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1. Introduction

Construction of free algebras is one of the important problems of modern algebra.
They appear in studying the varieties of algebras, polynomial identities and in oper-
ads theory. Multilinear parts of free algebras contain essential information about free
algebras. Multilinear parts are studied by combinatorial methods and by methods of
representation theory. In our paper we focus our attention on module structures of mul-
tilinear parts of free Novikov algebras. By module structures we mean modules over
permutation group and over general linear group. Recall that any irreducible S,,-module
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can be characterized by a partition of n or by Young diagrams. The so-called Specht mod-
ules S%, where o - n is a partition of n, give us a complete list of irreducible modules
of permutation group S,,. There exist deep connections between irreducible S,,-modules
and irreducible GL(V)-modules. Any irreducible GL(V)-module is isomorphic to a so-
called Weyl module. Any Weyl module as Specht module can be characterized by Young
diagrams. These facts are known and one can find details, for example, in [7,8].

The list of algebraic varieties with studied free objects is given in [12]. Let us recall
some of such results.

If F2%% is a multilinear part of a free associative algebra with n generators, then F¢%°
as a module over permutations group S, is isomorphic to a regular module. Any irre-
ducible S,,-module is associative admissible. This means that any irreducible S,,-module
appears in decomposition of F,*° to a direct sum of irreducible components with non-zero
multiplicity. Moreover, for any irreducible S,,-module its multiplicity in such decompo-
sition is equal to dimension of this module.

If FY is a multilinear part of a free Lie algebra with n > 3 generators, then by [6]
any irreducible S,-module S¢, except when o = (1"), (n), (22), (2%), is a Lie admissible
module. Multiplicity of such a module in decomposition of F'¢ can be calculated in
terms of major indices of Young diagrams. It was done in [9].

Similar questions for multilinear parts of free bicommutative algebras are studied
in [5]. For degrees n < 7 module structures over S,, for multilinear parts of free anti-
commutative algebras were found in [1].

The aim of our paper is to study multilinear parts of free Novikov algebras. We intro-
duce a notion of Novikov weights and we describe irreducible components of multilinear
parts in terms of weights. We find a criterion for Novikov admissible irreducible modules.
We prove that multiplicities of irreducible components are ruled by Kostka numbers.

2. Statement of main result

Let rsym (right-symmetric polynomial) and lcom (left-commutative polynomial) be
non-commutative non-associative polynomials defined by

rsym = ty(tats) — t1(tste) — (t1ta)ts + (tits)ta,
lcom = tl (tztg) — tg(tltg).

An algebra with identities rsym = 0 and lcom = 0 is called right-Novikov. In our paper
we consider only right-Novikov algebras therefore the word “right” will be omitted. So,
if A= (A,o) is a Novikov algebra with multiplication a o b, then

(a,b,c) = (a,c,b),

ao(boc)=bo(aoc),

for any a,b,c € A. Here
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(a,b,c) =ao(boc)—(aob)oc
is an associator.

Example. Let A = C[z] and a o b = 9(a)b, where = 2 is partial derivation. Then
(A, 0) is the Novikov algebra.

Free Novikov algebras were described in [3]. In [4] a base of free Novikov algebra in
terms of Young diagrams is constructed. In our paper this base is used intensively.

A partition of a positive integer n is a finite sequence o = (ay, ..., i) with positive
integer components a3 > ... > ax > 0 such that Zle a; = n. If a is a partition of n,
then we write a F n. Components «; are called parts of the partition and we write
a; € a. Let 4y = [{as =1 | s =1,...,k}| be multiplicity of [, the number of parts of «
equal to . For a partition o - n we will use also another notation o = (n'», ..., 2% 1%),
For example, a = (3,2,2,1) = (3%,22,11). For a sequence 3 let us denote by sort(3)
a partition whose parts are components of 3 sorted in non-increasing order. For example,
if 5 =1(2,3,1,5,1), then sort = (5,3,2,1,1). Let P(n) be a set of all partitions of n
and p(n) the number of partitions of n.

Definition. For o = (n'~,..., 2% 1%) € P(n) the partition w(a) € P(n + 1) defined by
n
w(a) = sort<n+ 1= ijyindg, .. zn>
j=1
is called the weight of «.

Example. Let us construct the weight function w : P(5) — P(6). We have

P(5)={(5),(4,1),(3,2), (3,17), (2%,1), (2, 1?), (1) }.

w((3,1%)) = w((2%,1)) = sort(3,1,2) = (3,2,1),
w((2,1%)) = sort(2,3,1) = (3,2,1), w((1%)) = sort(1,5) = (5,1).
Recall that for «, 8 = n, the Kostka number K,g is equal to the number of semi-

standard Young tableaux of shape « and content (3. Recall also that for a partition
a = (ay,as,...,0;) F n its Young subgroup in S, is defined as

Sa = S{172a“~7a1} X S{a1+1,a1+2,.“,a1+o¢2} X X S{n—al+l,n—a1+2,...,n}a

where each component in this product is a symmetric group constructed by permutations
on its corresponding sets. A partition S F n+1 is called Novikov admissible if the Specht
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module S? is an S, i-module of a multilinear part of a free Novikov algebras with
nontrivial coefficients. Let N (V') be a Novikov algebra freely generated by basis elements
of V.

