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Modular Lie algebras: new trends

A.I. Kostrikin, A.S.Dzhumadil’daev

Abstract. The article deals with next three problems. 1. What are ways for the origin
of parametres in the structure tensor of finite-dimensional simple modular Lie algebra?
A both ”naive” approach, and a standard way through cohomology are discussed in this
connection. 2. A determination of general deformations of modular Lie algebras suggest
quite different problems and specific ways for their decision. 3. Presentation of maximal
nilpotent subalgebras in Lie algebras of the Cartan type is compared with J.-P.Serre
presentation in the classical case. A special attention is turned into Lie algebras over
fields of small characteristic. Four tables summerise a lot of calculations.

1991 Mathematics Subject Classification: 17B05, 17B20, 17B50, 17B56.

1. Introduction. In our talk we shall discuss three topics: tensor products of Lie
structures, deformations and defining relations. Common source of these topics is
cohomology.

Our results are illustrated by the following observation. All cocycles (cycles)
can be of the following three kind.

• Very large characteristic cocycles, i.e., cocycles that will remain cocycles for
p → ∞; they can be considered as cocycles of characteristic 0; examples of
these kind of cocycles are in the section 3.

• Large charactersictic cocycles, i.e. cocycles that are defined for characterictic
p beginning with some N , say p > 11, but they iwill not be cocycles for
p → ∞; examples of these kind are derivations of form Dp (1-cocycles), and
SqD (2-cocycles).

• Small characterisitic cocycles; they have no analogy for large characteristics;
local deformation cocycle of nonrestricted Hamiltonian algebra in character-
istic p = 5 gives us the example of small characteristic cocycles (the corre-
sponding deformation is isomorphic to Melikyan algebra); another example
can be get from the list of defining relations additional to Serre relations (Ta-
ble 1) and from the list of 2-cocycles for Zassenhaus algebra, p = 2 (Table
2).
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It is impossible to give exact border between characteristics. It depends from
the problem under consideration. It depends also from the concrete situation.
Moreover, very large characteristic case can be included into the case of large
characteristic. Very large characteristic case can be understood as a case of char-
acteristic 0.

Example 1. Serre defining relations for nilpotent subalgebra L+ of classical Lie
algebra are generated by positive root vectors. The border between large and
cmall characteristics is 5. There is no difference between large and very large
characteristics respectively for the problem on defining relations of L+. Exact
meaning of these statements is the following one: if p > 3 then defining relations
of L+ are just the same as in characteristic 0, i.e. L+ is generated by Serre
relations (ad ei)−1−aj,iej = 0; additional relations are appear in the cases of small
characteristics p = 2, 3. The list of additional relations is given in the Table 1.

Example 2. Classification problem of finite-dimensional simple Lie algebras over
an algebraically closed field of characteristic p: according Kostrikin-Shafarevich
conjecture the border between small and large characteristics pass through 7; ac-
cording Kac conjecture this border is 5. The modification of Kostrikin-Shafarevich
conjecture says that there is no border between small characteristics and large
characteristics cases. In right understanding of the notion of deformation almost
all new simple algebras appeared at the last time in small charactersitics will be
deformations of Cartan Type Lie algebras. Note that dimensions of simple Lie al-
gebras in small characteristics, except Brown algebra, are not new. We think that
this fact is not occasional. We suggest that deformations should be considered in
the sense of Gerstenhaber. More general approach, outlined in [17, 23], especially
for Lie algebras over fields of small characteristic, will be out of discussion.

At first, we should like to explain, on an intuitive level, the origin of parametric
structure tensor. Parametric families of simple Lie algebras over algebraically
closed field are due to characteristic p > 0. Nevertheless, as we shall see soon, it
is not so easy to construct a family by direct approach.

The work was supported in part by the RFBR, Grant No. 98-01-00146 and the
INTAS, Grant No. 98-M048 (A.I. Kostrikin), and the INTAS, Grant No. 93-2618-
Ext (A.S.Dzhumadil’daev). The second author is deeply gratefull to A.Caranti
and C.Löfwall for checking some calculations in computer.

2. Tensor product of Lie structures. Basic definitions. Let A, B be two
commutative associative algebras over an algebraically closed field k with the com-
mon unit 1. Let [∗, ∗]A, [∗, ∗]B be Lie algebra structures on A, B (by the Poisson
bracket or in an other way). Let us define Lie algebra structure (A ⊗B, [∗, ∗]) on
their tensor product in the following way:

[a ⊗ b, a′ ⊗ b′] = λaa′ ⊗ [b, b′]B + µ[a, a′]A ⊗ bb′. (1)
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Here is λ, µ ∈ k, λµ &= 0; λ and µ do not depend on elements of algebras. Is it
possible? When it is the case we shall speak on the tensor product of Lie structures:

L = L(λ, µ)

Our aim is to give some useful examples both of positive and negative nature.
Anticommutativity of the product (1), linearly extendable on the all elements

of A⊗B, is evident. The Jacoby identity may be the obstacle to the extendability
of Lie structures on their tensor product. As λµ &= 0, we have

[[f ⊗ u, g ⊗ v], h ⊗ w] + [[h ⊗ w, f ⊗ u], g ⊗ v] + [[g ⊗ v, h ⊗ w], f ⊗ u] = 0 (2)

(f, g, h ∈ A, u, v, w ∈ B) precisely when

[fg, h] ⊗ [u, v]w + [f, g]h ⊗ [uv, w]

+[hf, g] ⊗ [w, u]v + [h, f ]g ⊗ [wu, v] (3)

+[gh, f ]⊗ [v, w]u + [g, h]f ⊗ [vw, u] = 0

(the left part of the expression (3) enteres with coefficient λµ in the left part of
(2); coefficients λ2, µ2 will be under null members, as a consequence of the Jacoby
identity in algebras A, B).

The natural question arises: when the identity (3) is true and what properties of
input structures are inherited? If we have no restrictions on A, B, the problem will
be too general. In our situation the case chark > 0, dimk A < ∞, dimk B < ∞ is
the most suitable one. More precisely, we pay attention to Lie algebras of Cartan
type, using notation and the main definitions from the survey paper [16]. So, A, B
(in associative sense) will be algebras of divided powers.

