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The Hadamard product of two n × n matrices A = (ai,j) and B = (bi,j) is an n × n matrix
whose (i, j)-component is ai,jbi,j . For example, let A(k) = (ak

i,j) be the Hadamard kth power
of A . In particular, for a matrix A with nonzero components, one can define its Hadamard inverse
as the matrix A(−1) = (a−1

i,j) .
If A is an arbitrary 3 × 3 orthogonal matrix with nonzero components, then detA(−1) = 0.

I wish to thank O. Khudoverdyan for pointing out this remarkable property of 3 × 3 orthogonal
matrices and asking me about the analog of this property in the case n > 3 .

Suppose that
perA =

∑
σ∈Symn

a1,σ(1) . . . an,σ(n)

is the permanent of the n× n matrix A = (ai,j) . Cayley [1] found the following relation between
the permanents and determinants of 3× 3 matrices and of their Hadamard powers:

perAdetA = detA(2) + 2
( 3∏

i,j=1

ai,j

)
detA(−1). (1)

In particular, for orthogonal matrices A ∈ O(3) , the following relation holds:

perA =
{

detA(2) if detA = 1,

−detA(2) if detA = −1.

Thus, for f(x) = x(2) we have perA = det f(A) if A ∈ SO(3) . In the case n > 3 , we not
know whether we can express perA as a polynomial in the determinants of Hadamard powers (at
least, for a reasonable class of matrices, such as SO(n)). In the general case, there are no linear
mappings T : Matn → Matn such that perA = detT (A) for all n × n matrices A if n ≥ 3 [2].
In the case n = 2, such a mapping obviously exists:

T

(
a b
c d

)
=

(
a b
−c d

)
.
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Definition. Suppose that k > 1 . Suppose that K is the ground field, Kn is the n-dimensional
coordinate vector space over K , and

( , . . . , )k : Kn × · · · × Kn︸ ︷︷ ︸
k

→ K,

is the k-scalar product on Kn defined by the rule

(v1 , . . . , vk)k =
n∑

i=1

a1,ia2,i . . . ak,i ,

where vi = (ai,1 , . . . , ai,n) ∈ Kn is the ith component of Kn × · · · × Kn i = 1, . . . , k .

For a matrix A = (ai,j) , by ai and āj we denote its ith row and jth column. Suppose that Ai,j

is the matrix obtained from A by crossing out its ith row and jth column.

Theorem 1. Suppose that n ≥ 3 and A = (ai,j) is an n-quadratic matrix with nonzero compo-
nents. Then, for all 1 ≤ j ≤ n ,

detA(−1) =
( n∏

s=1

a−1
s,j

) n∑
i=1

(−1)i+j(a1 , . . . , ai−1 , ai+1 , . . . , an)n−1 detA
(−1)
i,j ,

and, for all 1 ≤ i ≤ n ,

detA(−1) =
( n∏

s=1

a−1
i,s

) n∑
j=1

(−1)i+j(ā1 , . . . , āj−1 , āj+1 , . . . , ān)n−1 detA
(−1)
i,j .

Proof. Since the transposition of a matrix does not change its determinant, it suffices to consider
the first case.

By Laplace’s theorem, we have
n∑

i=1

(−1)ia−1
i,s detA

(−1)
i,j = 0

for all s �= j . Hence ∑
s�=j

n∏
q=1

(aq,sa
−1
q,j)

n∑
i=1

(−1)ia−1
i,s detA

(−1)
i,j = 0.

In other words,

0 =
∑
s�=j

n∑
i=1

(−1)ia−1
i,j

∏
q �=i

aq,sa
−1
q,j detA

(−1)
i,j =

n∑
i=1

(−1)ia−1
i,j

(∑
s�=j

∏
q �=i

aq,sa
−1
q,j

)
detA

(−1)
i,j

=
n∑

i=1

(−1)ia−1
i,j

(
1−

n∑
s=1

∏
q �=i

aq,sa
−1
q,j

)
detA

(−1)
i,j

=
n∑

i=1

(−1)ia−1
i,j detA

(−1)
i,j −

n∑
i=1

(−1)ia−1
i,j(a1 , . . . , ai−1 , ai+1 , . . . , an)n−1

∏
q �=i

a−1
q,j detA

(−1)
i,j .