The aim of our paper is to describe S,,- and GL(V')-module structures on free Novikov
algebras. The main field is supposed to be a field of characteristic 0. The structure of
a free Novikov algebra as an S,-module is given below.

Theorem 2.1. Let Fy 1 be a multilinear part of free Novikov algebra of degree n + 1.

a. Then F,11 as an Sy1-module is isomorphic to a direct sum of modules induced by

trivial module of Young subgroups Sy (qa)-

+1
Py = @In SZ;(&)

akFn

b. Further, induced modules are direct sums of irreducible ones, and

Fn—i—lg @ (ZKBw(a))S

BEn+1 “akn

where SP is a Specht module corresponding to a partition (3.
c. 8=(P1,...,Bk)Fn+1is Novikov admissible if and only if:

fr—12>Ps+204+...4+ (k—2)bk.
The structure of a free Novikov algebra as GL(V')-module is given below.

Corollary 2.2. Let Ny, 41 be the homogenous part of N(V) of degree n+1. Then Nypy1 as
GL(V)-module is isomorphic to

n+ 1= @ ® SymW7 Vv

abn w; ew(a)
where Sym'?V is the symmetric power of V, and
Moot = @ (X Konie ) SalV)
BEn+1 “abkn

where Sg(V') is a Weyl module corresponding to a partition 3 whose number of parts is

not more than dimV .

Remark 2.3. We see that multiplicities of Novikov admissible modules can be charac-
terized by sums of Kostka numbers. Let us recall some results about sums of Kostka
numbers. Let A - n. In general, by definition of Schur functions
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_ n
E K/\/J = S\ (]. )
w

where = (p1, - - ., pin) such that py+- - -+p, = nand p; > 0 for any 4, and sy(x1,...,2,)
is a Schur function corresponding to the partition A. By Corollary 7.21.4 in [11],

n+j—1
E Ky, = SR —
» h(u)
% UEN

where u = (i, 7) is a square in A, and h(u) is the hook length of A at wu.

For partitions o = (ay,as,...,a) F nand 8 = (61, 52,...,5) F n we say that «
dominates 3, and write o > 3, if

aptayt-Ftaz2fitpfat 45
for all ¢ > 1. If i > k (respectively, i > 1), then we take «; (respectively, 5;) to be zero.

Example. Let us describe Sg-module of Fg as a direct sum of irreducible Sg-modules.
Novikov admissible partitions are

B={(6),(51),(4,2),(4,1,1),(3,3),(3,2,1) }.

Recall that if o, 8 F n, then K,3 # 0 < o > 3. Therefore

K150 = Ke)s.1) = Ka12)412) = Ka2)412) = Kg)412) = L,
K5,1),12) = Ku,2)3.2,1) = K5,1)3,2,1) = 2,
K32,1)3,2,1) = K,12)3,2,1) = K32)3,2,1) = K(6)(3,2,1) = 1.

Thus,
F5 27580 01256 08512 ¢ 55019 ¢ 3567 g 35621,
Example. If dimV > 1 then as GL(V)-module
N3 222503 (V) ® 2551 (V).

Let p(n, k) be the number of partitions of n into k different parts. Then by [2]
k k+1 k+2
p(n,k)_gl(k)zlzgzk—< Z )iliz...ik+1+( ;: )ilig...ik+2—...,

where a = (n'~,... 2% 1%). For example, p(5,2) = 5, since the list of partitions of 5
into 2 different parts is as follows: 4 4+1,3+2,3+1+1,24+2+1,2+1+1+1.
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Corollary 2.4. For F, 1, the following statements are true:

a. Multiplicity of trivial module is p(n).

b. Multiplicity of the irreducible module Sn+1-11Y 4o Y ks p(n, k) (1;)
c. A partition with two parts is Novikov admissible. -

d. If k > 2, then the partition (I¥) is not Novikov admissible.

Let

oAz, . Tm) = H(xi‘ o)

be power sum symmetric polynomial and
C\p) = [a:‘l“ .. .mﬁilm]p,\(xl, ey T)
the coefficient at /" ... 2t in py(x1,..., Tm).

Corollary 2.5. Let A = (A1, Ao, ..., A\;) F n+ 1. The character of the representation Fy 11
evaluated at an element of Sy+1 with cycle type X is equal to

) = 3 Cu@).
Example. Let n = 3. Then P(3) = {(3),(2,1),(1,1,1)} and

w((?’)) = (3’ 1)’ w((27 1)) = (2a 1, l)a w((l’ 1, 1)) = (37 1)'

Let us calculate the character value of (12)(3)(4) € S;. We see that the cycle type of
(12)(3)(4) is A = (2,1,1).

x((2,1,1)) =2C((2,1,1),(3,1)) + C((2,1,1), (2,1, 1))
= Q[xi{’a:%]p(271)1)(x1,x2) + [ﬁﬂﬁ;xé]p(zl,l)(iﬂh%z,353)
= 2[afws] (a7 + 23) (21 + x2) (a1 + 2)
+ [xfx%xﬂ (xf + 25 + 73) (21 + T2 + 23) (21 + 22 + 73)

=2-24+2=6.
3. Young diagrams, Novikov diagrams and blocks

In [3], a base of free Novikov algebras in terms of rooted trees and so-called r-elements
is constructed. In [4] this base is given in terms of partitions and Young diagrams. For
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a = (a1,qs,...,qa,) F n denote by Y, its Young diagram, i.e. a diagram with «; boxes
in the i-th row.
For a partition a - n denote by & = (@, as,...,q;) a partition of n + 1 such that
a1 = a1+1, a; = a4, 1 > 1. Note that Yy is a Young diagram. Call it a Novikov diagram.
For a Novikov diagram we call its first column nape, its complement face and added
box in the first row nose. So, nose is a part of face and

Ys = nape(Yz) U face(Yy).

