Representations of Vector Product \boldsymbol{n}-Lie Algebras ${ }^{\#}$

A. S. Dzhumadil'daev*
Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France and Institute of Mathematics, Academy of Sciences of Kazakhstan, S. Demirel University, Almaty, Kazakhstan

Abstract

Let $V_{n}=\left\langle e_{1}, \ldots, e_{n+1}\right\rangle$ be the vector product n-Lie algebra with n-Lie commutator $\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]=(-1)^{i} e_{i}$ over the field of complex numbers. Any finite-dimensional n-Lie V_{n}-module is completely reducible. Any finitedimensional irreducible n-Lie V_{n}-module is isomorphic to an n-Lie extension of $s o_{n+1}$-module with highest weight $t \pi_{1}$ for some nonnegative integer t.

Key Words: Vector products algebra; Lie algebras; n-Lie algebras; Nambu algebras; Representations; N-Commutators.

1991 Mathematics Subject Classification: Primary 17C50; 17B66; 22 E65.

[^0]
1. INTRODUCTION

An n-algebra $A=(A,[, \ldots]$,$) with a skew-symmetric n$-multiplication $[, \ldots]:, \wedge^{n} A \rightarrow A,\left(a_{1}, \ldots, a_{n}\right) \mapsto\left[a_{1}, \ldots, a_{n}\right]$ is called n-Lie, if

$$
\begin{aligned}
& {\left[a_{1}, \ldots, a_{n-1},\left[a_{n}, \ldots, a_{2 n-1}\right]\right]} \\
& \quad=\sum_{i=n}^{2 n-1}(-1)^{i+n}\left[\left[a_{1}, \ldots, a_{n-1}, a_{i}\right], a_{n}, \ldots, \hat{a}_{i}, \ldots, a_{2 n-1}\right],
\end{aligned}
$$

for any $a_{1}, \ldots, a_{2 n-1} \in A$. Here \hat{a}_{i} means that the element a_{i} is omitted. n-Lie algebras was firstly defined in Filippov (1985). Sometimes they are called as Filippov, Nambu or Takhtajan algebras.

To any n-Lie algebra one can associate a Lie algebra $L(A)=\wedge^{n-1} A$, called basic Lie algebra, with a multiplication given by

$$
\begin{aligned}
& {\left[a_{1} \wedge \cdots \wedge a_{n-1}, b_{1} \wedge \cdots \wedge b_{n-1}\right]} \\
& \quad=\sum_{i=1}^{n-1}(-1)^{i+n}\left[\left[a_{1}, \ldots, a_{n-1}, b_{i}\right], b_{1}, \ldots, \hat{b}_{i}, \ldots, b_{n-1}\right]
\end{aligned}
$$

or by

$$
\begin{aligned}
& {\left[a_{1} \wedge \cdots \wedge a_{n-1}, b_{1} \wedge \cdots \wedge b_{n-1}\right]} \\
& \quad=\sum_{i=1}^{n-1}(-1)^{i+1}\left[a_{1}, \ldots, \hat{a}_{i}, \ldots, a_{n},\left[a_{i}, b_{1}, \ldots, b_{n-1}\right]\right],
\end{aligned}
$$

where \hat{b}_{i} means that the element b_{i} is omitted.
Example 1. Let $A=K\left[x_{1}, \ldots, x_{n}\right]$ under Jacobian map

$$
\left(a_{1}, \ldots, a_{n}\right) \mapsto \operatorname{det}\left(\partial_{i}\left(a_{j}\right)\right)
$$

Then A is n-Lie (Filippov, 1985, 1998) and its basic algebra is isomorphic to divergenceless vector fields algebra S_{n-1} (Dzhumadil'daev, 2002).

Example 2. Let V_{n} be $(n+1)$-dimensional vector space with a basis $\left\{e_{1}, \ldots, e_{n+1}\right\}$. Then V_{n} under a n-Lie multiplication

$$
\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]=(-1)^{i} e_{i}
$$

can be endowed by a structure of n-Lie algebra. This algebra is called vector product n-Lie algebra. For $n=2$ we obtain well known vector product algebra on K^{3}. From results of Filippov (1985) it follows that $L\left(V_{n}\right) \cong s o_{n+1}$.

One can expect that the n-Lie algebra V_{n} plays in a theory of n-Lie algebras a role like $s l_{2}$ in theory of Lie algebras. The aim of our paper is to describe all finite-dimensional representations of vector products n-Lie algebra over the field of complex numbers.

Let $\pi_{1}, \ldots, \pi_{[n+1 / 2]}$ be the fundamental weights for $s o_{n+1}$. Recall that $s o_{4} \cong s l_{2} \oplus s l_{2}$ and any irreducible $s o_{4}$-module can be realized as $s l_{2} \oplus s l_{2}$-module $M_{t, r}=M_{t} \otimes M_{r}$, where M_{t} denotes $(t+1)$-dimensional irreducible $s l_{2}$-module with highest weight t. The main result of our paper is the following:

Theorem 1.1. $K=\mathbf{C}$.
(i) Any finite-dimensional n-Lie representation of $V_{n}, n \geq 2$, is completely reducible.
(ii) Let $M_{t, r}$ be an irreducible so ${ }_{4}$-module with highest weight (t, r). Then $M_{t, r}$ can be prolonged to 3-Lie module over V_{3}, if and only if $t=r$.
(iii) Let M be an irreducible module of Lie algebra so ${ }_{n+1}, n>3$, with highest weight α. Then M can be prolonged to n-Lie module of V_{n}, if and only if α has a form $t \pi_{1}$, for some nonnegative integer t.

