 p-1)!\partial^{p}\right) \xi_{1} \xi_{2} \cdots \xi_{2 p}
$$

Further,

$$
\begin{aligned}
a^{(0,1,2 \ldots, 2 p-1)} & =\partial^{0}(a) \partial^{1}(a) \cdots \partial^{2 p-1}(a) \\
& =\left(\sum_{i=0}^{2 p-1} x^{i} / i!\xi_{i+1}\right)\left(\sum_{i=0}^{2 p-1} x^{i-1} /(i-1)!\xi_{i+1}\right) \cdots\left(\xi_{2 p-1}+x \xi_{2 p}\right) \xi_{2 p} \\
& =\xi_{1} \xi_{2} \cdots \xi_{2 p} .
\end{aligned}
$$

Therefore, by Lemma 10

$$
\begin{aligned}
& s_{2 p}\left(\partial^{p}, x \partial^{p}, x^{2} / 2 \partial^{p}, \ldots, x^{2 p-1} /(2 p-1)!\partial^{p}\right) \xi_{1} \xi_{2} \cdots \xi_{2 p}=\left(a \partial^{p}\right)^{2 p} \\
& \quad=\lambda_{p} \xi_{1} \xi_{2} \cdots \xi_{2 p} \partial^{p} .
\end{aligned}
$$

Hence

$$
s_{2 p}\left(\partial^{p}, x \partial^{p}, x^{2} / 2 \partial^{p}, \ldots, x^{2 p-1} /(2 p-1)!\partial^{p}\right)=\lambda_{p} \partial^{p} .
$$

## 3. Equivalence of Left-Commutative and Right-Commutative Identities

LEMMA 22. $(2 n-2,1)$-type and $(1,2 n-2)$-type identities are equivalent.
Proof. We have to prove that any $n$-algebra $(A, \psi)$ with ( $2 n-2,1$ )-type identity

$$
\operatorname{lcom}=0 \text {, }
$$

where

$$
\begin{aligned}
& \operatorname{lcom}\left(t_{1}, \ldots, t_{2 n-1}\right) \\
& \quad=\sum_{\sigma \in S^{(2 n-2,1)}} \operatorname{sign} \sigma \psi\left(t_{\sigma(1)}, \ldots, t_{\sigma(n-1)}, \psi\left(t_{\sigma(n)}, \ldots, t_{\sigma(2 n-2)}, t_{\sigma(2 n-1)}\right)\right),
\end{aligned}
$$

satisfies the identity

$$
\text { rcom }=0,
$$

where

$$
\operatorname{rcom}\left(t_{1}, \ldots, t_{2 n-1}\right)=\sum_{\sigma \in S^{(1,2 n-2)}} \operatorname{sign} \sigma \psi\left(t_{1}, t_{\sigma(2)}, \ldots, t_{\sigma(n-1)}, \psi\left(t_{\sigma(n)}, \ldots, t_{\sigma(2 n-1)}\right)\right)
$$

and vice versa, any $n$-ary algebra with identity rcom $=0$ satisfies also the identity lcom $=0$.

Let us prove that

$$
\begin{align*}
& n r \operatorname{com}\left(t_{1}, \ldots, t_{2 n-1}\right)=\operatorname{rcom}_{1}\left(t_{1}, \ldots, t_{2 n-1}\right)  \tag{4}\\
& (n-1) \operatorname{lcom}\left(t_{1}, \ldots, t_{2 n-1}\right)=\operatorname{lcom}_{1}\left(t_{1}, \ldots, t_{2 n-1}\right) \tag{5}
\end{align*}
$$

where

$$
\begin{aligned}
\operatorname{rcom}_{1}\left(t_{1}, \ldots, t_{2 n-1}\right)= & \sum_{i=2}^{2 n-1}(-1)^{i+1} \operatorname{lcom}\left(t_{1}, \ldots, \hat{t}_{i}, \ldots, t_{2 n-1}, t_{i}\right) \\
& -(n-1) \operatorname{lcom}\left(t_{2}, \ldots, t_{2 n-1}, t_{1}\right), \\
\operatorname{lcom}_{1}\left(t_{1}, \ldots, t_{2 n-1}\right)= & \sum_{i=1}^{2 n-2}(-1)^{i+1} \operatorname{rcom}\left(t_{i}, t_{1}, \ldots, \hat{t}_{i}, \ldots, t_{2 n-1}\right) \\
& -(n-2) \operatorname{rcom}\left(t_{2 n-1}, t_{1}, \ldots, t_{2 n-2}\right) .
\end{aligned}
$$