For example, if o = (5,4,4,3,3,3), then

N
|
e o 0 0 o o
o o 0o 0 o o
e o 0o 0 o o

and the box corresponding to white circle is nose. To show nape and face, we denote
nape boxes by x and face boxes by y

8 8 8 8 8 &

S SN SN N SN

RS SO SN SN SN
<

Now we introduce so-called blocks of Novikov diagram. Suppose that a Novikov dia-
gram Yj corresponds to a partition a such that

Al = ...=0Qp > Q11 = ... =04, > Ol 1]541
= D>l 1= e = Q] > O,
k=1 +...+ 1.

In other words, the partition o F n in terms of multiplicities can be presented in the
following way
Lol L
o= (af,al’fH, . O‘ll+.<.+1371+1)'
Then Novikov diagram Yz has s+ 1 blocks, denoted by By, B, ..., Bs. By definition, the

block By is the face of the Novikov diagram. Other blocks are parts of the nape, B cor-
responds to rows 1,2,...,ly, By corresponds to rows Iy + 1,...,[s, etc., Bs corresponds
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torows Iy +...+1ls_1+1,...,011 +... +ls_1 + 5. The number of boxes in a block is
called the length of block. So,

nape(Yz) = By U...U B, face(Yz) = By,
|Bil=li, l=<i<s, |Bol =n+1-k=1l

For example, o = (5,4,4,3,3,3) has 4 blocks since a = (5!,42%,33). Below we denote
boxes of block B; of Novikov diagram Yz by z;,

1 To To To To To
T2 Ty To o

T2 Ty To o

I3 To <o

I3 To <o

I3 Lo <o

Example. The list of Novikov diagrams with blocks for n = 4.

Y(I):* e o o o, |Bo| = 4, |Bi| =1,
*x o o e
Yr(/g;‘f) = o ) |BO|:3a ‘Bl| =1, |B2| =1,
Yoz = . o o IBl=3  |Bil=2,
*x o e
}/(ET;) =90 ) |BO‘ =2, |Bl| =1, |B2| =2,
<&
*x ©
*
Y(fl): « ) |Bo| = 1, |Bi| = 4.
*

Now we are ready to introduce Novikov tableau. It is a Novikov diagram with filling.
Below we give an exact definition of Novikov tableau.

Let {2 be an ordered set. For a Novikov tableau Yy call a function f : Yz — (2 a filling
of Y. This means that any box of Y5 is labelled by elements of {2. Denote by Yj s
a diagram Y with filling f. Let By, By, ..., Bs be blocks of Novikov diagram Y. For
block B, 0 <1 < s, denote by B ¢ a sequence of its elements under filling f. Call it
a block sequence. Here we assume, to be definite, that boxes of blocks are numerated
from bottom to top and in each row (in case of face) boxes are numerated from left to
right.

Say that a filling f : Yz — §2 is Novikov, if

o block sequence By ¢, is non-decreasing for any 0 <1 < s.



A.S. Dzhumadil’daev, N.A. Ismailov / Journal of Algebra 416 (2014) 287-313 295

For a filling g : Yz — {2 denote by sort(g) : Yz — 2 a filling, such that each
sequence By sr4(g) 18 a sequence sort(B ), 0 < [ < s, that is sequence By sorted in
non-decreasing order. Note that Y5 sor4(g) is @ Novikov tableau.

Let Y r be a Novikov tableau

firn fiz oo e o flan fra
faq fa2 0 0 faa,
Jea fr2 o fra
Then the base element of free Novikov algebra constructed from Yj ¢ is
Caf = Xnygo (- (XayoXiyg) ),
where
Xip=(((firofiz) ) o fiai-1)© fias, k>i>1,
X1 = (((finofi2) ) o fla) o flart1-

In [4] it was established that elements e, ; corresponding to Novikov tableaux Yj f,
where oo € P(n), form base of free Novikov algebra.

Denote by Base,11 the set of Novikov base elements eq s, where o = n and f is
a Novikov filling. For a base element v € Base, 11, say that v has degree @ and denote
degv = a, if v =eq,f.

Example. Suppose that a1 < as < ... < ag. Then

as as Qg ay

Yaan., =@ 0 aa
as
is a Novikov tableau and
ay as ag as
Yoam, = 02 o1
as
is not a Novikov tableau. Note that sort(g) = f and Y(E,T%—,T),sort(g) = Y(ES_,T)J' The base
element v corresponding to Novikov tableau Y —~— _ is the element

(3,3.1),f
V= €(3,3,1),f — a8 © (((Ch oag) o a4) © (((a2 oas)o a6) ° a7))
with degree degv = (3,3, 1) and block sequences

Bo,; = azasasagar, Byt = ajaz, By r = as.
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4. Filtration and grading on F}, 4

Recall that our alphabet (2 has a linear order. In this section we give prolongation of
linear order in alphabet {2 to a linear order on base Base, 1.