3. Tensor product of Lie structures. Some calculations and results.

Example 3. W1(m) = 〈x(i) |m〉k. Divided powers x(i), 0 ≤ i ≤ pm − 1, p =
char k, are multiplied as usual: x(i)x(j) =

(i+j
j

)
x(i+j). A derivative f ′ of the

element f ∈ W1(m) is by definition (x(i))′ = x(i−1). A commutation [f, g] =
fg′ − f ′g set on W1(m) the structure of simple Lie algebra, which is known as the
Zassenhaus algebra (if p = 2, the ideal 〈x(i) | i ≤ 2m − 2〉 is simple).

A direct verification shows that W1(m)⊗W1(n) is a Lie algebra; the calculations
connected with (3) are lengthy but straightforward. It is rather interesting to look
at the structure of it. For the simplicity we restrict ourself to the case of the Witt
algebra W1 = W1(1), when we can take

A := W1 = 〈1, x, . . . , xp−1 |xp = 0〉, (xk)′ = kxk−1.

Let B := 〈yi | 0 ≤ i ≤ p − 1〉 be another copy of W1. Also, we put µ = 1, so that

L := W1 ⊗ W1 = 〈xi ⊗ yk | 0 ≤ i, k ≤ p − 1〉,

[xi ⊗ yk, xj ⊗ yk] = (j − i)xi+j−1 ⊗ yk+l + λ(l − k)xi+j ⊗ yk+l−1. (4)
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Having in mind (4), we consider elements

Tn =
n∑

k=0

(−1)k

(
n

k

)
λkxk ⊗ yn−k.

Specifically,

T0 = 1 ⊗ 1, T1 = 1 ⊗ y − λx ⊗ 1.

It is not so hard to see that

L =
p−1⊗

n=0

L−n, L−n = 〈Tn, xTn, . . . , xp−1Tn〉,

What is more important, for any f, g ∈ A we have:

[fTm, gTn] =
∑

k,l

(−1)k+l

(
m

k

)(
n

l

)
λk+l[fxk ⊗ ym−k, gxl ⊗ yn−l]

= · · · (very tedious calculations) = [f, g] · Tm+n,

so that the preset parameter λ ∈ k disappeared. In fact,

L0 = W1, [L0, Ln] = Ln, [Lm, Ln] = Lm+n,

and L is a direct sum of adjoint W1-modules. Furthermore, ⊕n≥1Ln is a nilpotent
radical of L.

Example 4. If f and g are functions of 2s variables x1, xs+1, . . . , xs, x2s, then
the Poisson bracket

{f, g} =
s∑

i=1

(∂if∂s+ig − ∂s+if∂ig) ,

introduced at first in analytical mechanics, equip the fuction space with the Hamil-
tonian Lie algebra structure. It is connected with the nondegenerate differential
form

ω =
s∑

i=1

dxi ∧ dxs+1.

The geometric quantization on a corresponding symplectic manifold leads to a
formal deformation of the Poisson bracket. After all this circumstance finds a
reflection in the modular case.

Let us consider the simplest case of two variables:

A = H1(m, n;ω) = 〈x(i)y(j) | 0 ≤ i < pm, 0 ≤ j < pn〉,

B = H1(q, r;ω) = 〈z(k)t(l) | 0 ≤ k < pq, 0 ≤ l < pr〉.
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Here ω = dx ∧ dy is for A, and ω = dz ∧ dt is for B, so that

[a, a′]A = ∂xa∂ya′ − ∂ya∂xa′, [b, b′]B = ∂zb∂tb
′ − ∂tb∂zb

′ (5)

(generally speaking, we should take in (5) opposite signs, but it is not so essential).
Thus, we have:

[x(i)y(j) ⊗ z(k)t(l), x(i′)y(j′) ⊗ z(k′)t(l
′)] (6)

= λ
i + i′

i

j + j′

j

k + k′ − 1

k′
l + l′ − 1

l
−

k + k′ − 1

k

l + l′ − 1

l′
·

·x(i+i′)y(j+j′) ⊗ z(k+k′−1)t(l+l′−1)

+µ
k + k′

k
l + l′l

i + i′ − 1

i′
j + j′ − 1

j
−

i + i′ − 1

i

j + j′ − 1

j′
·

·x(i+i′−1)y(j+j′−1) ⊗ z(k+k′)t(l+l′).

Put x̄ = x(pm−1), ȳ = y(pn−1), . . .. It is not so hard to see that x̄ȳ ⊗ z̄t̄ /∈
[L(λ, µ),L(λ, µ)]. Indeed, if we take, for example p > 2, i + i′ = pm − 1, j + j′ =
pn, k + k′ = pq, l + l′ = pr, then k + k′ + l + l′ ≡ 0 (mod 2), and (6) results in
[x(i)y(j)⊗z(k)t(l), x(i′)y(j′)⊗z(k′)t(l

′)] = λ(−1)i+j
{
(−1)k′+l − (−1)k+l′

}
x̄ȳ⊗ z̄t̄ =

0.
By putting

e(i, j, k, l) :=
1√

µi+jλk+l
x(i)y(j) ⊗ z(k)t(l)

we get basis with multiplication, free of any parametres. If we shall throw out
x̄ȳ ⊗ z̄t̄ and factorize upon the ideal, generated by 1 ⊗ 1, then we came to the
Hamiltonian simple Lie algebra

L(λ, µ) ∼= L(1, 1) ∼= H2,

corresponding to the differential form ω(x, y, z, t) = dx ∧ dy + dz ∧ dt.

It is well known that for s = 1 along with ω0 := ω = dx ∧ dy there exist more
forms:

ω1 = (exp y) · dx ∧ dy; ω2 = (1 − x̄ȳ) · dx ∧ dy,

which are result in filtered (nongraded!) deformations (H1,ω1), (H1,ω2) of (H1,ω2).
By extending our direct checking we arrive to the conclusion that the tensor prod-
ucts

(H1,ω0) ⊗ (H1,ω0), (H1,ω0) ⊗ (H1,ω2), (H1,ω2) ⊗ (H1,ω2)

give simple Lie algebras, while

(H1,ω0) ⊗ (H1,ω1), (H1,ω1) ⊗ (H1,ω2), (H1,ω1) ⊗ (H1,ω1)
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have not Lie algebra structure. Alike, tensor products

H1 ⊗ W1, H1 ⊗ K1, K1 ⊗ K1

(where K1 is the contact Lie algebra, corresponding to the form ω = dz+ydx−xdy
) do not lead to a Lie structure.

As a whole, the construction under consideration gives rather interesting ex-
amples of Lie algebras. In principle, a tensor product Hs ⊗ Ht with s > 1 would
give a parametric family.