So, we obtain a complete description of finite-dimensional n-Lie V_{n}-modules over C. Our result shows that any irreducible n-Lie representation of V_{n} is ruled by some nonnegative integer t as in Lie case $V_{2} \cong s l_{2}$. Call t mentioned in Theorem 1.1 n-Lie highest weight.

Corollary 1.2. ($K=\mathbf{C}, n>2$) The dimension of any irreducible n-Lie V_{n}-module with highest weight t is equal to $\frac{n+2 t-1}{n+t-1}\binom{n+t-1}{t}$.

For example, the dimension of any irreducible V_{3}-module with highest weight t is equal to $(t+1)^{2}$.

Remark. If $n=3$ and if we consider infinite-dimensional modules, then studying of V_{3}-representations can be reduced to the problem on describing of $g l_{\lambda}$-modules. A definition of complex size matrices algebra $g l_{\lambda}$ (see Dixmier, 1973; Feigin, 1988). One can prove that $U\left(V_{3}\right)$ has a subalgebra isomorphic to $g l_{\lambda} \otimes g l_{\lambda}$.

2. n-LIE MODULES

Let A be an n-Lie algebra. Let End A be a space of linear maps $A \rightarrow A$. Recall that an operator $D \in \operatorname{End} A$ is called derivation, if

$$
D\left(\left[a_{1}, \ldots, a_{n}\right]\right)=\sum_{i=1}^{n}\left[a_{1}, \ldots, a_{i-1}, D\left(a_{i}\right), a_{i+1}, \ldots, a_{n}\right]
$$

for any $a_{1}, \ldots, a_{n} \in A$. Let Der A be a space of derivations of A. According n-Lie identity for any $n-1$ elements $a_{1}, \ldots, a_{n-1} \in A$ one can correspond adjoint derivation $\operatorname{ad}\left\{a_{1}, \ldots, a_{n-1}\right\} \in \operatorname{Der} A$ by the rule ad $\left\{a_{1}, \ldots, a_{n-1}\right\} a_{n}=\left[a_{1}, \ldots, a_{n}\right]$. Denote by Int A a space generated by adjoint derivations of A. Call a derivation $D \in \operatorname{Der} A$ inner, if $D \in \operatorname{Int} A$. Then $\operatorname{Der} A$ is a Lie algebra under commutator $\left(D_{1}, D_{2}\right) \mapsto$ [$\left.D_{1}, D_{2}\right]:=D_{1} D_{2}-D_{2} D_{1}$ and $\operatorname{Int} A$ is its Lie ideal. If A has no center, $\operatorname{Int} A$ is isomorphic to $L(A)$.

An n-Lie module over n-Lie algebra A is defined as a vector space M such that a semi-direct sum $A+M$ is once again n-Lie. These mean that the n-Lie multiplication $[, \ldots$,$] on A$ is continued to $A+M$ such that $\left[a_{1}, \ldots, a_{n}\right]=0$, if at least two arguments among a_{1}, \ldots, a_{n} belong to M and the n-Lie identity is true for any $a_{1}, \ldots, a_{n} \in A+M$. In other words,

$$
\begin{aligned}
& {\left[a_{1}, \ldots, a_{i}, m, a_{i+1}, \ldots, a_{n}\right]=-\left[a_{1}, \ldots, a_{i}, a_{i+1}, m, \ldots, a_{n}\right], \quad 1 \leq i<n,} \\
& {\left[a_{1}, \ldots, a_{n-1},\left[a_{n}, \ldots, a_{2 n-2}, m\right]\right]-\left[a_{n}, \ldots, a_{2 n-2},\left[a_{1}, \ldots, a_{n-1}, m\right]\right]} \\
& \quad=\sum_{i=n}^{2 n-2}\left[a_{n}, \ldots, a_{i-1},\left[a_{1}, \ldots, a_{n-1}, a_{i}\right], a_{i+1}, \ldots, a_{2 n-2}, m\right], \\
& {\left[a_{1}, \ldots, a_{n-2},\left[a_{n}, \ldots, a_{2 n-1}\right], m\right]} \\
& \quad=\sum_{i=n}^{2 n-1}\left[a_{n}, \ldots, a_{i-1},\left[a_{1}, \ldots, a_{n-2}, a_{i}, m\right], a_{i+1}, \ldots, a_{2 n-1}\right]
\end{aligned}
$$

for any $a_{1}, \ldots, a_{n-2}, a_{n}, \ldots, a_{2 n-1} \in A$ and $m \in M$. So, any module of n-Lie algebra is an usual module of Lie algebra, if $n=2$. If $n>2$, then any module of n-Lie algebra A is a Lie module of the basic Lie algebra $L(A)$ under representation $\rho: \wedge^{n-1} A \rightarrow$ End M defined by $\rho\left(a_{1} \wedge \cdots \wedge a_{n-1}\right)(m)=\left[a_{1}, \ldots, a_{n-1}, m\right]$, such that

$$
\begin{align*}
& \rho\left(\left[a_{1}, \ldots, a_{n}\right] \wedge a_{n+1} \wedge \cdots \wedge a_{2 n-2}\right) \\
& \quad=\sum_{i=1}^{n}(-1)^{i+n} \rho\left(a_{1} \wedge \ldots \wedge \hat{a}_{i} \wedge \ldots \wedge a_{n}\right) \rho\left(a_{i} \wedge a_{n+1} \wedge \cdots \wedge a_{2 n-2}\right), \tag{1}
\end{align*}
$$

for any $a_{1}, \ldots, a_{2 n-2} \in A$. If M is a Lie module over Lie algebra $L(A)$ that satisfies the condition (1) for any $a_{1}, \ldots, a_{2 n-2} \in A$, then we will say that Lie module structure on M over $L(A)$ can be prolonged to a n-Lie module structure over n-Lie algebra A, or shortly that Lie module M can be prolonged to n-Lie module.

