BRIEF COMMUNICATIONS

Hadamard Invertible Matrices, n-Scalar Products, and Determinants

A. S. Dzhumadil'daev

Received September 13, 2004

Abstract

Key words: Hadamard product, Hadamard invertible matrix, n-scalar product, Cayley determinant, orthogonal matrices.

The Hadamard product of two $n \times n$ matrices $A=\left(a_{i, j}\right)$ and $B=\left(b_{i, j}\right)$ is an $n \times n$ matrix whose (i, j)-component is $a_{i, j} b_{i, j}$. For example, let $A^{(k)}=\left(a_{i, j}^{k}\right)$ be the Hadamard k th power of A. In particular, for a matrix A with nonzero components, one can define its Hadamard inverse as the matrix $A^{(-1)}=\left(a_{i, j}^{-1}\right)$.

If A is an arbitrary 3×3 orthogonal matrix with nonzero components, then $\operatorname{det} A^{(-1)}=0$. I wish to thank O . Khudoverdyan for pointing out this remarkable property of 3×3 orthogonal matrices and asking me about the analog of this property in the case $n>3$.

Suppose that

$$
\operatorname{per} A=\sum_{\sigma \in \operatorname{Sym}_{n}} a_{1, \sigma(1)} \ldots a_{n, \sigma(n)}
$$

is the permanent of the $n \times n$ matrix $A=\left(a_{i, j}\right)$. Cayley [1] found the following relation between the permanents and determinants of 3×3 matrices and of their Hadamard powers:

$$
\begin{equation*}
\operatorname{per} A \operatorname{det} A=\operatorname{det} A^{(2)}+2\left(\prod_{i, j=1}^{3} a_{i, j}\right) \operatorname{det} A^{(-1)} . \tag{1}
\end{equation*}
$$

In particular, for orthogonal matrices $A \in O(3)$, the following relation holds:

$$
\operatorname{per} A=\left\{\begin{aligned}
\operatorname{det} A^{(2)} & \text { if } \operatorname{det} A=1, \\
-\operatorname{det} A^{(2)} & \text { if } \operatorname{det} A=-1 .
\end{aligned}\right.
$$

Thus, for $f(x)=x^{(2)}$ we have per $A=\operatorname{det} f(A)$ if $A \in S O(3)$. In the case $n>3$, we not know whether we can express per A as a polynomial in the determinants of Hadamard powers (at least, for a reasonable class of matrices, such as $S O(n)$). In the general case, there are no linear mappings $T: \mathrm{Mat}_{n} \rightarrow \mathrm{Mat}_{n}$ such that per $A=\operatorname{det} T(A)$ for all $n \times n$ matrices A if $n \geq 3$ [2]. In the case $n=2$, such a mapping obviously exists:

$$
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
-c & d
\end{array}\right) .
$$

Definition. Suppose that $k>1$. Suppose that K is the ground field, K^{n} is the n-dimensional coordinate vector space over K, and

$$
(, \ldots,)_{k}: \underbrace{K^{n} \times \cdots \times K^{n}}_{k} \rightarrow K
$$

is the k-scalar product on K^{n} defined by the rule

$$
\left(v_{1}, \ldots, v_{k}\right)_{k}=\sum_{i=1}^{n} a_{1, i} a_{2, i} \ldots a_{k, i}
$$

where $v_{i}=\left(a_{i, 1}, \ldots, a_{i, n}\right) \in K^{n}$ is the i th component of $K^{n} \times \cdots \times K^{n} i=1, \ldots, k$.
For a matrix $A=\left(a_{i, j}\right)$, by a_{i} and \bar{a}_{j} we denote its i th row and j th column. Suppose that $A_{i, j}$ is the matrix obtained from A by crossing out its i th row and j th column.
Theorem 1. Suppose that $n \geq 3$ and $A=\left(a_{i, j}\right)$ is an n-quadratic matrix with nonzero components. Then, for all $1 \leq j \leq n$,

$$
\operatorname{det} A^{(-1)}=\left(\prod_{s=1}^{n} a_{s, j}^{-1}\right) \sum_{i=1}^{n}(-1)^{i+j}\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)_{n-1} \operatorname{det} A_{i, j}^{(-1)},
$$

and, for all $1 \leq i \leq n$,

$$
\operatorname{det} A^{(-1)}=\left(\prod_{s=1}^{n} a_{i, s}^{-1}\right) \sum_{j=1}^{n}(-1)^{i+j}\left(\bar{a}_{1}, \ldots, \bar{a}_{j-1}, \bar{a}_{j+1}, \ldots, \bar{a}_{n}\right)_{n-1} \operatorname{det} A_{i, j}^{(-1)} .
$$

Proof. Since the transposition of a matrix does not change its determinant, it suffices to consider the first case.