4. Deformations. The following conjecture was proved by R.Block, H.Strade,
R.L. Wilson [1, 24, 25].

Conjecture 1. Any finite-dimensional Lie algebra of simple Lie algebra over an
algebraically closed field of characteristic p ≥ 7 is isomorphic to either

• classical Lie algebra;

• Lie algebra of Cartan Type;

• deformations;

Here we would like to be more precise what deformations we mean. There are
at least three kinds of deformations applicable respectively to simple Lie algebras.
It is well known that Cartan type Lie algebras are defined by differential forms.
By deformations one can understand deformation of corresponding differential
forms. Deformations of differential forms are described in [15, 26, 21, 28]. We
know that all Cartan Type Lie algebras have long filtration. One can understand
deformations in the sence of filtered deformations. In [8] such deformations are
called {Li}-deformations. Problem in this case means that for given graded algebra
with homogeneous subspaces Li one should find filtered algebra

L ⊃ L0 ⊃ L1 ⊃ · · · ⊃ Lr

such that grL ∼= L. Filtered deformations are described in [15]. The last kind of
deformations — Gerstenhaber deformations [13] — are applicable to any algebra
A. Special properties of algebras like existence of filtration or differential forms are
not necessary. Gerstenhaber deformations are ruled by two cohomology groups,
H2(A, A) and H3(A, A). More exactly, if A is a Lie algebra with vector space V
over a field F and commutator V × V → V, (a, b) 2→ [a, b] then Gerstenhaber
deformation of A is defined on the vector space Vt := V ⊗F ((t)) by multiplication

[a, b]t = [a, b] + tf1(a, b) + t2f2(a, b) + · · · ,

where

f1, f2, . . . ∈ C2(V, V ).
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Jacobi identities on the new commutator [ , ]t are reduced to a serie of conditions

k∑

i=1

fi $ fk−i = −d fk, k = 1, 2, . . . ,

where

f $ g(a, b, c) = f(g(a, b), c) + f(g(b, c), a) + f(g(c, a), b),

d h(a, b, c) = h([a, b], c) + h([b, c], a) + h([c, a], b)

+[h(a, b), c] + [h(b, c), a] + [h(c, a), b],

for f, g, h ∈ C2(V, V ). The first deformation term f1 is called local deformation.
From deformation equations it follows that any local deformation should be 2-
cocycle of the adjoint module:

f1 ∈ Z2(A, A).

If we get any cocycle ψ instead of f1 one can ask about constructing of prolonga-
tions f2, f3, . . . , that satisfy deformation equations. In other words in each step k
one should check whether the following 3-cocycle

k∑

i=1

fi $ fk−i ∈ Z3(A, A)

will be a coboundary

k∑

i=1

fi $ fk−i = −d fk ∈ B3(A, A).

If it is the case for any k then we say that the local deformation f1 = ψ has prolon-
gation to global deformation. In this sense, studying of Gerstenhaber deformations
is reduced to the question on calculating second cohomology group H2(A, A) and
third cohomology group H3(A, A). Experience shows that all filtered deforma-
tions and deformations of differential forms of Cartan Type Lie algebras can be
realized as a Gerstenhaber defomations. We are not sure whether in general all
Gerstenhaber deforations should be filtered deformations for some filtration.

Our modification of Kostrikin-Shafarevich conjecture is the following one. De-
formations should be understand as a Gerstenhaber deformations. If this is the
case, the number of new simple Lie algebras that appear in small characteristics
will be restricted essentially. This modified conjecture is supported not only by
the observation that dimensions of new simple Lie algebras in p = 2, 3 on the
whole are known ones, i.e. dimensions of four series of Cartan Type Lie algebras.
In some cases one can construct exact realisation of some new simple Lie alge-
bras as a Gerstenhaber deformations. Let us give realisation of Melikyan algebra
(recall that all simple Lie algebras in characteristic 5 except this algebra satisfy
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Kostrikin-Shafarevich conjecture) as a deformation of Hamiltonian algebra. An-
other interpretation of Melikyan algebra is in the paper [18].

5. Deformations. Melikyan algebras as a deformation of Hamiltonian
algebras. Let L = H2(nx, ny) be the Hamiltonian algebra over a field F of
characteristic p = 5 of dimension pnx+ny , i.e. as a vector space L coinsides with a
space of divided power algebra O2(nx, ny) and multiplication is given by

[u, v] = ∂x(u)∂y(v) − ∂y(u)∂x(v).

(we changed here a sign on the opposite one). Consider cochains ψ1,ψ2 ∈ Z2(L, L),
such that

ψ1 = ∂2
x ∧ ∂3

x, ψ2 = ∆1 ∧ ∂5
x,

where

∆1(u) = u − x∂x(u).

Then for

[ , ]ε1,ε2 = [ , ] + ε1ψ1 + ε2ψ2,

we have

Jac([ , ]ε1,ε2) = (3ε21 + ε1ε2)∂5
x ∧ ∂3

x ∧ ∂2
x.

In particular, ψ1,ψ2 ∈ Z2(L, L). The 3-cocycle ∂5
x∧∂3

x∧∂2
x ∈ C3(L, L) is nontrivial:

if

∂5
x ∧ ∂3

x ∧ ∂2
x = dω

for some ω ∈ C2(L, L) then we will have

1 = ∂5
x ∧ ∂3

x ∧ ∂2
x(x5, x3, x2) = [ω(x5, x3), x2] + [ω(x3, x2), x5] + [ω(x2, x5), x3],

that is impossibile because of 1 /∈ [L, L]. So, the local deformation ε1ψ1 + ε2ψ2

can be prolongated if and only if

ε1(3ε1 + ε2) = 0.

We obtain Lie algebra defined on the space O2(nx, ny), p = 5, by multiplication

[ , ]ε = ∂x ∧ ∂y + ε(∂2
x ∧ ∂3

x + 2∂0
x ∧ ∂5

x − 2x∂x ∧ ∂5
x).

Denote it by L(ε).
Notice that the cocycle ψ = ψ1 + 2ψ2 is nontrivial, if nx > 1, and trivial, if

nx = 1. If nx = 1, then

ψ = dω,

where

ω(uyk) = ∂4(u)yk+1, u = u(x).
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If nx > 1 then the condition ψ = dω1 gives us that

2 = ψ(1, x5) = dω1(1, x5) = [x5),ω1(1)].