Example. For any n-Lie algebra A its adjoint module, i.e., a module with vector space A and the action $\left(a_{1} \wedge \cdots \wedge a_{n-1}\right) b=\left[a_{1}, \ldots, a_{n-1}, b\right]$ is n-Lie module.

Let A be an n-Lie algebra. Denote by $\widetilde{U}(A)$ the universal enveloping algebra of the Lie algebra $L(A)$. Let $Q(A)$ be an ideal of $\widetilde{U}(A)$ generated by elements

$$
\begin{aligned}
X_{a_{1}, \ldots, a_{2 n-2}}= & {\left[a_{1}, \ldots, a_{n}\right] \wedge a_{n+1} \wedge \cdots \wedge a_{2 n-2} } \\
& -\sum_{i=1}^{n}(-1)^{i+n}\left(a_{1} \wedge \cdots \wedge \hat{a}_{i} \cdots \wedge a_{n}\right)\left(a_{i} \wedge a_{n+1} \wedge \cdots \wedge a_{2 n-2}\right)
\end{aligned}
$$

Let $\bar{U}(A)=\tilde{U}(A) / Q(A)$.
Any Lie module of $L(A)$ can be prolonged to n-Lie module, if and only if it is trivial $Q(A)$-module. In other words, there are one-to one correspondence between n-Lie modules and $\bar{U}(A)$-modules. In this sense $\bar{U}(A)$ can be considered as universal enveloping algebra of n-Lie algebra A.

Let M be a n-Lie module over n-Lie algebra A. Let N be a subspace of M, such that $\left[a_{1}, \ldots, a_{i-1}, m, a_{i+1}, \ldots, a_{2 n-1}\right] \in N$, for any $m \in M_{1}, i=1, \ldots, n$, and
$a_{1}, \ldots, \hat{a}_{i}, \ldots, a_{2 n-1} \in A$. In such case we will say that N is n-Lie submodule of M. Any module has trivial submodules 0 and M. Call M irreducible, if any its submodule is trivial. Call M completely reducible, if it can be decomposed to a direct sum of irreducible submodules.

Proposition 2.1. Let M be a n-Lie module over n-Lie algebra A. Then M is irreducible, if and only if M is irreducible as a Lie module over Lie algebra $L(A) . M$ is completely reducible, if and only if M is completely reducible as a Lie module over Lie algebra $L(A)$.

3. VECTOR PRODUCT n-LIE ALGEBRA AND ITS MODULES

Let V_{n} be a vector product n-Lie algebra over \mathbf{C}. It is $(n+1)$-dimensional and the multiplication on a basis $\left\{e_{1}, \ldots, e_{n+1}\right\}$ is given by

$$
\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]=(-1)^{i} e_{i}, \quad i=1, \ldots, n+1
$$

For example, V_{2} is the vector product algebra on \mathbf{C}^{3} and as a Lie algebra it is isomorphic to $s l_{2}$.

Recall that the Lie algebra of skew-symmetric $n \times n$-matrices $s o_{n}, n \geq 3$, is semi-simple over $K=\mathbf{C}$. More exactly, it is simple, if $n \neq 4$ and has type $B_{[n / 2]}$, if n is odd and type $D_{n / 2}$, if n is even. If $n=4$, then $s o_{4} \cong A_{1} \oplus A_{1}$. For $n=3, s o_{3} \cong A_{1}$.

For $\lambda \in \mathbf{Q}$ denote by $[\lambda]$ a maximal integer, such that $[\lambda] \leq \lambda$. Let $\pi_{1}, \ldots, \pi_{[n / 2]}$ be the fundamental weights of $s o_{n}$ and $M(\alpha)$ be the irreducible $s o_{n}$-module with highest weight α. Any highest weight can be characterized by [n/2]-type of nonnegative integers $\left\{\alpha_{1}, \ldots, \alpha_{[n / 2]}\right\}$, namely

$$
\alpha=\sum_{i=1}^{[n / 2]} \alpha_{i} \pi_{i} .
$$

There is another way to describe highest weights.
Suppose that a sequence of integers or half-integers $\lambda=\left\{\lambda_{1}, \ldots, \lambda_{[n / 2]}\right\}$ satisfies the following conditions

- $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{[n / 2]} \geq 0$, if n is odd and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq\left|\lambda_{n / 2}\right|$, if n is even.
- $\alpha_{i}, i=1, \ldots,[n / 2]$, are nonnegative integers, where $\alpha_{i}=\lambda_{i}-\lambda_{i+1}, i=$ $1, \ldots,[n / 2]-1$ and $\alpha_{[n / 2]}=2 \lambda_{[n / 2]}$, if n is odd and $\alpha_{n / 2}=\lambda_{n / 2-1}+\lambda_{n / 2}$, if n is even.

Then any irreducible finite-dimensional so $_{n}$-module with highest weight α can be restored by a such sequence λ.

Let M be an irreducible $s o_{n}$-module. For $n \neq 4$, set $q(M)=r$, if its highest weight α satisfies the condition $\alpha_{r} \neq 0$, but $\alpha_{r^{\prime}}=0$, for any $r^{\prime}>r$. For $n=4$, set $q(M)=1$, if s_{4}-module is isomorphic to $M_{t, t}$, for some nonnegative integer t and $q(M)=2$, if $M \cong M_{t, r}$, for some $t \neq r$.

Let α be a highest weight for $s o_{n}$-module and $n \neq 4$. Then $q(\alpha)=1$, if and only if α has the form $k \pi_{1}$ for some nonnegative integer k.