Let eq.r,es,49 € Basen41 be two Novikov base elements with a, 8 F n and fillings f
and g. Suppose that By s = (Bo,s,Bi,7,...,Biy) and Cq g = (Co 4,C1,q,-..,Cnmg) are
block structures of e,y and eg 4 respectively.

We say that e, ¢ is no less than eg, ¢, and denote it e, 5 > €34, if one of the following
cases holds

e a>f3.
e a=p,By;=Cog, ..., Bi_1,y =Ci_1,4 and B; y > C; 4 for some i > 0.

It is clear that this order is a linear order.
Example. Elements of Bases sorted in decreasing order:
(aob)oc>(boa)oc>(coa)ob>ao(boc)>ao(cob)>bo(coa).
Let X = ZUEBasenJrl AU be an element of Fj,1, where A\, € K. We say that X
has degree a and write deg(X) = «, if A, = 0 as soon as degu > « and A, # 0, for
some v € Basept1 with deg(v) = a. To define order on any X and Y, first write the

linear combinations of base elements for X and Y, and then compare corresponding base
elements of X and Y. Note that

deg X <degY = X<Y.
By using the definition of the order one can easily show that
Proposition 4.1. For any X,Y € F,11,

deg(X +Y) < maz(deg X, degY),
deg(AX) < deg X, NeK.
Now we are able to construct filtration on F, 1. By Proposition 4.1 for any a F n the

set of elements of degree no more than « forms a linear subspace. Denote it by F,. So,
Fa is a linear space generated by base elements eg 4, where 8 < a. For instance,

Foy={(aob)oc,(boa)oc,(coa)ob,ao(boc),ao(cob),bo(coa)),
Fuazy=(ao(boc),ao(cob),bo(coa)).
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Hence,
F3 = Fg) 2 Fazy-

Definition. Let o, 3 - n. We say that § is predecessor of a and write o = 3, if @ > (8
and there is no v F n such that o > v > 3.

Since the relation < is a lexicographic order on a set of partitions of n, it is a linear
order. Therefore we are able to sort all elements of Par(n) in decreasing order,

Par(n) = {a1,...,0pm)}

It is clear that the maximal element of Par(n) will be oy = (n) and the minimal element
will be a, () = (1), so

(n)=ay =ag > > Qp(n) = (1”)
The filtration

Fn-‘rl:]:oq 2]:(1222;

Ap(n)

induces a grading on Fj, 1,

F.,.

k3

= fai/fai+1'

It is clear that F, is generated by classes of elements e, r, where f runs Novikov fillings
of a.. In particular,

F(ln) == .7:(171,).

The aim of the following section is to prove that these filtrations and gradings are
compatible with the action of symmetric group.

5. Sp+1-submodules of a multilinear part of a free Novikov algebra
We consider F,,;1 as S,41-modules with a natural action
oX (a1, an41) = X(o(1), - -+ Go(nt1))-
In this section we prove that F,, is an S, 1-submodule of F,; for any a F n. Then,
F,, as a factor-module will have S, 1-module structure as well. Therefore, F;, 11 will be

a direct sum of submodules F,. We will see that F, is isomorphic to a permutation
module M®»(),
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Lemma 5.1. For any a1,...,a, € §2,

deg((~++ ((-++ (a1 0az) ) o (ag 0 apg1)) ) 0 an)
< deg((-+ (((-+-(ar0az) ) o ar) o arss) ) o an).

In particular,

(o (- (aroa) ) o (axoart)) ) oan

= ("'((("'(aloa2)"')Oak)oak+1)-~-)oan.

Proof. We use an induction on n. If n = 3, then it is trivial. Assume that our statement
is true for n — 1 elements. We prove our lemma for n by inductiononn—k=1,...,n—1.
Base of induction. Let n — k = 1. By left-commutative rule

((++(ar0az) ) 0 an_2) o (an_10an) = an_10 (((+(ar0az) ) 0 an_z) o an).

On the other hand

deg(an—10 (((-+- (a1 0az) ) can—2) o ay))
=n-21)<(n-1)=deg((--- (a1 0az)--") o ay).

Therefore,

deg(((' (a1 0ay)-- ) o an,g) o(ap_10 an))
< deg((((---(a10ag)---) 0 an_2) 0an_1)cay).

So, base of induction is established.
Assume that the proposition is true for n — k — 1, i.e.

deg((-+ (-~ (a1 0az) ) o (ars1 0 ags2)) ) © an)
< deg((-~- (((-~-(a1 oa2)~--) 0@k+1) Oak+2) ) Oa'n)~

We want to show the following inequality

deg((+++ ((-++ (a1 0az) ) o (ak 0 arp1)) -+) o an)
< deg((-- (((- (a1 0a) ) oar) oars1) ) o an).

Let
X:(---(aloa2)~-)oak_1, Y =agoagt, Z = k2.