Since [x5), L] ∈ L3, it is not possible. So, [ψ] &= 0, if nx > 1.
The pnx+ny -dimensional vector space O2(nx, ny) under the multiplication

[u, v]ε = ∂x(u)∂y(v) − ∂y(u)∂x(v) + ε(∂2
x(u)∂3

x(v)

−∂2
x(v)∂3

x(u) + 2∆1(u)∂5
x(v) − 2∆1(v)∂5

x(u))

is the Lie algebra, which we denoted by L(ε).

Theorem 1. Let p = 5, nx > 1, ny > 0. The algebra L(ε) gives us Gerstenhaber
deformation of the Hamiltonian algebra H1(nx, ny) by local deformation ψ1 +2ψ2.
The Melikyan algebra L(nx − 1, ny)[20] is isomorphic to the algebra obtained from
L(ε) by specialisation ε = 1.

Let us give a initial part of the grading in L(ε) :

L(ε)−2 = 〈x[0] := ε−11〉 3 K(−2),

L(ε)−1 = 〈x[0] := x, x[1] := −ε−1x(2), x[2] := ε−2x(3), x[3]

:= −ε−3(x(4) − εy)〉 3 Ū(1),

L(ε)0 = 〈e[−1] := x(4), e[0] := −xy, e[1] := ε−1x(2)y, e[2] := −ε−2x(3)y,

e[3] := ε−3(x(4)y − εy(2))〉 + 〈x[0] := x(5)y + εxy〉 3 Ū(1) ⊕ K,

L(ε)1 = 〈x[0] := −x(4)y, x[1] := xy(2), x[2] := −ε−1x(2)y(2),

x[3] := ε−2x(3)y(2), x[4] := −ε−3(x(4)y(2) − εy(3))〉

+〈x[0] := ε2x(6), x[1] := −εx(7), x[2] := x(8), x[3] := x(5) + εxy(2)〉

3 U(3) ⊕ Ū(1).

Here U(t) is W1-module endowed on divided power algebra U = O1(1) by formula

(u∂)t(v) = u∂(v) + t∂(u)v.

Instead of standard notation for basic vectors x(i) (or xi) of divided power algebra,
for elements of modules U(t) we use notation x[i] (in other case may be mixing
elements of modules and elements of Hamiltonian algebra as both are defined over
just the same vector space of divided power series). Recall that U(1) is reducible
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and has a submodule of codimension 1:

Ū(1) =< x[i] : 0 ≤ i ≤ p − 2 > .

Recall also, that U(−1) is isomorphic to the adjoint module, and we denote its
basic vectors by e[i] := x[i+1]∂. We denote by K(t) 1-dimensional W1⊕ < c >-
module with basic vector 1, such that W11 = 0, (c)t1 = t · 1. Notice that L(ε)0 is
isomorphic to direct sum of Witt algebra W1 and 1-dimensional center < c >.

Similar realisations of some Skryabin, Kuznetzov and Ermolaev (see [16] and
further references there) algebras as a Gerstenhaber deformations also can be done.

6. Defining relations and nonsplit extensions. Finite-dimensional simple
Lie algebras are called classical and have a lot of applications in mathematics and
physics. In nonclassical case, i.e. in case of infinite-dimensional Lie algebras over a
field of characteristic 0 and finite-dimensional of characteristic p > 0 there appear
new four classes of simple Lie algebras. These algebras are called Cartan Type
Lie algebras, since they correspond to four classes of vector fields Lie algebras.
Recall their definitions in characteristic 0. General type Wn can be defined as
a Lie algebra of Laurent poynomials in n valuables, other three types can be
defined as a subalgebras of general type saving some differential forms: special
type Sn ⊆ Wn+1 save volume form dx1 ∧ · · · ∧ dxn, Hamiltonian type Hn ⊆ W2n

save form ωH =
∑n

i=1 dxi ∧ dxn+i and contact type Kn+1 ⊆ W2n+1 save contact
form dx2n+1 + ωH . An essential part of Serre defining relations ((ad ei)1−ajiej =
0, i &= j) corresponds to defining relations of graded nilpotent subalgebras, i.e. to
2-homology groups of subalgebras generated by positive roots. Similar things are
true for nonclassical Lie algebras. Main part of defining relations of Cartan Type
Lie algebra L corresponds to second homology group of maximal graded nilpotent
subalgebra L1. In classical case, these subalgebras are symmetric. They are not so
ladge and cycles are uniquely defined by Cartan matrix. Cartan type Lie algebras
have no good root systems, and maximal subalgebras are very large. We have
calculated H2 := H2(L1,C) for all four Cartan series.

Let L1 = ⊕i≥1Li be graded nilpotent Lie algebra. Then the first homology
group H1(L1, k) ∼= L1/[L1,L1] can be interpreted as a space of generators of L1 and
the second homology group H2(L1, k) is interpreted as a group of defining relations
[10]. More exactly, if elements E1, . . . , Ek can not be presented as commutators
and their factor-classes in L1/[L1,L1] constitute basis, then E1, . . . , Ek are genera-
tors of L1. Any element of L1 is a linear combination of commutators of E1, . . . , Ek.
If H2(L1, k) is r-dimensional and classes of cycles

∑
i Ei ∧ fi(s), s = 1, . . . , r con-

stitute a basis, where fi(s) are elements of L1 presented as a linear combination
of generators E1, . . . , Ek, then r relations

[Ei, fi(s)] = 0, s = 1, . . . , r,

gives us defining relations of L1.
For finite-dimensional simple classical Lie algebras defining relations are known

as Serre defining relations. These relations can be devided into three parts. Rela-
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tions of nilpotent subalgebra L−, generated by elements of negative roots

(ad fi)−1−aj,ifj = 0, (7)

and relations of nilpotent subalgebra L+ generated by elements of positive roots

(ad ei)−1−aj,iej = 0, (8)

and compatibility conditions

[ei, fj] = δi,jhi,

[hi, ej ] = aj,iej , [hi, fj ] = −aj,ifj .

Here A = (ai,j) is Cartan matrix. In homological terms relations (7) correspond
to cycles fi ∧ (ad fi)−aj,ifj of the group H2(L−, k), and relations (8) correspond
to cycles ei ∧ (ad ei)−aj,iej of the group H2(L+, k).

Similar constructions take place for nonclassical Lie algebras too. For example,
let L = ⊕i≥−2Li be a simple Lie algebra one of Cartan Types Wn(m), Sn(m), Hn(m), Kn(m).
It has grading

L = L− ⊕ L0 ⊕ L+,

where

L− = ⊕i<0Li, L+ = ⊕i>0Li,

and L0 are classical simple Lie algebras sln for Sn(m), spn for Hn(m), and split
central extensions gln for Wn(m), spn ⊕ k for Kn(m).