Any finite-dimensional irreducible $s l_{2}$-module is isomorphic to $(l+1)$ dimensional irreducible module M_{l} with highest weight l. Recall that any highest weight of $s l_{2}$ can be identified with some nonnegative integer. As we mentioned above $s o_{4} \cong s l_{2} \oplus s l_{2}$. Any irreducible so-module M can be characterized by two nonnegative integers (t, r). Namely, $M \cong M_{i, r}=M_{t} \otimes M_{r}$, where the action of $a+b$ on $m^{\prime} \otimes m^{\prime \prime}$, where a is an element of the first copy of $s l_{2}$ and b is an element of the second copy of $s l_{2}$ and $m^{\prime} \in M_{t}, m^{\prime \prime} \in M_{r}$, is given by

$$
(a+b)\left(m^{\prime} \otimes m^{\prime \prime}\right)=a\left(m^{\prime}\right) \otimes m^{\prime \prime}+m^{\prime} \otimes b\left(m^{\prime \prime}\right)
$$

Notice that in this realization to so \mathbf{a}_{4}-module M with $q(M)=1$ corresponds the $s l_{2} \oplus s l_{2}$-module $M_{t, t}$, for $t \geq 0, t \in \mathbf{Z}$.

Filippov (1985) proved that V_{n} is simple and any derivation of V_{n} is inner. Therefore, $\wedge^{n-1} V_{n} \cong \operatorname{Int} V_{n}$. More detailed observation of his proof shows that takes place the following

Theorem 3.1. For any $n \geq 2$, Der $V_{n} \cong \operatorname{Int} V_{n} \cong s o_{n+1}$. The isomorphism of Lie algebras $L\left(V_{n}\right) \cong$ so o_{n+1} can be given by

$$
e_{1} \wedge \cdots \hat{e}_{i} \wedge \cdots \hat{e}_{j} \wedge \cdots \wedge e_{n+1} \mapsto(-1)^{i+j+n+1} e_{i j}, \quad i<j
$$

where $e_{i j}$ is a skew-symmetric matrix with (i, j) th component $1,(j, i)$ th component -1 and other components 0 .

Lemma 3.2. Let M be $s o_{n+1}$-module. Define quadratic elements $R_{i j s k}$ of $U\left(s o_{n+1}\right)$ by

$$
R_{i j s k}=e_{i j} e_{s k}+e_{i s} e_{k j}+e_{i k} e_{j s}, \quad 1 \leq i, j, s, k \leq n+1 .
$$

Then M can be prolonged to n-Lie V_{n}-module, if and only if, $R_{i j k} m=0$, for any $m \in M$ and $1 \leq i \leq n+1,1 \leq j<s<k \leq n+1, i \notin\{j, s, k\}$.

Proof. Below we use the following notation. If a, b, c, \ldots are some vectors, then $\langle a, b, c, \ldots\rangle$ denotes their linear span and $\{a, b, c, \ldots\}$ denotes the set of these elements and by (a, b, c, \ldots) we denote the vector with components a, b, c, \ldots.

Notice that $X_{a_{1}, \ldots, a_{2 n-2}}$ is skew-symmetric under arguments a_{1}, \ldots, a_{n} and $a_{n+1}, \ldots, a_{2 n-2}$. Therefore, $X_{a_{1}, \ldots, a_{2 n-2}}=0$, if dimension of the subspace $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is less than n or dimension of the subspace $\left\langle a_{n+1}, \ldots, a_{2 n-2}\right\rangle$ is less than $n-2$.

Suppose that $\operatorname{dim}\left\langle a_{1}, \ldots, a_{n}\right\rangle=n$.
Check that $X_{a_{1}, \ldots, a_{2 n-2}}=0$, if $V_{n} \neq\left\langle a_{1}, \ldots, a_{2 n-2}\right\rangle$. We can assume that $a_{1}, \ldots, a_{2 n-2}$ are basic vectors. Suppose that $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right\}$ for some $i \in\{1, \ldots, n+1\}$. Since V_{n} does not coincide with the subspace $\left\langle a_{1}, \ldots, a_{2 n-2}\right\rangle$ and therefore, its dimension is less than $n+1$, we have $\left\{a_{n+1}, \ldots, a_{2 n-2}\right\}=\left\{e_{1}, \ldots, \hat{e}_{i}, \ldots, \hat{e}_{j}, \ldots, \hat{e}_{s}, \ldots, e_{n+1}\right\}$ for some $j, s \neq i, j<s$. Let for simplicity $a_{1}=e_{1}, \ldots, a_{i-1}=e_{i-1}, a_{i}=e_{i+1}, \ldots, a_{n}=e_{n+1}$ and $\left(a_{n+1}, \ldots, a_{2 n-2}\right)=$ $\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, \hat{e}_{j}, \ldots, \hat{e}_{s}, \ldots, e_{n+1}\right)$.

We have

$$
\left[a_{1}, \ldots, a_{n}\right]=\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]=(-1)^{i} e_{i}
$$

Further

$$
a_{r} \wedge a_{n+1} \wedge \cdots \wedge a_{2 n-2}=0
$$

if $a_{r} \neq e_{i}, e_{j}, e_{s}$. Therefore,

$$
\left(a_{1} \wedge \cdots \hat{a}_{r} \wedge \cdots \wedge a_{n}\right)\left(a_{r} \wedge a_{n+1} \wedge \cdots \wedge a_{2 n-2}\right)=0
$$

if $a_{r} \neq e_{i}, e_{j}, e_{s}$.
Let $f: \wedge^{n-1} V_{n} \rightarrow s o_{n+1}$ be the isomorphism of Lie algebras constructed in Theorem 3.1. Prolong it to the isomorphism of universal enveloping algebras $f: U\left(\wedge^{n-1} V_{n}\right) \rightarrow U\left(s o_{n+1}\right)$.