Therefore,
n∑

i=1

(−1)i(a1 , . . . , ai−1 , ai+1 , . . . , an)n−1

n∏
q=1

a−1
q,j detA

(−1)
i,j

=
n∑

i=1

(−1)ia−1
i,j detA

(−1)
i,j = (−1)j detA(−1). �
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Corollary 1. Suppose that, for vectors a1 , . . . , an ∈ Kn , n > 2 , any n−1 of them are orthogonal
in the sense of (n − 1)-scalar products:

(a1 , . . . , ai−1 , ai+1 , . . . , an)n−1 = 0

for all i = 1, . . . , n . Assume that ai,j �= 0 for all i, j , where ai = (ai,1 , . . . , ai,n) . Suppose
that A is a matrix with rows (columns) a1 , . . . , an . Then the matrix A(−1) = (a−1

i,j) is singular :
detA(−1) = 0 .

In the case n = 3, we obtain the property of 3× 3 orthogonal matrices given above.
Let us present another version of Theorem 1. Along with the well-known formula

detA =
n∑

i,j=1

ai,j∆i,j ,

where ∆i,j = (−1)i+j detAi,j is a cofactor, the following “complication” of this formula is valid.

Theorem 2. Assume that all the components of the matrix A = (ai,j) ∈ Matn , n ≥ 3 , are
distinct from zero and a−1

i = (a−1
i,1 , . . . , a−1

i,n) and ā−1
j = (a−1

1,j , . . . , a−1
n,j) are the ith row and

the jth column of the matrix A(−1) . Then, for any 1 ≤ j ≤ n ,

detA =
n∑

i=1

λi,jai,j∆i,j ,

and, for any 1 ≤ i ≤ n ,

detA =
n∑

j=1

λ̄i,jai,j∆i,j ,

where

λi,j =
(∏

s�=i

as,j

)
(a−1

1 , . . . , a−1
i−1 , a−1

i+1 , . . . , a−1
n )n−1 ,

λ̄i,j =
(∏

s�=j

ai,s

)
(ā−1

1 , . . . , ā−1
j−1 , ā−1

j+1 , . . . , ā−1
n )n−1.

Remark 1. If any n − 1 rows of an n × n matrix are (n − 1)-orthogonal and n > 3 , then any
n−1 columns of this matrix need not also be (n−1)-orthogonal. Also, note that it is not necessary
that K be a field. It is sufficient that it be a commutative ring.

The Hadamard inverse admits some of the usual matrix operations. The mapping A 	→ detA(−1)

is skew-symmetric with respect to permutations of the rows (columns), but the addition of some
row (column) to another row (column) may change the determinant detA(−1) .

Corollary 2. Suppose that A = (ai,j) is a matrix with invertible components ai,j and B is a
matrix obtained from A by multiplying some row (column) by a number ε ∈ K , where εn−1 = 1 .
Then detA(−1) = detB(−1) .

The condition aij �= 0 in the statement of Theorem 1 can be dropped if we consider Cayley
determinants defined as follows. To any n × n matrix A we assign an element of K denoted by
Ca(A) according to the rule

Ca(A) =
∑

σ∈Symn

signσa1,1 · · · â1,σ(1) · · · a1,na2,1 · · · â2,σ(2) · · · a2,n · · · an,1 · · · ân,σ(n) · · · an,n.

If all the ai,j are not zeros, then

Ca(A) =
( n∏

i,j=1

ai,j

)
A(−1).

Below is another version of Theorem 1.
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Theorem 3. Suppose that A = (ai,j) is an n × n matrix and n ≥ 3 . Then, for all 1 ≤ j ≤ n ,

Ca(A) =
n∑

i=1

( n∏
s�=j

ai,s

)
(−1)i+j(a1 , . . . , ai−1 , ai+1 , . . . , an)n−1 Ca(Ai,j),

and, for all 1 ≤ i ≤ n ,

Ca(A) =
n∑

j=1

(∏
s�=i

as,j

)
(−1)i+j(ā1 , . . . , āj−1 , āj+1 , . . . , ān)n−1 Ca(Ai,j).

Corollary 3. If each row (column) contains, at least, two zeros, then Ca(A) = 0 .

Remark 2. There is another generalization of Cayley’s relation (1) for matrices of fourth order.
Suppose that A is a 4× 4 matrix. Then

perAdetA = detA(2) + 2
4∑

i,j=1

(−1)i+ja2
i,j Ca(Ai,j).
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