In contrast to classical case these gradings are not symmetric. A subalgebra
L− is ”small”: namely, it is an abelian algebra of dimension ∼ n, isomorphic to
L−1 for L &= Kn(m), and Heisenberg algebra L−2 ⊕ L−1 for L = Kn(m). On the
contrary, a positive part is “large”: L+ (we will denote it L1) is nilpotent algebra
of dimension ∼ pn.

Calculations of homology groups of L− are easy. For any Cartant types with
the exception of contact, L− = L−1, and

H2(L−, k) ∼= ∧2L−1.

For contact type L− = L−2 ⊕ L−1, and

H2(L−, k) ∼= ∧2L−1/k.

The calculation of H2(L+, k) is interesting also from the other point of view.
According the Levi-Mal’cev theorem, any solvable extension of semisimple finite-
dimensional algebra is split. In the case of positive characteristic it is not the case.
Any modular Lie algebra has at least one nonsplit extension and the number of
nonequivalent nonsplit extensions by irreducible modules is finite [6]. The question
on describing nonsplit extensions of Cartan Type Lie algebras by irreducible mod-
ules can be reduced to the question on caclulating second (co)homology groups
H2(L+, k). So, roughly speaking problems on description of defining relations and
nonsplit extensions for Cartan Type Lie algebras are equivalent.
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In our talk we give examples of defining relations descriptions for nilpotent
subalgebras in cases of small charactersitics (classical Lie algebras), large char-
acteristics (Zassenhaus algebra) and very large characteristic (Cartan Type Lie
algebras).

From these examples we can see that for nonclassical Lie algebras in general
H2(L+, k) is very big. Their dimensions are about constant multiple of n6. But
as a modules over 0-components L0, they have a quite transparent structure.

7. Defining relations and nonsplit extensions. Defining relations for
Classical Lie algebras. Let a = (ai,j) be a Cartan matrix of rank n. By classical
simple Lie algebras we understand simple Lie algebras over an algebraically closed
field of characteristic p > 0 of the following types: An(n > 1), Bn(n > 1, p >
2), Cn(n > 2, p > 2), Dn(n > 3), G2(p > 3), F4(p > 2), E6, E7, E8.

Recall that for small characteristics isomorphisms between different types are
possible. For example, G2 in the cases p = 2, 3 have ideals such that corresponding
simple factors are isomorphic to algebras of types A2 and A3. Algebras Anp−1

have 1-dimensional centers with simple factors. Algebras D2k+1, E7 (p = 2) and
E6 (p = 3 have also 1-dimensional ideals with simple factors. For p = 2 algebras
of types Cn have ideal Dn and F4 has ideal D4.

The following result for the case of large and very large characteristic p > 3
follows from results of J.-P. Serre, G. Seligman, R.V. Moody, S. Berman. In the
case of small characteristics it was obtained by A.S. Dzhumadil’daev and S. Ibraev.

Theorem 2. Let L be a simple classical Lie algebra, p > 0, and L+ be its
nilpotent subalgebra generated by positive root vectors. If p > 3, then L+ can be
defined by Serre relations (ad ei)1−aj,iej = 0, as in the case of zero characteristic.
If p = 2, 3, then defining relations of L+ consist of Serre defining relations and
additional relations. The list of additional relations is given in the Table 1.

8. Defining relations and nonsplit extensions. Defining relations of L+

for Zassenhaus algebra. Recall that Zassenhaus algebra L = W1(m) is pm-
dimensional and graded

L = ⊕pm−2
i=−1 Li, [Li, Lj ] ⊆ Li+j ,

with 1-dimensional homogeneous components Li =< ei >. The multiplication on
the basis {ei : −1 ≤ i ≤ pm − 2} can be given by

[ei, ej] = Ni,jei+j ,

where

Ni,j =
(

i + j + 1
j

)
−

(
i + j + 1

i

)
.

Let

L−1 ⊃ L0 ⊃ L1 ⊃ · · · ⊃ Lpm−2 ⊃ 0,
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Li = ⊕j≥iLj,

be the standard filtration. Then

L1/[L1,L1] ∼= L−1 ⊕ L−2 ⊕m−1
k=1 Lpk−1.

In other words the first homology group H1(L1, k) is (m + 1)-dimensional and
has a basis e1, e2, ep−1, . . . , epm−1−1. In particular, this means that any element ei

for i &= 1, 2, pk − 1 can be presented as a linear combination of above mentioned
elements or their commutators. Fix for any ei some of such presentation. Change
all elements ei in formal way by Ei.

Theorem 3. For p > 7, the nilpotent subalgebra L+ of the Zassenhaus algebra
W1(m) is (m + 1)-generated. It is generated by the elements E1, E2, Epk−1, where
0 < k < m, and the following defining relations:

5[E1, E4] − 9[E2, E3] = 0,

[E2, E5] − 2[E3, E4] = 0,

(δl,k + δs,k − 1)[Epk−2, Epl+ps ] − 2[Epk−1, Epl+ps−1] = 0, 0 < k ≤ l ≤ s < m,

2[Epk−1, Epl−1] − [E1, Epk+pl−3] = 0, 0 < k < l < m,

[E1, Ep−2] = 0,

[Epk−1−1, Epk−pk−1 ] = 0, k > 1,

[E2, Epm−2] = 0,

[E1, Epk ] + [E2, Epk−1] = 0,

(1 + δk,l)[E2, Epk+pl−1] + [Epk−1, Epl+2] = 0, 0 < k ≤ l < m,

[E2, Epk ] − 2[E3, Epk−1] = 0,

3[E2, Epk+1] + 2[E3, Epk ] = 0.

Here δi,j = δ(i = i) is the Kroneker symbol and elements Ei for i &= 1, 2, pk − 1
are defined as a linear combination of commutators of elements E1, E2, Epk−1, 1 <
k < m just like in Zassenhaus algebra. For example,

E3 := [E1, E2]/2, E4 := [E1, E3]/5, E5 := [E1, E4]/9,

E6 := [E1, E5]/14, Epk := −[E1, Epk−1].
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Under above mentioned relations, definitions of Ei do not depend of the chois of
such presentations.