Thus,

$$
\begin{aligned}
& f\left(\left[a_{1}, \ldots, a_{n}\right] \wedge\left(a_{n+1} \wedge \cdots \wedge a_{2 n-2}\right)\right) \\
& \quad=f\left((-1)^{i} e_{i} \wedge e_{1} \wedge \cdots \hat{e}_{i} \wedge \cdots \hat{e}_{j} \wedge \cdots \hat{e}_{s} \wedge \cdots \wedge e_{n+1}\right) \\
& \quad=-f\left(e_{1} \wedge \cdots \hat{e}_{j} \wedge \cdots \hat{e}_{s} \wedge \cdots \wedge e_{n+1}\right) \\
& \quad=(-1)^{j+s+n} e_{j s} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\sum_{r=1}^{n} & (-1)^{r+n} f\left(a_{1} \wedge \cdots \hat{a}_{r} \wedge \cdots \wedge a_{n}\right) f\left(a_{r} \wedge a_{n+1} \wedge \cdots \wedge a_{2 n-2}\right) \\
= & -(-1)^{n+j} f\left(e_{1} \wedge \cdots \hat{e}_{i} \cdots \hat{e}_{j} \cdots \wedge e_{n+1}\right) \times f\left(e_{j} \wedge e_{1} \wedge \cdots \hat{e}_{i} \cdots \hat{e}_{j} \cdots \hat{e}_{s} \cdots \wedge e_{n+1}\right) \\
& -(-1)^{n+s} f\left(e_{1} \wedge \cdots \hat{e}_{i} \cdots \hat{e}_{s} \cdots \wedge e_{n+1}\right) \times f\left(e_{s} \wedge e_{1} \wedge \cdots \hat{e}_{i} \cdots \hat{e}_{j} \cdots \hat{e}_{s} \cdots \wedge e_{n+1}\right) \\
= & (-1)^{j+s+n+1} e_{i j} e_{i s}+(-1)^{j+s+n} e_{i s} e_{i j} \\
= & -(-1)^{j+s+n}\left[e_{i j}, e_{i s}\right]=(-1)^{j+s+n} e_{j s} .
\end{aligned}
$$

Therefore, $f\left(X_{a_{1}, \ldots, a_{2 n-2}}\right)=0$, and $X_{a_{1}, \ldots, a_{2 n-2}}=0$, if the subspace generated by $a_{1}, \ldots, a_{2 n-2}$ does not coincide with V_{n}.

Now suppose that V_{n} is generated by elements $a_{1}, \ldots, a_{2 n-2}$. As above we can assume that these elements are basic elements and $\left(a_{1}, \ldots, a_{n}\right)=$ $\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right)$ and $\left(a_{n+1}, \ldots, a_{2 n-2}\right)=\left(e_{1}, \ldots, \hat{e}_{j}, \ldots, \hat{e}_{s}, \ldots, \hat{e}_{k}, \ldots, e_{n+1}\right)$ for some $1 \leq i \leq n+1,1 \leq j<s<k \leq n+1, i \notin\{j, s, k\}$. Then

$$
\left[a_{1}, \ldots, a_{n}\right] \wedge a_{n+1} \wedge \cdots \wedge a_{2 n-2}=0
$$

since $e_{i} \in\left\{a_{n+1}, \ldots, a_{2 n-2}\right\}$. Calculations as above show that

$$
\sum_{r=1}^{n}(-1)^{r+n} f\left(a_{1} \wedge \cdots \hat{a}_{r} \wedge \cdots \wedge a_{n}\right) f\left(a_{r} \wedge a_{n+1} \wedge \cdots \wedge a_{2 n-2}\right)= \pm R_{i j s k}
$$

So, $f\left(X_{a_{1}, \ldots, a_{2 n-2}}\right) \in\left\langle R_{i j s k}: 1 \leq i \leq n+1,1 \leq j, s, k \leq n+1\right\rangle$. It is easy to check that $R_{i j s k}$ is skew-symmetric by arguments j, s, k and $R_{i j s k}=0$, if $i \in\{j, s, k\}$. So, so $o_{n+1^{-}}$ module M can be prolonged to n-Lie module, if and only if $R_{i j s k} m=0$, for any $m \in M, 1 \leq i \leq n+1,1 \leq j<s<k \leq n+1$.

Below we use branching rules for irreducible modules corresponding to the imbedding $s o_{n-1} \subset s o_{n}$ given in Boerner (1955). The proof of Theorem 1.1 is based on the following:

Theorem 3.3. Let $k>1$.
(i) Let $M=M(\alpha)$ be a finite-dimensional irreducible $s o_{2 k+1}$-module with highest weight $\alpha=\sum_{i=1}^{k} \alpha_{i} \pi_{i}$. Then M as a module over Lie subalgebra so $o_{2 k}$ has a submodule, isomorphic to $M(\bar{\alpha})$, where $\bar{\alpha}=\sum_{i=1}^{k} \bar{\alpha}_{i} \pi_{i}$ and $\bar{\alpha}_{i}=\alpha_{i}, i=1, \ldots, k-1$, and $\bar{\alpha}_{k}=\alpha_{k-1}+\alpha_{k}$.
(ii) Let $M=M(\alpha)$ be a finite-dimensional irreducible so $2_{2 k}$-module with highest weight $\alpha=\sum_{i=1}^{k} \alpha_{i} \pi_{i}$. Then M as a module over Lie subalgebra so $o_{2 k-1}$ has a submodule, isomorphic to $M(\bar{\alpha})$, where $\bar{\alpha}=\sum_{i=1}^{k-1} \bar{\alpha}_{i} \pi_{i}$ and $\bar{\alpha}_{i}=\alpha_{i}, i=1, \ldots, k-2$, $\bar{\alpha}_{k-1}=\alpha_{k-1}+\alpha_{k}$.