Note that $\operatorname{rcom}\left(t_{1}, \ldots, t_{2 n-1}\right)$ and $\operatorname{rcom}_{1}\left(t_{1}, \ldots, t_{2 n-1}\right)$ are skew-symmetric under $2 n-2$ variables $t_{2}, \ldots, t_{2 n-1}$. Therefore, it is enough to prove that coefficients at $\psi\left(t_{1}, \ldots, t_{n-1}, \psi\left(t_{n}, \ldots, t_{2 n-2}, t_{2 n-1}\right)\right)$ and $\psi\left(t_{2}, \ldots, t_{n}, \psi\left(t_{1}, t_{n+1}, \ldots, t_{2 n-1}\right)\right)$ of $\operatorname{rcom}\left(t_{1}, \ldots, t_{2 n-1}\right)$ and $\operatorname{rcom}_{1}\left(t_{1}, \ldots, t_{2 n-1}\right)$ are equal.

It is easy to see that, if $n \leq i \leq 2 n-1$, then the coefficient at $\psi\left(t_{1}, \ldots, t_{n-1}, \psi\right.$ $\left.\left(t_{n}, \ldots, t_{2 n-1}\right)\right)$ of

$$
(-1)^{i+1} \operatorname{lcom}\left(t_{1}, \ldots, \hat{t_{i}}, \ldots, t_{2 n-1}, t_{i}\right)
$$

is equal to 1 . If $1 \leq i<n$, then this coefficient is 0 . Therefore, the coefficient at $\psi\left(t_{1}, \ldots, t_{n-1}, \psi\left(t_{n}, \ldots, t_{2 n-1}\right)\right)$ of $\operatorname{rcom}_{1}\left(t_{1}, \ldots, t_{2 n-1}\right)$ is equal to $n$.

Further, if $n \leq i \leq 2 n-1$, then the coefficient at $\psi\left(t_{2}, \ldots, t_{n}, \psi\left(t_{1}, t_{n+1}, \ldots, t_{2 n-1}\right)\right)$ of

$$
(-1)^{i+1} \operatorname{lcom}\left(t_{1}, \ldots, \hat{t}_{i}, \ldots, t_{2 n-1}, t_{i}\right)
$$

is equal to 0 . If $1 \leq i<n$, then this coefficient is 1 . Therefore, the coefficient at $\psi\left(t_{2}, \ldots, t_{n}, \psi\left(t_{1}, t_{n+1}, \ldots, t_{2 n-1}\right)\right)$ of $\operatorname{rcom}_{1}\left(t_{1}, \ldots, t_{2 n-1}\right)$ is equal to 0 .

Hence, relation (4) is proved completely.
By similar arguments one establishes (5).
Relations (4) and (5) show that identities rcom and lcom are equivalent.

## 4. Proof of Theorem 1

By Lemma $21 s_{N}=0$ is identity on $A_{1}^{(p)}$ if $N>2 p$. By Lemma 20

$$
\lambda_{p}=v_{2 p} \geq \mu_{2 p} \cdots \mu_{2} v_{1}>0
$$

Therefore, by Lemma $21 s_{2 p}=0$ is not polynomial identity and $s_{2 p}$ induces on $A_{1}^{(p)}$ a non-trivial $2 p$-commutator.

By Lemma 20 for any $1 \leq k \leq 2 p-2$

$$
v_{k} \geq \mu_{k} \cdots \mu_{2} v_{1}>0 .
$$

Therefore, by Lemmas 8, 17 and 18 the differential $(p+1)$-th order parts of $\left(a \partial^{p}\right)^{k}$ are non-zero for any $2 \leq k \leq 2 p-1$. Therefore, $s_{k}$ is not well-defined on $A_{1}^{(p)}$.

Suppose that $A_{1}^{(p)}$ has identity of degree no more than $2 p$. Then it has skewsymmetric multi-linear consequence. In particular, it has a skew-symmetric polynomial identity of degree $2 p$. But $s_{2 p}=0$, as we mentioned above, is not identity. Contradiction.