For p = 0 this result follows from results of Gelfand-Fuks [12]. For p = 0 it
was proved also by Fialovski [11] and Ufnarovski [27]. For p > 7 this result in
cohomological terms is given in [4].

What about small characteristics? For p = 3, 4, 5, 7 the above table will be
changed not so much, but in the case of p = 2 the picture is quite different (see
Table 2). Notice that in case of p = 2 weights are presented as a sum of powers
of 2 and such presentations are not unique. Therefore repeatings of some cocycles
in some weights are possible.

9. Defining relations and nonsplit extensions. Defining relations of L+

for nonclassical Lie algebras (the case of very large characteristic). As it
was mentioned earlier, one of differences between simple Lie algebras of classical
and nonclassical types is the following one. Nilpotent subalgebras of classical Lie
algebras are symmetric and not so big. In nonclassical case these subalgebras
are very big and in general not symmetric. Since L− is abelian or isomorphic to
Heisenberg algebra and calculations of homology groups for such algebras are very
easy, we shall exclude the case L+ from the consideration.

As we mentioned above a modular result in the case of very large characteristic
is a part of characteristic 0 results. That is why appearence of characteristic 0
result in our talk will not be surprising. What kind of characteristic p cocycles
can appear in addition to cocycles, obtained from characteristic 0, one can see, for
example, in [9].

In this section we give description of defining relations of nilpotent subalgebra
L1 for Cartan Type Lie algebra L = Wn, Sn(n > 2), Hn, Kn+1 in characteris-
tic 0. Since H2(L+, k) ∼= H2(L+, k), this result in cohomological terms follows
from results of [7]. Below we give descriptions of H2(L+, k) made by A.S. Dzhu-
madil’daev and R. Kerimbaev. Independently second homology group was calcu-
lated by D.Leites and E.Poletaeva [19]. In some particular cases they also were
obtained in [14, 10]. As was mentioned above the group H2(L+, k) can be inter-
pretered as a group of defining relations of L1. We give exact constructions for
basic cycles and give an algorithm how to construct defining relations using cycles.

For classical simple Lie algebra L0 of rank n denote by π1, . . . ,πn its funda-
mental weights and by R(π) the irreducible module with weight π. Recall that
L0

∼= sln+1 for L = Sn and L0
∼= spn for L = Hn. For L = Wn, when L0

∼= gln,
denote by R(π, λ) the irreducible gln -module with weight π (over sln) and con-
formal weight λ:

(xi∂j)λm = (xi∂j)m + (1 − λ)δ(i = j)m, m ∈ R(π, λ),λ ∈ C.

Similar definition for L = Kn+1, L0
∼= spn ⊕ C, means that

(u)λm = (u)m + (λ− 2)∂0(u)m, u ∈ L0, m ∈ R(π, λ),λ ∈ C.
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Below δ = 0, if n = 3, and δ = 1, if n > 3 and L+ = L1, H2(L1) = H2(L1,C).

Theorem 4. Let L = Wn. If n > 2, then

H2(L1) ∼= H(2)
2 (L1),

and as gln -module,

H(2)
2 (L1) ∼= δR(2π2 + πn−2, 2) ⊕ R(4π1 + πn−2, 2) ⊕ R(2π1 + π2 + 2πn−1, 3)

⊕R(3π1 + πn−1, 2) ⊕ R(π1 + π2 + πn−1, 2)

⊕R(π1 + π2 + πn−1, 2) ⊕ R(π2, 1) ⊕ R(π2, 1).

If n = 2, then

H2(L1) ∼= H(2)
2 (L1) ⊕ H(3)

2 (L1),

and as gl2 -module,

H(2)
2 (L1) ∼= R(3π1 + πn−1, 2) ⊕ R(π2, 1) ⊕ R(π2, 1),

H(3)
2 (L1) ∼= R(7π1, 3) ⊕ R(5π1, 2) ⊕ R(π1, 0).

If n = 1, then

H2(L1) ∼= H(7)
2 (L1) ⊕ H(5)

2 (L1).

Corollary 1. For L = Wn,

dim H2(L∞) = n2(n + 1)(3n3 + 3n2 − 4n− 14)/24 ∼ n6/8, if n > 2,
= 25, if n = 2,
= 2, if n = 1.

Theorem 5. Let L = Sn, n > 2. Then

H2(L1) ∼= H(2)
2 (L1),

and as sln -module,

H(2)
2 (L1) ∼= δR(2π2 + πn−2) ⊕ R(4π1 + πn−2)

⊕R(2π1 + π2 + 2πn−1) ⊕ R(π1 + π2 + πn−1) ⊕ R(π2).

Corollary 2. For L = Sn, n > 2,

dim H2(L1) = (n + 1)n(n − 1)(3n3 + 6n2 − 10n − 24)/24 ∼ n6/8.
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Theorem 6. Let L = Hn. If n > 1, then

H2(L1) ∼= H(2)
2 (L1) ⊕ H(3)

2 (L1),

and as spn -module,

H(2)
2 (L1) ∼= R(4π1 + π2) ⊕ R(3π2) ⊕ R(2π2) ⊕ R(π2) ⊕ R(0),

H(3)
2 (L1) ∼= R(π1).

If n = 1, then

H2(L1) ∼= H(2)
2 (L1) ⊕ H(3)

2 (L1) ⊕ H(4)
2 (L1),

and as sl2 -module,

H(2)
2 (L1) ∼= R(0),

H(3)
2 (L1) ∼= R(7π1) ⊕ R(π1),

H(4)
2 (L1) ∼= R(2π1).

Corollary 3. For L = Hn,

dimH2(L1) = (2n − 1)n(8n4 + 28n3 + 34n2 + 5n − 21)/18
∼ 8n6/9, if n > 1,
= 14, if n = 1.

Theorem 7. Let L = Kn+1. If n > 1, then

H2(L1) ∼= H(2)
2 (L1),

and as spn ⊕ C -module,

H(2)
2 (L1) ∼= R(4π1 + π2, 0) ⊕ R(3π2, −6) ⊕ R(2π2, −4) ⊕ R(π2, −2)⊕

R(0, −2) ⊕ R(2π1 + π2, −2) ⊕ R(4π1, 2),

If n = 1, then

H2(L1) ∼= H(2)
2 (L1) ⊕ H(3)

2 (L1),

and as sl2 ⊕ C -module,

H(2)
2 (L1) ∼= R(4π1, 2) ⊕ R(0, −2),
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H(3)
2 (L1) ∼= R(7π1, 0) ⊕ R(5π1, 2) ⊕ R(3π1, 0) ⊕ R(π1, −2)⊕ R(π1, −2),

Corollary 4. For L = Kn+1,

dim H2(L1) = (2n + 1)(8n5 + 20n4 + 34n3 + 7n2 − 15n− 18)/18
∼ 8n6/9, if n > 1,
= 28, if n = 1.