Proof. (i) Take

$$
\lambda_{k}=\alpha_{k} / 2, \quad \lambda_{i}=\sum_{j=i}^{k-1} \alpha_{j}+\alpha_{k} / 2, \quad 1 \leq i \leq k-1
$$

According to branching Theorem 12.1b (Boerner, 1955), any $\mathrm{so}_{2 k}$-submodule of $M(\alpha)$ has weight of the form $\bar{\alpha}$, such that corresponding $\bar{\lambda}$ satisfies the following inequality

$$
\lambda_{1} \geq\left|\bar{\lambda}_{1}\right| \geq \lambda_{2} \geq \cdots \geq \lambda_{k-1} \geq\left|\bar{\lambda}_{k-1}\right| \geq \lambda_{k} \geq\left|\bar{\lambda}_{k}\right| .
$$

The $\bar{\lambda}_{j}$ are integral or half-integral according to what the λ_{j} are. If we take $\bar{\lambda}_{i}:=\lambda_{i}$, then such $\bar{\lambda}$ satisfies these conditions. Therefore, $M(\alpha)$ has $s o_{2 k}$-submodule isomorphic to $M(\bar{\alpha})$, where $\bar{\alpha}=\sum_{i=1}^{k} \bar{\alpha}_{i} \pi_{i}, \bar{\alpha}_{i}=\bar{\lambda}_{i}-\bar{\lambda}_{i+1}=\alpha_{i}$, for $i=1, \ldots, k-1$, and $\bar{\alpha}_{k}=\bar{\lambda}_{k-1}+\bar{\lambda}_{k}=\lambda_{k-1}+\lambda_{k}=\alpha_{k-1}+\alpha_{k}$. So, the so $\operatorname{co}_{2 k+1}$-module $M(\alpha)$ as $s o_{2 k}-$ module has a submodule isomorphic to $M(\bar{\alpha})$, where $\bar{\alpha}=\sum_{i=1}^{k-1} \alpha_{i} \pi_{i}+\left(\alpha_{k-1}+\alpha_{k}\right) \pi_{k}$.
(ii) We have

$$
\alpha_{i}=\lambda_{i}-\lambda_{i+1}, \quad 1 \leq i \leq k-1, \quad \alpha_{k}=\lambda_{k-1}+\lambda_{k} .
$$

By branching Theorem 12.1a (Boerner, 1955), any so $_{2 k-1}$-submodule of $M(\alpha)$ is isomorphic to $M(\bar{\alpha})$, such that corresponding $\bar{\lambda}$ satisfies the following inequality

$$
\lambda_{1} \geq\left|\bar{\lambda}_{1}\right| \geq \lambda_{2} \geq \cdots \geq \lambda_{k-1} \geq\left|\bar{\lambda}_{k-1}\right| \geq\left|\lambda_{k}\right| .
$$

The $\bar{\lambda}_{j}$ are integral or half-integral according to what the λ_{j} are. Notice that a sequence $\bar{\lambda}$ constructed by the following way satisfies these conditions

$$
\bar{\lambda}_{i}=\lambda_{i}, \quad 1 \leq i \leq n-1 .
$$

So, $s o_{2 k}$-module $M(\alpha)$ as $s o_{2 k-1}$-module has submodule $M(\bar{\alpha})$, where

$$
\begin{aligned}
& \bar{\alpha}_{i}=\bar{\lambda}_{i}-\bar{\lambda}_{i+1}=\alpha_{i}, \quad 1 \leq i \leq k-2, \\
& \bar{\alpha}_{k-1}=2 \bar{\lambda}_{k-1}=2 \lambda_{k-1}=\alpha_{k-1}+\alpha_{k} .
\end{aligned}
$$

Corollary 3.4. Let $n>4$ and M be irreducible so o_{n}-module such that $q(M)>1$. Then M as a module over subalgebra so $o_{n-1} \subset$ so $_{n}$ has a submodule \bar{M}, such that $q(\bar{M})>1$.

Proof. It is easy to see that for irreducible module M with highest weight α, the condition $q(M)>1$, is equivalent to the condition $\sum_{i>1} \alpha_{i}>0$.

Let $\bar{\alpha}$ be highest weight of $s o_{n-1}$, defined by $\bar{\alpha}_{i}=\alpha_{i}, i=1, \ldots, k-1$, and $\bar{\alpha}_{k}=\alpha_{k-1}+\alpha_{k}$, if $n=2 k+1$, and $\bar{\alpha}_{i}=\alpha_{i}, i=1, \ldots, k-2, \bar{\alpha}_{k-1}=\alpha_{k-1}+\alpha_{k}$, if $n=2 k$.

Notice that

$$
\sum_{i>1} \bar{\alpha}_{i}=\sum_{i>1} \alpha_{i}+2 \alpha_{k} \geq \sum_{i>1} \alpha_{i},
$$

if $n=2 k+1, k>1$ and

$$
\sum_{i>1} \bar{\alpha}_{i}=\sum_{i>1} \alpha_{i},
$$

if $n=2 k, k>2$.
By Theorem 3.3, so $_{n}$-module $M=M(\alpha)$ as $s o_{n-1}$-module has a submodule isomorphic to $\bar{M}=M(\bar{\alpha})$. If $q(M)>1$, then $q(\bar{M})>1$.