Suppose that $I$ is a non-trivial ideal of $A_{1}^{(p)}$ under $2 p$-commutator $s_{2 p}$. Take $0 \neq$ $X=u \partial^{p} \in I$ with minimal degree $s=\operatorname{deg} u$. Let us prove that $s=0$ and $X=\eta \partial^{p} \in I$ for some $0 \neq \eta \in K$. Suppose that it is not true, and $s>0$. If $s \geq 2 p-1$, then by Lemma 21

$$
s_{2 p}\left(\partial^{p}, x \partial^{p}, \ldots, x^{2 p-2} \partial^{p}, X\right)=\lambda_{p}\binom{s}{2 p-1} \prod_{i=0}^{2 p-1} i!x^{s-2 p+1} \partial^{p} \in I
$$

or,

$$
x^{s-2 p+1} \partial^{p} \in I .
$$

We obtain contradiction with minimality of $s$. If $0<s<2 p-1$, then

$$
s_{2 p}\left(\partial^{p}, x \partial^{p}, \ldots, x^{s-1} \partial^{p}, X, x^{s+1} \partial^{p}, \ldots, x^{2 p-1} \partial^{p}\right)=\lambda_{p} \prod_{i=0}^{2 p-1} i!\partial^{p} \in I,
$$

or,

$$
\partial^{p} \in I
$$

Once again we obtain contradiction with minimality of $s$.

So, we establish that $X=\eta \partial^{p} \in I$, for some $0 \neq \eta \in K$. Then for any $l \geq 0$,

$$
s_{2 p}\left(X, x \partial, \ldots, x^{2 p-2} \partial^{p}, x^{l+2 p-1} \partial^{p}\right)=\eta \lambda_{p}\binom{l+2 p-1}{2 p-1} \prod_{i=0}^{2 p-1} i!x^{l} \partial^{p} \in I .
$$

In other words, $x^{l} \partial^{p} \in I$ for any $l \geq 0$. This means that $I=A_{1}^{(p)}$. So, $\left(A_{1}^{(p)}, s_{2 p}\right)$ is simple $2 p$-algebra.

By Theorem 1.1 (ii) of [4] the algebra $\left(A_{n}(p), s_{2 p}\right)$ is left-commutative. Presentation of $2 p$-commutator as a Vronskian up to scalar $\lambda_{p}$ follows from Lemma 21.

## 5. Expressions for $\lambda_{p}$

In this section, we give some formulas for $\lambda_{p}$. For $s>0$ let us define a polynomial

$$
\begin{aligned}
& f_{s}\left(x_{1}, \ldots, x_{2 p-1}\right) \\
& \quad=\frac{\sum_{\sigma \in \operatorname{Sym}_{2 p}} \operatorname{sign} \sigma\left(x_{\sigma(1)}\left(x_{\sigma(1)}+x_{\sigma(2)}\right) \cdots\left(x_{\sigma(1)}+x_{\sigma(2)}+\cdots+x_{\sigma(2 p-1)}\right)\right)^{s}}{\prod_{1 \leq i<j \leq 2 p}\left(x_{i}-x_{j}\right) .}
\end{aligned}
$$

Then $f_{s}\left(x_{1}, \ldots, x_{2 p-1}\right)$ is a symmetric polynomial of degree $(2 p-1)(s-p)$. In particular, $f_{p}\left(x_{1}, \ldots, x_{2 p-1}\right)=\lambda_{p}$ is constant. The number $\lambda_{p}$ appears also in calculating $2 p$-commutator,

$$
s_{2 p}\left(u_{1} \partial^{p}, \cdots, u_{2 p} \partial^{p}\right)=\lambda_{p}\left|\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{2 p} \\
\partial\left(u_{1}\right) & \partial\left(u_{2}\right) & \cdots & \partial\left(u_{2 p}\right) \\
\vdots & \vdots & \cdots & \vdots \\
\partial^{2 p-1}\left(u_{1}\right) & \partial^{2 p-1}\left(u_{2}\right) & \cdots & \partial^{2 p-1}\left(u_{2 p}\right)
\end{array}\right| \partial^{p} .
$$

Then

$$
\lambda_{p}=\frac{\sum_{\sigma \in \operatorname{Sym}_{2 p}} \operatorname{sign} \sigma(\sigma(1)(\sigma(1)+\sigma(2)) \cdots(\sigma(1)+\sigma(2)+\cdots+\sigma(2 p-1)))^{p}}{\prod_{1 \leq i<j \leq 2 p}(i-j) .}
$$