By right-symmetric rule
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(XoY)oZ=Xo{YoZ)—Xo(ZoY)+(Xo0Z)0oY,

and

(...(((XOY)OZ)oak+3)...>oan
=(-((Xo(YoZ)oarss) )oan— (- ((Xo(ZoY))oarss) ) oan
+(...((((XoZ)oY))oak+3)---)oan.

So,
(- ((XoY)oZ)oaps)---)oa,=A—B+C, (1)
where
A= (- ((Xo(Yo2) oarsa)+) oan
B=(((Xo(ZoY))oays) ) oa,
and

Let us prove that

deg(C) < deg((-++ (((+++ (a1 0az) ) o.ar) o ap) ) o an) 2)

By inductive suggestion on n — k

deg((-~~ ((("'(Gl OQQ)...) OQk_H) 0ak+2)...) Oan)
> deg((-.. (((((al oag)...) oakfl) oak) o (apt1 Oak+2)) ) Oan)~

Therefore,

deg((--- (((((---(ar0az)--+) 0 ar-1) o any2) 0 ax) 0 axi) ) o an)
> deg((- . (((( (a1 0az) - ) oak,l) oak+2) o (ag oak+1>) .. ) oan).

Since

deg((++ (((-+- (a1 0as)-+-) 0 ars1) o apya) ---) 0 an) = (n— 1)

is the highest degree,
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deg((-+ (((++ (a1 0az) ) 0 apy1) 0 apsa) ) o an)
> deg((-- (((((-+- (a1 0a2) ) 0 ar-1) 0 akya) 0 ax) 0 axy1) -+-) o an)

Thus

deg((-+- (((-+ (a1 0 a2) ) © as1) 0 agsa) ) 0 an)
> deg((-+ ((((++ (a1 0a2) ) o ar—1) 0 ars2) © (ag © ary1)) -+ +) o an) = deg(C).

So, (2) is proved.
Let us prove that

deg(B) < deg(C), (3)
deg(A) < (n—1). (4)

We consider ay 0 ar41 as one element Y = ay, 0 agy1. Then we can consider A and B as
products of n — 1 elements and we can use inductive suggestion on n. So,

deg(B) = deg((--- (X o (ZoY)) 0 akts) ) oan)
<deg((-+- (((Xo0Z2)oY))oagys) ) oan) = deg(C)

This is relation (3).

deg(A) = deg((--- (X o (Y0 Z)) oarys)---) oan)
< deg(('u(((XoY) oZ) oak+3) ) oan) <(n-1).

This is relation (4). By (2), (3) and (4)
degC < (n—2,1), deg B < (n—2,1), deg A < (n—2,1).
By Proposition 4.1,

deg(A—B+C)<(n—2,1) < (n—-1)
:deg((--~(((~~~(a1oa2)~~~)oak)oak+1)~')oan).

Our lemma is proved completely. O

Lemma 5.2. For elements Ay, ..., Ay, and Ay, ..., AL, of the following forms
A= (o (- (a1 0 ai2) ) 0 (aik 0 spsn)) ) © Gim,

and

A= ( " ((( ~(ajpoaiz)-- ) o ai,k) o afi,k+1) ) O iy,
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where a; ; € {2, the following inequality holds

deg(An o (- (Ajo (- (Az0 Ay)---)) )
< deg(Ano (- (Aso (- (A0 A1) ) ).

Proof. By Lemma 5.1 deg(A} 0 a1 5,) < deg(A; 0 a1 pn,) = (n;). Then
d@g(A; o al,n1) o= (0[1, cee ,O[m) F ng,

such that oy < n,.
Suppose that

Aloay,, = Z)\fea,f +...+Z)\geg,g (5)
f g

where o« > --- > 3, and f, g run through Novikov fillings. Let

Ca,f = Ca,, © ( " (Cocz © Cal) o ) (6)

where Co; = (---(cj10¢52) ) ocja; and {c11, .-, Cm o } = {@i15 -+, Qi 01,1} Let
Bl = ( . (al,l o (1172) . ) [¢] al,nl_l, then Al = Bl (¢] alml. SO,

deg(Ano (- (A2 0 (Bioeay)) )

(by (6))

= deg(Ay o (- (Az 0 (B0 (Cay 0 (- (Cay 0 Cay) ) ++4))
(by definition of degree)

< deg(Ano (- (Az0 (Bro(Aioain))) )
(by left-commutativity rule)

= deg(Ano (- (Ao (- (Ayo Ay) ) --)). (7)
Hence,

deg(An o (-~ (Aio (- (Az0 (Broain,)) ) )

(by left-commutativity rule)

=deg(Ano (- (Azo (Bio(Ajoain,))) )
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= deg(Z)\fAno (---(A20(Bioeay)) ) +...
f

+ Z)\gAn ) ( . (AQ o(Bro eﬁ,g)) ))

(by (7) and Proposition 4.1)
< deg(Ano (~--(Ai0 (-~-(A20A1)-~-))---)).
Lemma 5.2 is proved. O
For z,y € F,,11 we will write = y (mod Fp) if x — y € Fp.

Lemma 5.3. Suppose that a permutation o € S,11 acts on eq, 5 such that each element
n eq,p remains in its own block. Then

O€a,f = €a,f (mod Fp),
otherwise,

OCa,f = €a,g (mod Fg),
where a = 8 and f # g.
Corollary 5.4. F, and F, are S,.1-modules.