Notice that $g l_{n}$ can be realized as a Lie algebra of derivations of $K\left[x_{1}, \ldots, x_{n}\right]$ of the form $\sum_{i, j=1}^{n} \lambda_{i j} x_{i} \partial_{j}, \lambda_{i j} \in K$. Its subalgebra $s o_{n}$ is generated by elements $e_{i j}=x_{i} \partial_{j}-x_{j} \partial_{i}$. The set $\left\{e_{i j}: 1 \leq i<j \leq n\right\}$ consists of basis of $s o_{n}$. The multiplication on $s o_{n}$ can be given by

$$
\begin{aligned}
& {\left[e_{i j}, e_{s k}\right]=0, \quad \text { if }|\{i, j, s, k\}|=4,} \\
& {\left[e_{i j}, e_{i s}\right]=-e_{j s}, \quad\left[e_{i j}, e_{j s}\right]=e_{i s}, \quad\left[e_{i s}, e_{j s}\right]=-e_{i j} .}
\end{aligned}
$$

Lemma 3.5. Let $M=M_{t, r}$ be an irreducible so o_{4}-module. Then M can be prolonged to 3-module over 3-Lie vector product algebra V_{3}, if and only if $t=r$.

Proof. The algebra so $_{4}$ has the basis $\left\{e_{i j}: 1 \leq i<j \leq 4\right\}$. Take here another basis $\left\{f_{i}: 1 \leq i \leq 6\right\}$, by

$$
\begin{aligned}
& f_{1}=\left(e_{12}+e_{34}\right) / 2, \quad f_{2}=\left(e_{13}-e_{24}\right) / 2, \quad f_{3}=\left(e_{14}+e_{23}\right) / 2 \\
& f_{4}=\left(-e_{12}+e_{34}\right) / 2, \quad f_{5}=\left(e_{13}+e_{24}\right) / 2, \quad f_{6}=\left(-e_{14}+e_{23}\right) / 2 .
\end{aligned}
$$

Then

$$
\begin{aligned}
& {\left[f_{1}, f_{2}\right]=-f_{3}, \quad\left[f_{1}, f_{3}\right]=f_{2}, \quad\left[f_{2}, f_{3}\right]=-f_{1},} \\
& {\left[f_{4}, f_{5}\right]=f_{6}, \quad\left[f_{5}, f_{6}\right]=f_{4}, \quad\left[f_{6}, f_{4}\right]=f_{5},} \\
& {\left[f_{i}, f_{j}\right]=0, \quad i=1,2,3, j=4,5,6}
\end{aligned}
$$

We see that

$$
\begin{array}{ll}
e_{12}=f_{1}-f_{4}, & e_{13}=f_{2}+f_{5},
\end{array} e_{14}=f_{3}-f_{6}, ~ 子, ~ e_{24}=f_{3}+f_{6}, \quad e_{24}=-f_{2}+f_{5}, \quad e_{34}=f_{1}+f_{4}, ~ l
$$

and

$$
R_{1234}=e_{12} e_{34}-e_{13} e_{24}+e_{14} e_{23}=C_{1}-C_{2},
$$

where

$$
C_{1}=f_{1}^{2}+f_{2}^{2}+f_{3}^{2}, \quad C_{2}=f_{4}^{2}+f_{5}^{2}+f_{6}^{2}
$$

are Casimir elements of subalgebras $\left\langle f_{1}, f_{2}, f_{3}\right\rangle \cong s l_{2}$ and $\left\langle f_{4}, f_{5}, f_{6}\right\rangle \cong s l_{2}$. Well known that any irreducible finite-dimensional $s l_{2}$-module is uniquely defined by eigenvalue of the Casimir operator on this module. Therefore, $M_{t, r}$ is 3-Lie module, if and only if $t=r$.

Lemma 3.6. Let $n>3$. Any irreducible so $o_{n+1}-m o d u l e ~ M\left(t \pi_{1}\right)$ can be prolonged to n-Lie module of V_{n}. Let M be an irreducible so $o_{n+1}-m o d u l e$ with $q(M)>1$. Then M cannot be prolonged to n-Lie module over n-Lie algebra V_{n}.

Proof. Let $n>3$. Let us consider realization of $M\left(t \pi_{1}\right)$ as a space of homogeneous polynomials $\sum_{1 \leq i_{1} \leq \cdots \leq i_{t} \leq n+1} \lambda_{i_{1} \cdots i_{t}} x_{i_{1}} \cdots x_{i_{t}}$.

By Lemma, 3.2, we need to check that

$$
R_{i j s k} u=0, \quad \text { for } u=x_{i_{1}} \cdots x_{i_{t}}
$$

for any $\{i, j, s, k\}$, such that $1 \leq i \leq n+1,1 \leq j \leq s \leq k \leq n+1, i \notin\{j, s, k\}$ and $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{t} \leq n+1$.

Let $I=\{i, j, s, k\}$. Present u in the form $v w$, where $v=\prod_{l \in I \cap\left\{i_{1}, \ldots, i_{l}\right\}} x_{l}$ and $w=\prod_{l \in\left\{i_{1}, \ldots, i,\right\} \backslash \backslash} x_{l}$. Notice that

$$
R_{i j s k}(v w)=R_{i j s k}(v) w .
$$

Therefore it is enough to check that $R_{i j s k}(v)=0$, for elements $v \in M\left(t \pi_{1}\right)$ of the form

$$
\begin{aligned}
& v=x_{i} x_{j} x_{s} x_{k}, \quad 1 \leq i \leq n+1, \quad 1 \leq j<s<k \leq n+1, \quad i \notin\{j, s, k\} \\
& v=x_{j} x_{s} x_{k}, \quad 1 \leq j \leq s \leq k \leq n+1 \\
& v=x_{i} x_{s} x_{k}, \quad 1 \leq i \leq n+1, \quad 1 \leq s \leq k \leq n+1 \\
& v=x_{j} x_{k}, \quad 1 \leq j \leq k \leq n+1, \\
& v=x_{i} x_{k}, \quad 1 \leq i \leq n+1, \quad 1 \leq k \leq n+1 \\
& v=x_{k}, \quad 1 \leq k \leq n+1, \quad v=x_{i}, \quad 1 \leq i \leq n+1 .
\end{aligned}
$$