Let us give an algorithm to write defining relations of L1 for Cartan Type Lie
algebra L. For simplicity we exclude the case L = W1 from the consideration.

i) Take as generators of L1 elements e that corresponds to basic vectors e of
L1. Any element of Lk can be represented as a linear combination of commutators
of L1. Write, instead of elements of Lk that appear below, their expressions by
L1.

ii) Defining relations correspond to irreducible components of the decomposi-
tion of the L0 -module H2(L1). Let R(π) or R(π, λ) be one of such components.
Take its heighest vector and generate all other elements of the considered module.
These elements should be in ∧2L1.

iii)Change all exterior products ∧ in these elements by commutators [ , ],
change all basic elements e by e and put obtained expressions equal to 0. These
are defining relations of L1.

Example. L = H1. Its nilpotent subalgebra L1 generates by 4 elements
x3,x2y,xy2,y3 and 14 defining relations: (below we use the notation [a, b, c, d] :=
[a, [b, [c, d]]])

[x3,y3] − 3[xy2,x2y] = 0;

[x3, [x3,x2y]] = 0,

[x3, [x3,xy2]] + 2[x2y, [x3,x2y]] = 0,

3[xy2, [x3,x2y]] + 6[x2y, [x3,xy2]] + 2[x3, [x3,y3]] = 0,

[y3, [x3,x2y]] + 6[xy2, [x3,xy2]] + 6[x2y, [x3,y3]] + 2[x3, [x2y,y3]] = 0,

2[y3, [x3,xy2]] + 6[xy2, [x3,y3]] + 6[x2y, [x2y,y3]] + [x3, [xy2,y3]] = 0,

2[y3, [x3,y3]] + 6[xy2, [x2y,y3]] + 3[x2y, [xy2,y3]] = 0,
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2[y3, [x2y,y3]] + 3[xy2, [xy2,y3]] = 0,

[y3, [y3,xy2]] = 0;

[x3, [x2y,y3]] − 2[x2y, [x3,y3]] + 3[xy2, [x3,xy2]] − 2[y3, [x3,x2y]] = 0,

−2[x3, [xy2,y3]] + 3[x2y, [x2y,y3]] − 2[xy2, [x3,y3]] + [y3, [x3,xy2]] = 0;

[x3,x3,xy2,y3] − 2[x2y,x3,x2y,y3]

+2[xy2,x3,x3,y3] − 2[y3,x3,x3,xy2] = 0,

9[x3,x2y,xy2,y3] − 18[x2y,x3,xy2,y3]

+12[xy2,x3,x2y,y3] − 4[y3,x3,x3,y3] = 0,

2[x3,y3,y3,x2y2] − 2[x2y,y3,y3,x3]

−2[xy2,y3,x3,xy2] − [y3,y3,x3,x2y] = 0.

As examples, in the tables 3 and 4 we give constructions of heighest weight
vectors for irreducible components of L0-modules of H2(L1, k) for L = Hn and
L = Kn+1.
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Table 1. Additional relations for nilpotent subalgebra of classical Lie
algebras.

types p additional relations dim

An, n > 2 2 [ei−1, ei, ei+1, ei], i = 2, . . . , n − 1 n − 2

Bn, n > 2 3 [en−2, en−1, en, en, en−1, en] 1

Cn, n > 2 3 [en−2, en−1, en, en−1, en−1] 1

Dn, n > 3 2 [ei−1, ei, ei+1, ei], i = 2, . . . , n − 2 2n − 2
[en−3, en−2, en, en−2]
[en−2, en−1, en, en−2]
[en−3, en−2, en−1, en, en−2, en]
[en−3, en−2, en−1, en, en−2, en−1]
[ei, ei+1, . . . , en, en−3, en−2, . . . , ei], i = 1, . . . , n − 3

F4 3 [e3, e4, e2, e3, e3] 5
[e2, e3, e3, e1, e2, e3]
[e3, e4, e2, e3, e1, e2, e3, e3]
[e3, e4, e2, e3, e4, e1, e2, e3, e4]
[e3, e4, e2, e3, e4, e1, e2, e3, e3, e2, e3]

En 2 [e1, e3, e4, e3] 2(n − 1)
n = 6, 7, 8 [e2, e4, e3, e4]

[e2, e4, e5, e4]
[e3, e4, e5, e4]
[e4, e5, e6, e5]
δ(n = 7)[e5, e6, e7, e6]
δ(n = 8)[e6, e7, e8, e7]
[e2, e4, e3, e5, e4, e2]
[e2, e4, e3, e5, e4, e3]
[e2, e4, e3, e5, e4, e5]
[e1, e3, e4, e2, e5, e4, e3, e1]
[e2, e4, e3, e5, e4, e6, e5, e6]
δ(n = 7)[e2, e4, e3, e5, e4, e6, e5, e7, e6, e7]
δ(n = 8)[e2, e4, e3, e5, e4, e6, e5, e7, e6, e8, e7, e8]
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Table 2. Basic cocycles of H2
a(L1(m), k), where L1(m) is nilpotent

subalgebra of Zassenhaus algebra W1(m) for p = 2.

a 2 − cocycles for H2
a(L1(m), k) dim

2k − 4 f2k−2−1 ∧ f3(2k−2−1) + f2k−2 ∧ f3 2k−2−4 + · · · 1 − δ(k = 3)
3 ≤ k +f2k−1−3 ∧ f2k−1−1

2k − 3 f2k−1−2 ∧ f2k−1−1 2 − δ(k = 3)
3 ≤ k f2k−2−1 ∧ f2k−2+2k−1−2

2k − 2 f1 ∧ f2k−3 + f2 ∧ f2k−4 + · · · + f2k−1−2 ∧ f2k−1 1 − δ(k = 2)
2 ≤ k

2k − 1 f1 ∧ f2k−2 2 − δ(k = 2)
2 ≤ k f2k−1−1 ∧ f2k−1

2k f2 ∧ f2k−2 2 − δ(k ≤ 3)
2 ≤ k f3 ∧ f2k−3 + f4 ∧ f2k−4 + · · · + f2k−1−2 ∧ f2k−1+2 −δ(k ≤ 2)