By Laplace's theorem, we have

$$
\sum_{i=1}^{n}(-1)^{i} a_{i, s}^{-1} \operatorname{det} A_{i, j}^{(-1)}=0
$$

for all $s \neq j$. Hence

$$
\sum_{s \neq j} \prod_{q=1}^{n}\left(a_{q, s} a_{q, j}^{-1}\right) \sum_{i=1}^{n}(-1)^{i} a_{i, s}^{-1} \operatorname{det} A_{i, j}^{(-1)}=0 .
$$

In other words,

$$
\begin{aligned}
0 & =\sum_{s \neq j} \sum_{i=1}^{n}(-1)^{i} a_{i, j}^{-1} \prod_{q \neq i} a_{q, s} a_{q, j}^{-1} \operatorname{det} A_{i, j}^{(-1)}=\sum_{i=1}^{n}(-1)^{i} a_{i, j}^{-1}\left(\sum_{s \neq j} \prod_{q \neq i} a_{q, s} a_{q, j}^{-1}\right) \operatorname{det} A_{i, j}^{(-1)} \\
& =\sum_{i=1}^{n}(-1)^{i} a_{i, j}^{-1}\left(1-\sum_{s=1}^{n} \prod_{q \neq i} a_{q, s} a_{q, j}^{-1}\right) \operatorname{det} A_{i, j}^{(-1)} \\
& =\sum_{i=1}^{n}(-1)^{i} a_{i, j}^{-1} \operatorname{det} A_{i, j}^{(-1)}-\sum_{i=1}^{n}(-1)^{i} a_{i, j}^{-1}\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)_{n-1} \prod_{q \neq i} a_{q, j}^{-1} \operatorname{det} A_{i, j}^{(-1)} .
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\sum_{i=1}^{n}(-1)^{i}\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)_{n-1} \prod_{q=1}^{n} a_{q, j}^{-1} \operatorname{det} A_{i, j}^{(-1)} \\
\quad=\sum_{i=1}^{n}(-1)^{i} a_{i, j}^{-1} \operatorname{det} A_{i, j}^{(-1)}=(-1)^{j} \operatorname{det} A^{(-1)} .
\end{gathered}
$$

Corollary 1. Suppose that, for vectors $a_{1}, \ldots, a_{n} \in K^{n}, n>2$, any $n-1$ of them are orthogonal in the sense of $(n-1)$-scalar products:

$$
\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)_{n-1}=0
$$

for all $i=1, \ldots, n$. Assume that $a_{i, j} \neq 0$ for all i, j, where $a_{i}=\left(a_{i, 1}, \ldots, a_{i, n}\right)$. Suppose that A is a matrix with rows (columns) a_{1}, \ldots, a_{n}. Then the matrix $A^{(-1)}=\left(a_{i, j}^{-1}\right)$ is singular: $\operatorname{det} A^{(-1)}=0$.

In the case $n=3$, we obtain the property of 3×3 orthogonal matrices given above.
Let us present another version of Theorem 1. Along with the well-known formula

$$
\operatorname{det} A=\sum_{i, j=1}^{n} a_{i, j} \Delta_{i, j},
$$

where $\Delta_{i, j}=(-1)^{i+j} \operatorname{det} A_{i, j}$ is a cofactor, the following "complication" of this formula is valid.
Theorem 2. Assume that all the components of the matrix $A=\left(a_{i, j}\right) \in \operatorname{Mat}_{n}, n \geq 3$, are distinct from zero and $a_{i}^{-1}=\left(a_{i, 1}^{-1}, \ldots, a_{i, n}^{-1}\right)$ and $\bar{a}_{j}^{-1}=\left(a_{1, j}^{-1}, \ldots, a_{n, j}^{-1}\right)$ are the ith row and the j th column of the matrix $A^{(-1)}$. Then, for any $1 \leq j \leq n$,