Let $i \neq j, s, k$. Then

$$
\begin{aligned}
& R_{i j s k}\left(x_{i} x_{j} x_{s} x_{k}\right) \\
& \quad=e_{i j}\left(x_{i} x_{j} x_{s}^{2}-x_{i} x_{j} x_{k}^{2}\right)+e_{i s}\left(x_{i} x_{s} x_{k}^{2}-x_{i} x_{j}^{2} x_{s}\right)+e_{i k}\left(x_{i} x_{j}^{2} x_{k}-x_{i} x_{s}^{2} x_{k}\right) \\
& \quad=e_{i j}\left(x_{i} x_{j}\right) x_{s}^{2}-e_{i j}\left(x_{i} x_{j}\right) x_{k}^{2}+e_{i s}\left(x_{i} x_{s}\right) x_{k}^{2}-e_{i s}\left(x_{i} x_{s}\right) x_{j}^{2}+e_{i k}\left(x_{i} x_{k}\right) x_{j}^{2}-e_{i k}\left(x_{i} x_{k}\right) x_{s}^{2} \\
& \quad=\left(x_{i}^{2}-x_{j}^{2}\right) x_{s}^{2}-\left(x_{i}^{2}-x_{j}^{2}\right) x_{k}^{2}+\left(x_{i}^{2}-x_{s}^{2}\right) x_{k}^{2}-\left(x_{i}^{2}-x_{s}^{2}\right) x_{j}^{2} \\
& \quad+\left(x_{i}^{2}-x_{k}^{2}\right) x_{j}^{2}-\left(x_{i}^{2}-x_{k}^{2}\right) x_{s}^{2}=0,
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& R_{i j s k}\left(x_{j} x_{s} x_{k}\right)=0, \quad R_{i j k}\left(x_{i} x_{s} x_{k}\right)=0, \quad R_{i j k k}\left(x_{s} x_{k}\right)=0, \\
& R_{i j s k}\left(x_{i} x_{k}\right)=0, \quad R_{i j s k}\left(x_{k}\right)=0, \quad R_{i j s k}\left(x_{i}\right)=0 .
\end{aligned}
$$

So, we have checked that $Q\left(V_{n}\right) M\left(t \pi_{1}\right)=0$, if $n>3$.
Suppose now that $q(M)>1$. We need to prove that $R_{i j s k} m \neq 0$, for some $1 \leq i \leq n+1,1 \leq j<s<k \leq n+1$ and $m \in M$.

Let us use induction on $n \geq 3$. If $n=3$, then by Lemma 3.5 any irreducible so o_{n+1}-module M with $q(M)>1$ cannot be prolonged to n-Lie module. Suppose that the statement is true for $n-1 \geq 3$. If $q(M)>1$ for o_{n+1}-module M, then by Corollary 3.4 there exists its $s o_{n}$-submodule \bar{M}, such that $q(\bar{M})>1$. Then by inductive suggestion there exists some $R_{i j k k} \in Q\left(V_{n-1}\right) \subset U\left(s o_{n}\right)$ and $m \in \bar{M}$, such that $R_{i j k} m \neq 0$. Since $m \in \bar{M} \subseteq M$ and $R_{i j s k} \in U\left(s o_{n}\right) \subset U\left(s o_{n+1}\right)$, this means that $R_{i j s k} m \neq 0$ as elements of M. So, we have proved that our statement for n.

Proof of Theorem 1.1. (i) By Theorem 3.1, Lie algebra $\wedge^{n-1} V_{n} \cong s o_{n+1}$ is semi-simple. Therefore, by Weyl theorem and Proposition 2.1, any finite-dimensional n-Lie representation of V_{n} is completely reducible.
(ii) and (iii) For $n=2$ our statements are evident. Let $n>2$. By Lemmas 3.6 and 3.5, $M\left(t \pi_{1}\right), n>3$, or $M_{t, t}, n=3$, is V_{n}-module for any nonnegative integer t and any module with $q(M)>1$ cannot be n-Lie module.

ACKNOWLEDGMENTS

I am grateful to INTAS foundation for support. I am thankful to referee for paying of my attention to the preprint Sh. M. Kasymov, E. N. Kuz'min, "Classification of representations of split simple n-Lie algebra of type $A_{1}{ }^{\prime}$ ", preprint No. 23, IM SO RAN, Novosibirsk, 1987, where was obtained results similar to ours.

REFERENCES

Boerner, H. (1955). Group Representations. Berlin: North-Holland.
Dixmier, J. (1973). Quotients simples de l'algébre envelopante de $s l_{2}$. J. Algebra 24:551-564.
Dzhumadil'daev, A. S. (2002). Identities and derivations for Jacobian algebras. Contemp. Math. 315:245-278.
Filippov, V. T. (1985). n-Lie algebras. Sib. Mat. J. 26:126-140.
Filippov, V. T. (1998). On n-Lie algebra of Jacobians. Sib. Mat. J. 39:660-669.
Feigin, B. L. (1988). The Lie algebra $g l(\lambda)$ and the cohomologies of differential operators. Uspechi Mathem. Nauk 43(2):157-158.

Received October 2002
Accepted January 2004

Copyright of Communications in Algebra is the property of Marcel Dekker Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]: "Communicated by I. Shestakov.
 *Correspondence: A. S. Dzhumadil'daev, S. Demirel University, Toraygirov 19, Almaty 480043, Kazakhstan; Fax: 007-327-2913740; E-mail: askar@math.kz.