Proof of Lemma 5.3. Let o = (n1,...,n;) Fn and Y5 § be a Novikov tableau

fir fiz oo o fin fimt
for faz o fom
fin fie o fim

where f; ; € £2, and e, s is the corresponding base element. Let By f, B1 y,Ba s, ... be
block sequences of eq, f.

Since any permutation is a composition of transpositions, it is enough to consider the
case when o is a transposition. Suppose that o = (4, j) is transposition that moves i to j
and j to ¢. There might be two cases: a; and a; are in one block or in different blocks
of €a,f-

Let us consider the case when a;, a; are in one block, say, B, . This case we divide
into two subcases: ¢ = 0 and ¢ > 0.
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Case ¢ = 0. Then as and a; might be in one row or in two different rows of By. If
they are in one row, in order to obtain eq, s from oe,, r, we use right-symmetric rule for
oeq,r and by Lemma 5.2 we obtain

O€q,f = €q,r (mod Fp).

If they are in two different rows, then by left-commutativity rule we can assume that
these rows are top first and second rows of e, . Therefore, in this case we can assume
that the base element e, s has a form A o A, with A; and Ay as in Lemma 5.2.

Let us adopt the following notation

fz‘,k = ( e (f¢,1 o fm) e ) o fi,k~
Suppose that o permutes the elements f, s = a; and f2; = a;. Then

oeq,; =0(Az 0 Ay)

o(((-+ ((fa—10a5) © fou1) ) © foms)

o((- ((f1,571 0a;) 0 fist1) ) 0 fin))
(( .. ((f27t—1 oa;)o f27t+1) ) o f2,n2)

o ((++ ((frs—10a5) 0 frss1) ++) © fim,)

(by right-symmetric rule applied for the first and the second row elements and by
Lemma 5.2)

= (((-+~ (fau=10 faus1)-+*) © fomy) 0 a7)
© ((( a (fl,s—l o fis41) ) ° fl,nl) o Clj) (mod Fg)
(by left-commutative rule)
= (( . (f175_1 o frst1) ) o fl,m)
o (((-++ (fau—r© faug1)-++) © fam,) ©a;) 0 az) (mod Fp)
(by right-symmetric rule and by Lemma 5.2)
= (( .. (f173_1 o flst1) ) o fl,m)
© (((( - (fz,t—l o fauq1) - ) o f2,n2) o aj) o ai) (mod Fg)
(by left-commutative rule)

= ((( - (f2,t—1 o fa41) ) o fg’nz) o aj)
o (((++ (frs—10a1,541) =) © finy) 0 ai) (mod Fp)
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(by right-symmetric rule applied for the first and the second row elements and by
Lemma 5.2)

= (( e ((fz,t—l © aj) © f2,t+1) e ) © f2,n2)
o((--- ((fl,sq 0a;) o fis41) ) © fin,) (mod Fp)
= eq,5 (mod Fp).
So, permutation of any two elements of e, s in By s again gives e,y modulo Fpg.

Case ¢ > 0. Let a;,a; € By ¢ for ¢ > 0. Recall that o permutes f, 1 = a; and f:1 = a;.
Let us show calculations in terms of Novikov tableau. We have

Ffii fiz o o o fim fimat
a; fs,2 Ce Ce fSJls
oYz =0 :
a;  fia - o fim
fin fizg o fin
(since ¢ > 0, here in fact n, = ny)
fir figo e i fin
aj  feaz o o fem.
a; ft,2 R e ft,nt
fia Sz o i
(by left-commutative rule)
fin iz o i fimn
a; ft,2 te te ft,nt
aj fea - o fem,

fix o Sz o fing
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(by case ¢ = 0)

fin Sz o i S
a; fs,2 - . fs,ns
= : .. (mod Fp)
aj ft,2 e e ft,nt
fin fig o fin

Y&,f (mod ]:g).

So, we have proved the first part of our lemma.

Now, suppose that a; € Bp ¢ and a; € By ¢ for p # ¢. Then p-th and ¢-th block
sequences of oe,, ¢ become B, ; and By 4 for some filling g such that g # f. The filling g
might not be Novikov. If g is not Novikov, then take a permutation 7 that sorts block
sequences B), ; and B, 4 in increasing order, so

O f = 7_7160[79 = eq,q (mod Fp)

where 77! acts on e, 4 such that all elements remain in their own blocks and f # g. By
the first part of our lemma

O€a,f = €q,4 (mod Fg).
Our lemma is proved completely. O
6. Permutation submodules of Novikov algebras

We recall briefly some facts about permutation module (details see in [8,10]). Suppose
that A - n. A Young tableau t of shape A, is a Young diagram of A with boxes filled by
numbers 1,2, ..., n, such that each number occurs exactly once. In this case, we say that
t is a A-tableau. For example, the list of tableaux of shape (2, 1) is

Two A-tableaux t; and to are row equivalent, denoted t; ~ to, if the corresponding
rows of the two tableaux contain the same elements. The A-tabloid is an equivalence
class,

{th={t1[t1 ~t}.
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For example,

O =~ =
S N
B~ ot
S N
R

o W
B ot
N

Recall that o € S,, acts on a tableau t = (t; ;) of a shape A F n as follows:

ot = {o(ti;)}-
This action of .S,, on tableaux induces its action on tabloids.