$$
\operatorname{det} A=\sum_{i=1}^{n} \lambda_{i, j} a_{i, j} \Delta_{i, j},
$$

and, for any $1 \leq i \leq n$,

$$
\operatorname{det} A=\sum_{j=1}^{n} \bar{\lambda}_{i, j} a_{i, j} \Delta_{i, j},
$$

where

$$
\begin{aligned}
& \lambda_{i, j}=\left(\prod_{s \neq i} a_{s, j}\right)\left(a_{1}^{-1}, \ldots, a_{i-1}^{-1}, a_{i+1}^{-1}, \ldots, a_{n}^{-1}\right)_{n-1}, \\
& \bar{\lambda}_{i, j}=\left(\prod_{s \neq j} a_{i, s}\right)\left(\bar{a}_{1}^{-1}, \ldots, \bar{a}_{j-1}^{-1}, \bar{a}_{j+1}^{-1}, \ldots, \bar{a}_{n}^{-1}\right)_{n-1} .
\end{aligned}
$$

Remark 1. If any $n-1$ rows of an $n \times n$ matrix are $(n-1)$-orthogonal and $n>3$, then any $n-1$ columns of this matrix need not also be $(n-1)$-orthogonal. Also, note that it is not necessary that K be a field. It is sufficient that it be a commutative ring.

The Hadamard inverse admits some of the usual matrix operations. The mapping $A \mapsto \operatorname{det} A^{(-1)}$ is skew-symmetric with respect to permutations of the rows (columns), but the addition of some row (column) to another row (column) may change the determinant $\operatorname{det} A^{(-1)}$.
Corollary 2. Suppose that $A=\left(a_{i, j}\right)$ is a matrix with invertible components $a_{i, j}$ and B is a matrix obtained from A by multiplying some row (column) by a number $\epsilon \in K$, where $\epsilon^{n-1}=1$. Then $\operatorname{det} A^{(-1)}=\operatorname{det} B^{(-1)}$.

The condition $a_{i j} \neq 0$ in the statement of Theorem 1 can be dropped if we consider Cayley determinants defined as follows. To any $n \times n$ matrix A we assign an element of K denoted by $\mathrm{Ca}(A)$ according to the rule

$$
\mathrm{Ca}(A)=\sum_{\sigma \in \operatorname{Sym}_{n}} \operatorname{sign} \sigma a_{1,1} \cdots \widehat{a_{1, \sigma(1)}} \cdots a_{1, n} a_{2,1} \cdots \widehat{a_{2, \sigma(2)}} \cdots a_{2, n} \cdots a_{n, 1} \cdots \widehat{a_{n, \sigma(n)}} \cdots a_{n, n} .
$$

If all the $a_{i, j}$ are not zeros, then

$$
\mathrm{Ca}(A)=\left(\prod_{i, j=1}^{n} a_{i, j}\right) A^{(-1)} .
$$

Below is another version of Theorem 1.

Theorem 3. Suppose that $A=\left(a_{i, j}\right)$ is an $n \times n$ matrix and $n \geq 3$. Then, for all $1 \leq j \leq n$,

$$
\mathrm{Ca}(A)=\sum_{i=1}^{n}\left(\prod_{s \neq j}^{n} a_{i, s}\right)(-1)^{i+j}\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)_{n-1} \mathrm{Ca}\left(A_{i, j}\right),
$$

and, for all $1 \leq i \leq n$,

$$
\mathrm{Ca}(A)=\sum_{j=1}^{n}\left(\prod_{s \neq i} a_{s, j}\right)(-1)^{i+j}\left(\bar{a}_{1}, \ldots, \bar{a}_{j-1}, \bar{a}_{j+1}, \ldots, \bar{a}_{n}\right)_{n-1} \mathrm{Ca}\left(A_{i, j}\right) .
$$

Corollary 3. If each row (column) contains, at least, two zeros, then $\mathrm{Ca}(A)=0$.
Remark 2. There is another generalization of Cayley's relation (1) for matrices of fourth order. Suppose that A is a 4×4 matrix. Then

$$
\text { per } A \operatorname{det} A=\operatorname{det} A^{(2)}+2 \sum_{i, j=1}^{4}(-1)^{i+j} a_{i, j}^{2} \mathrm{Ca}\left(A_{i, j}\right) .
$$

REFERENCES

1. A. Cayley, Crelle's J., 56 (1859), 182-185.
2. M. Marvin and H. Minc, Illinois J. Math., 5 (1961), 376-381.
S. Demirel University, Kazakhstan

E-mail: askar@math.kz