2k + 1 f2 ∧ f2k−1 3 − δ(k ≤ 3)
2 ≤ k f3 ∧ f2k−2 −δ(k ≤ 2)

f2k−1−1 ∧ f2k−1+2

2k + 2 f1 ∧ f2k+1 + f2 ∧ f2k 1
2 ≤ k

2k + 3 f1 ∧ f2k+2 + f3 ∧ f2k 1
3 ≤ k

2k + 4 f3 ∧ f2k+1 + f4 ∧ f2k + f5 ∧ f2k−1 2 + δ(k > 4)
4 ≤ k f6 ∧ f2k−2
4 < k f7 ∧ f2k−3 + f8 ∧ f2k−4 + · · · + f2k−1−2 ∧ f2k−1+6

2k + 5 f3 ∧ f2k+2 4 − δ(k ≤ 4)
3 ≤ k f6 ∧ f2k−1 −δ(k ≤ 3)

f7 ∧ f2k−2
f2k−1−1 ∧ f2k−1+6

2k + 2l − 4 f2k−2 ∧ f2l−2, 3 − δ(l = k + 1)
3 ≤ k < l f2k−1 ∧ f2l−3 + f2k ∧ f2l−4

+ · · · + f2l−1−2 ∧ f2k+2l−1−2
f2k−1−1 ∧ f2l+2k−1−3 + · · · + f2k−3 ∧ f2l−1
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Table 2 (Continuation).

2k + 2l − 3 f2k−2 ∧ f2l−1 4 − 2δ(l = k)
3 ≤ k ≤ l f2k−1 ∧ f2l−2 −δ(l = k + 1)

f2k−1−1 ∧ f2k−1+2l−2
f2l−1−1 ∧ f2l−1+2k−2

2k + 2l − 2 f1 ∧ f2k+2l−3 + f2 ∧ f2k+2l−4 + · · · + f2k−2 ∧ f2l 1
3 ≤ k < l

2k + 2l − 1 f1 ∧ f2k+2l−2 + f2k−1 ∧ f2l 1
3 ≤ k < l
v
2k + 2l f1 ∧ f2k+2l−1 + f2k ∧ f2l 2
3 ≤ k < l f3 ∧ f2k+2l−3 + f4 ∧ f2k+2l−4

+ · · · + f2k−2 ∧ f2l+2

2k + 2l + 1 f3 ∧ f2k+2l−2 + f2k−1 ∧ f2l+2 2
3 ≤ k < l f2k−1 ∧ f2l+2 + f2l−1 ∧ f2k+2

2k + 2l + 2s − 4 f2k−1 ∧ f2l+2s−3 + f2k ∧ f2l+2s−4 2
+ · · · + f2l−2 ∧ f2s+2k−2

3 ≤ k < l < s f2k−1 ∧ f2s+2k−3 + f2l ∧ f2s+2k−4
+ · · · + f2s−2 ∧ f2k+2l−2

2k + 2l + 2s − 3 f2l−1 ∧ f2s+2k−2 + f2s−1 ∧ f2k+2l−2 2
3 ≤ k < l < s f2k−1 ∧ f2l+2s−2 + f2l− ∧ f2s+2k−2

2k + 2l + 2s − 2 f1 ∧ f2k+2l+2s−3 + · · · + f2k−1 ∧ f2l+2s−1 1
2 ≤ k < l < s < m +f2l ∧ f2k+2s−2 + · · · + f2k+2l−2 ∧ f2s

2k + 2l + 2s − 1 f1 ∧ f2k+2l+2s−2 + f2k ∧ f2l+2s−1
2 ≤ k < l < m +f2l ∧ f2s+2k−1 + f2s ∧ f2k+2l−1 1
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Table 3. L = Hn. Highest vectors for the irreducible components of
spn-module H2(L+, k).

π highest vectors of R(π)

4π1 + π2, n > 1, x3
1 ∧ x2

1x2 − x2
1x2 ∧ x3

1,
3π2, n > 1, x3

1 ∧ x3
2 − 3x2

1x2 ∧ x1x2
2 + 3x1x2

2 ∧ x2
1x2 − x3

2 ∧ x3
1,

2π2, n > 1, n
i=1 x2

1xi ∧ x2
2x−i − 2x1x2xi ∧ x1x2x−i − x2

1x−i ∧ x2
2xi,

π2, n > 1, (x1 ∧ x2)(
n
i=1 xi ∧ x−i)

2,
π1, (1 ⊗ x2)(

n
i=1 xi ∧ x−i)3;

0, ( i xi ∧ x−i)
3,

7π1, n = 1, x3
1 ∧ x4

1,
2π1, n = 1, x3

−1 ∧ x5
1 − 3x2

−1x1 ∧ x−1x4
1 + 3x−1x2

1 ∧ x2
−1x

3
1 − x3

1 ∧ x3
−1x

2
1

Table 4. L = Kn+1. Highest vectors for the irreducible components
of spn ⊕ k-module H2(L+, k).

π highest vectors of R(π)

4π1 + π2, n > 1, x3
1 ∧ x2

1x2,
4π1, (n + 2)x3

1 ∧ x0x1 + n
i=1 x2

1xi ∧ x2
1x−i,

2π1 + π2, n > 1, x3
1 ∧ x0x2 − x2

1x2 ∧ x1x0,
3π2, n > 1, x3

1 ∧ x3
2 − 3x2

1x2 ∧ x1x
2
2,

2π2, n > 1, n
i=1 x2

1xi ∧ x2
2x

−i − 2x1x2xi ∧ x1x2x−i + x2
2xi ∧ x2

1x−i,
π2, n > 1, x0x1 ∧ x0x2,
π2, n > 1, (x1 ∧ x2)(

n
i=1 xi ∧ x−i)

2,
0, ( n

i=1 xi ∧ x−i)
3,

(below n = 1)
7π1, x3

1 ∧ x4
1,

5π1, 7x3
1 ∧ x0x

2
1 + x3

1 ∧ x−1x
3
1 − x−1x

2
1 ∧ x4

1,
3π1, x3

1 ∧ x2
0 + 2x0x1 ∧ x0x2

1,
π1, x3

−1 ∧ x4
1 − 3x2

−1x1 ∧ x−1x
3
1 + 3x−1x

2
1 ∧ x2

−1x
2
1 − x3

1 ∧ x3
−1x1,

π1, x0x1 ∧ x2
0.
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