Definition. Suppose A - n. Let M* = C{{t1},{t2},..., {tx}} where {t:}, {t2},..., {tx}
is a complete list of A-tabloids. Then M? is called the permutation module of shape \.

Recall that for any partition o - n its weight w(a) gives us a partition of n 4 1.
Therefore, we are able to consider M w(a) a5 an Sn+1-module.

Lemma 6.1. Let a = n. The following isomorphism of Sy 1-modules takes place
F, =2 M@,
Proof. Let e ¢ € F,. Then for any o € S, 1

OCa,f = €q,g (mod Fy)

where f, g are some Novikov fillings. By Lemma 5.3, f = g if o keeps the elements of e, ¢
in their blocks, otherwise we obtain g # f. Then we can consider each block of e, ¢ as
a row of Young tabloid. Suppose the block sequences of e s are By s, B1,f,...,Bs . In
order to get one-to-one correspondence between e, ¢ and Young tabloids of shape w(c),
we put all block sequences in one column and sort them first by their lengths, and then
sort them by indices of blocks if two blocks have the same lengths.

By,
By
sort
B s

)

This construction shows that F,, is isomorphic to permutation module M*(®), 7
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Example. Let us consider Novikov tableau of the following form

ap aip ai2 a3z ai4a Gaie
ail G as ag
ar as (7} as

Yoamaas., = @5 @
a7
ais
aig

Its block sequences are By ¢ = a2a3a4a5a6a809a10a124130414016, B1,f = a1, Baf =
arayy, B3y = ais, By = ajraigalg.

To }/(574/272/,13)7 s corresponds the following Young tableau
Boy ax a3 as as ag ag ag aipp G2 a3 G4 Q16
Biy a7 aig aig
sort{ Boy = a7y an
B3y ax
Byy  ais

We have got the Young tabloid of shape (12,3,2,12).
7. Proof of Theorem 2.1 parts a and b

Let a F n. Recall that induced module Ind?:(l) is isomorphic to the permutation
module M (details see in [7], [8] or [10]). Then by Lemma 6.1

F, = Indgz(a)(l).

Since as S, 11-modules,
Fn-i-l = @ Fy
abn

we obtain the following isomorphism of .S, 1-modules

Fn+1 . @Ind§7l+l (1).

w(a)
akFn

By Young’s rule,

STL —
Indg (1) = @( )Kﬁw(a)sﬂ.
pw(a

Hence,
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Fn+1g@ @ Kﬁw(a)sﬂ7

abFn BBw(a)

and

Fop1 = @ <ZKﬁw((x)>Sﬁ

BEn+1 “akn

8. Proof of Theorem 2.1 part ¢

By Theorem 2.1 part b, § = (81,...,8k) F n+ 1 is Novikov admissible if and only if
> arn Kpw(a) # 0. Note that >, Kgy ) # 0 if and only if there is an a F n so that
B > w(«). In this section we prove that for 8 = (B1,...,8;) F n+ 1 there exists a - n
so that § > w(«) if and only if

Br—12B3+2B4+...4+ (k—2)bk.
To prove this statement we need some preliminary facts.
Lemma 8.1. Let \y > X o > ... >\, > 1. Then
AL+ 2Xe o nA S Ag) +2002) + A ()
for any o € S,,.

Proof. It is sufficient to prove this statement for a transposition o = (i, j) € S, where
1 <i<j<n. We have

A () F e Aoy e RN,
=M AN N R,
=M+ N -GN I T—DN A,
=AM+ FiN At A (TN A)
D S S S S VI PRI D VI SRR Sy (D v ]

Lemma 8.2. Let 8= (B1,...,08k) b n+ 1. If B3+2684+ ...+ (k—2)Br > B1 — 1 then
B¢ Imw.

Proof. Let 5 = (B1,...,8k) F n+ 1 and assume that 8 € Imw. Then, there exists
a partition o = (n' ..., 2% 1%) | n such that

w(a) :sort(n—l—l—Zij,il,ig,...,in> =(B1,---,5%)

Jj=1
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and
51 zmax{il,n—i-l—Zij}.
=1
Set i2:/83, ---aik—l :,Bk,ik:(), ...,z'n:O, then

1= ij=1+P5+281+...+ (k—2)Bs

j=1

By Lemma 8.1 we obtain the minimal value of n+1 —Z?Zl ij. So, we have a contradiction
to the assumption of our lemma

’Il+1*Zij>ﬂl. O

Jj=1

Lemma 8.3. Let 5 = (B1,...,0k) - n+ 1. There is a v € Imw such that B > ~ if and
only if

Br—12>B34281+...+ (k—2)B.
Proof. Suppose that v = (71,...,v) € Imw. Then by Lemma 8.2

Mm—1>y+2y+...+(1—-2)y.
We show that if 8 > «, then

Br—12B3+2B4+ ...+ (k—2)b.
Since k <,

bi—=1>2m—12v+2y%+...+ (1 —2)y
=M+ F)+F At )+ m
=m+l-m—-mp)+n+l-m—r2-7)+...