For example,

$$
\begin{aligned}
& \lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=90, \lambda_{4}=586,656, \lambda_{5}=1,915,103,977,500 . \\
& \lambda_{6}=7,886,133,184,567,796,056,800 .
\end{aligned}
$$

Another way to calculate $\lambda_{p}$. Let $\mathcal{M}_{p}$ be a set of matrices $M=\left(m_{i, j}\right)$ of order $(2 p-1) \times(2 p-1)$ such that

- $m_{i, j} \in \mathbf{Z}_{0}$
- $m_{i, j}=0$ if $i>j$
- Sums by rows are constant, $\sum_{j=1}^{2 p-1} m_{i, j}=p$ for any $i$
- Sums by columns $r_{j}=\sum_{i=1}^{2 p-1} m_{i, j}$, are positive and different for all $j=$ $1,2, \ldots, 2 p-1$.

In particular,

$$
M=\left(m_{i, j}\right) \in \mathcal{M}_{p} \Rightarrow m_{1,1}=r_{1}>0 \quad \text { and } \quad m_{2 p-1,2 p-1}=p
$$

For $M \in \mathcal{M}_{p}$ denote by $r(M)$ the permutation $r_{1} \ldots r_{2 p-1}$ constructed by column sums.

EXAMPLE. $p=2$. Then

$$
\begin{aligned}
& \mathcal{M}_{2}=\left\{A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right), B=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), C=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), D=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)\right\} . \\
& r(A)=123, r(B)=123, r(C)=132, r(D)=213 .
\end{aligned}
$$

If $M \in \mathcal{M}_{p}$, then a sequence $r_{1} \ldots r_{2 p-1}$ induces a permutation, where $r_{i}=\sum_{j} m_{i, j}$ are sums by columns. In particular, $1 \leq r_{i} \leq 2 p-1$ for any $1 \leq i \leq 2 p-1$. Then

$$
\begin{aligned}
& \lambda_{p}=\sum_{M \in \mathcal{M}_{p}} \operatorname{sign} r(M) \prod_{i=1}^{2 p-1}\binom{p}{m_{i, 1}, \ldots, m_{i, 2 p-1}}, \\
& \lambda_{p}=\frac{p!^{2 p-1}}{\prod_{j=1}^{2 p-1} j!} \sum_{M \in \mathcal{M}_{p}} \operatorname{sign} r(M) \prod_{j}\binom{r_{j}}{m_{1, j}, \ldots, m_{j, j}} .
\end{aligned}
$$

Here

$$
\binom{n}{n_{1}, \ldots n_{k}}=\frac{n!}{n_{1}!\cdots n_{k}!}
$$

is a multinomial coefficient.

## References

1. Amitsur, A.S., Levitzki, J.: Minimal identities for algebras. Proc. AMS 1(1050), 449-463
2. Dzhumadil'daev, A.S.: Minimal identities for right-symmetric algebras. J. Algebra 225, 201-230 (2000)
3. Dzhumadil'daev, A.S.: $N$-commutators. Comm. Math. Helv. 79(3), 516-553 (2004)
4. Dzhumadil'daev, A.S.: n-Lie structures that are generated by wronskians. Sibirskii Matematicheskii Zhurnal 46(4), 759-773 (2005). [2005 =engl. transl. Siberian Mathematical Journal 46(4), 601-612 (2005)]
5. Hanlon, P., Wachs, M.: On Lie $k$-algebras. Adv. Math. 113, 206-236 (1995)
6. Kirillov, A.A., Kontsevich, M.L., Molev, A.I.: Algebras of intermediate growth. Sel. Math. Sov. 9(2), 138-153 (1990)
7. Martindale, W.S.: III Prime rings satisfying a generalized polynomial identity. J. Algebra 12, 576-584 (1969)
8. Molev, A.I.: A proof of the Kirillov-Kontsevich formula. Russ. Math. Surv. 391, 171172 (1984)
9. Razmyslov, Y.P.: Identities of algebras and their representations. In: English Translations in Translations of Mathematical Monographs (1989), vol. 138, pp. xiii, 318. American Mathematical Society (AMS), Providence, RI (1994)