+(n+1—'yl—72—...—'yl,1)
>k=2)(n+1)—(Bi+62)— (Br+P2+P3)—...—(Br+ B2+ ...+ Br-1)
=k-=-2)Br1+...+8)—(Br+B2)—...—(Bi+ P+ ...+ Br1)

=B34+ 264+ ...+ (k—2)bk.

Conversely, suppose that = (81,...,8k) F n+ 1 satisfies
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B1—12>B3+2B4+...4+ (k—2)5.
Let us denote
m=01—1—03—284—...— (k—2)B.
Suppose that m = 0. Then set
i1 = fo, io=P3, ..., ix—1 =Lk, ir=0, ..., i,=0.
So, we obtain
a=((k—1)%, ... 2% 1%) n,

and its weight is

Since 5 > S,

Now suppose that m > 1. Then for any j, set i; = 0, except
i1 =P2, ..., ik—2= k-1, ik—1 =P — 1, thtm—1 = 1.
So, we obtain
a=(k+m—1,(k—1)%"1 20 15) n
and its weight is
w(a) = (B1,y-- -, Pr—1,8k — 1,1).

Since 8> (B1,...,Pr-1,0r — 1,1),

¥ =By Br—1, B — 1,1). 0
9. Proof of Corollary 2.2

In order to get GL(V)-module for N, 1, we write

Npgq Y ®(n+1) QK (S 41] Foi1.
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Recall that for permutation S,41-module Indg:“(l) as GL(V)-module (formula (6.25)
in [7]) we have

VOO @ retsni] Ind§:+1(1) = (X) Sym" V
Hi €W

where p = (p1,...,ux) Fn+ 1 and Sym"* V is the symmetric power of V. By part a of
Theorem 2.1, we obtain

Npy1 = EB ® Sym™ VvV

alFn w; ew(a)
as GL(V)-module and by part b of Theorem 2.1, we obtain

N1 2 VOO @pg ) P & @ (Z Kﬁw(a)) (VO @ xs,,0 S7)
BEn+1

- @ (Z Kﬂw(a)>5ﬁ(v)~

BEn+1 “akn

abn

10. Proof of Corollary 2.4

a. Since K(,41)3 =1 for any g =n+1,

Z K(n+1)w(a) = p(’fl)

abFn

b. Let 8= (n+1—1,1")F n+ 1. If w(a) has k + 1 parts, then

k
Kﬁw(a) = (l)

Note that by definition of weight we can say that w(a) has k 4+ 1 parts if and only
if  has k different parts. Therefore,

> Ksue =) _p(n.k) <I;>

abn k>l

where p(n, k) is the number of partitions of n into k different parts [2].

c. Let 8= (B1,52) F n+1. Then B; = 0, if k > 2. Note that 81 —1 > 0. By Theorem 2.1¢
[ is Novikov admissible.

d. Let 8 = (I¥) and k > 2. Then 31 =1, Bo = I, ..., Bx = I. Note that 51 — 1 <
Bs+ ...+ (k—2)Bk. By Theorem 2.1c 8 is not Novikov admissible.
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11. Proof of Corollary 2.5

For A = (A1, A2, ..., A), = (p1, 12, - - -, ) F n, the symmetric polynomial py(x1,
Za,...,Tm) can be seen as a generating function for character value on a fixed conjugacy
class K of M* (for details see [10]). Therefore,

X =D C(Aw(@).

abn

12. S,,-module structures for n < 10

In the following table all Novikov admissible partitions 8 and multiplicities mg of
corresponding irreducible modules to £ in F,, for 1 < n < 10 are given. Recall that F),
is a multilinear part of a free Novikov algebra with n generators.

B mg B mg B mg B mg B mg
(1) 1 (5,1) 12 (7,1) 30 (6,3) 31 (7,2,1) 52
(2) 1 (4,2) 8 (6,2) 27 (6,2,1) 29 (7,1%) 10
(12) 1 (4,1%) 5 (6,1%) 17 (6,1%) 5 (6,4) 30
(3) 2 (3%) 3 (5,3) 17 (5,4) 15 (6,3,1) 34
(2,1) 2 (3,2,1) 3 (5,2,1) 15 (5,3,1) 16 (6,2%) 12
(4) 3 (7) 11 (5,1%) 2 (5,2%) 6 (6,2,1%) 8
(3,1) 4 (6,1) 19 (4?) 5 (5,2,1%) 3 (52) 10
(2?) 1 (5,2) 16 (4,3,1) 7 (4%,1) 5 (5,4,1) 15
(2,1%) 1 (5,1%) 9 (4,2%) 2 (4,3,2) 3 (5,3,2) 8
(5) 5 (4,3) 8 (4,2,1%) 1 (4,3,12) 1 (5,3,1%) 3
(4,1) 7 (4,2,1) 7 (3%,2) 1 (10) 30 (5,2%,1) 1
(3,2) 4 (4,13) 1 (9) 22 (9,1) 67 (42,2) 2
(3,1%) 2 (3%,1) 2 (8,1) 45 (8,2) 72 (42,1%) 1
(22,1) 1 (3,2%) 1 (7,2) 46 (8,1%) 47 (4,3%) 1
(6) 7 (8) 15 (7,1%) 28 (7,3) 55

Example.

Fy = 35® @486 g S g g1
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