
Journal of Dynamical and Control Systems, Vol. 11, No. 2, April 2005, 195–213 ( c©2005)

NILPOTENCY OF ZINBIEL ALGEBRAS

A. S. DZHUMADIL’DAEV and K. M. TULENBAEV

Abstract. Zinbiel algebras are defined by the identity (a ◦ b) ◦ c =
a◦(b◦c+c◦b). We prove an analog of the Nagata–Higman theorem for
Zinbiel algebras. We establish that every finite-dimensional Zinbiel
algebra over an algebraically closed field is solvable. Every solvable
Zinbiel algebra with solvability length N is a nil-algebra with nil-
index 2N if p = char K = 0 or p > 2N − 1. Conversely, every Zinbiel
nil-algebra with nil-index N is solvable with solvability length N if
p = 0 or p > N − 1. Every finite-dimensional Zinbiel algebra over
complex numbers is nilpotent, nil, and solvable.

1. Introduction

Let A = (A, ◦) be an algebra, where A is a vector space over a field K
of characteristic p ≥ 0 and A × A → A, (a, b) �→ a ◦ b, is a multiplication.
Let f = f(t1, . . . , tk) be some noncommutative, nonassociative polynomial
with k variables t1, . . . , tk. We say that A satisfies an identity f = 0 if
f(a1, . . . , ak) = 0 for any substitutions t1 := a1, . . . , tk := ak by elements of
A. Here, multiplications are calculated in terms of the multiplication ◦.

For example, an algebra with the identity ass = 0 is said to be associative
if

ass = t1(t2t3) − (t1t2)t3.

An algebra with the identity tn = 0 is called a nil-algebra. An associative
nil-algebra has nil-index n if an−1 �= 0 for some a ∈ A.

Any associative algebra with nil-index n is nilpotent with nilpotency
index no greater than 2n − 1: for some N = N(n) ≤ 2n − 1, the identity

t1 · · · tN = 0

holds (the Nagata–Higman theorem). In other words,

a1 ◦ · · · ◦ aN = 0
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for any a1, . . . , aN ∈ A [13, 7, 4]. The problem of finding more exact esti-
mates for N(n) remains still difficult. For example, N(2) = 3 and N(3) = 6.

A similar problem for Lie algebras is also complicated and very interest-
ing. It is related to the Engel theorem and Burnside problems [10].

An algebra with the identity r sym = 0 is said to be right-symmetric,
where

r sym = t1(t2t3 − t3t2) − (t1t2)t3 + (t1t3)t2
(see [5, 18]). In [2], such algebras are called chronological algebras. Later
[8], the name “chronological” was used for a different algebra.

Algebras with the identity zinbiel = 0, where

zinbiel(t1, t2, t3) = (t1t2)t3 − t1(t2t3) − t1(t3t2),

are called Zinbiel algebras.

Example. (C[x], �), where (a � b)(x) =
∂

∂x
a(x)b(x), is right-symmetric.

Moreover, it satisfies also the identity lcom = 0, where

lcom(t1, t2, t3) = t1(t2t3) − t2(t1t3).

Example. (C[x], ◦), where (a ◦ b)(x) = a(x)
∫ x

0
b(t)dt is a Zinbiel algebra.

An algebra satisfying the identity leibniz = 0, where

leibniz(t1, t2, t3) = t1(t2t3) − (t1t2)t3 + (t1t3)t2,

is called a Leibniz algebra. Such algebras were introduced in [3, 11]. The
Koszul dual [6] of the Leibniz operad is defined by the identity zinbiel = 0,
i.e., by the condition

(a ◦ b) ◦ c = a ◦ (b ◦ c+ c ◦ b) (1)

for any a, b, c ∈ A. Such algebras are called Leibniz dual or Zinbiel (read
Leibniz in reverse order) algebras [12]. In our paper, we do not follow
terminology of [8, 9] and use the term Zinbiel algebras for Leibniz dual
algebras. For the history of the name “chronological,” see [16].

An algebra A is said to be solvable if A(k) = 0 for some k, where A(i) are
defined by

A(0) = A, A(i+1) = A(i) ◦A(i), i > 0.
We say that A has solvability length N if A(N) = 0, A(N−1) �= 0.

An algebra A is said to be nilpotent if there exists N such that the
right-bracketed product of any N elements of A vanishes:

a1 ◦ (a2 ◦ (· · · (aN−1 ◦ aN ) · · · )) = 0.

The minimal N with such property is called the nilpotency index. For
every nilpotent Zinbiel algebra A, there exists N such that the product of
arbitrary N elements of any bracketing type vanishes. It is obvious that
any nilpotent algebra is solvable.
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We denote by ra and la the right and left multiplication operators on
A = (A, ◦):

ra(b) = b ◦ a, la(b) = a ◦ b.
The powers a·k and a(·k) are defined by

a·1 = a, a· k+1 = lka(a) = a ◦ a·k,
a(·1) = a, a(·k) = a(· k−1) ◦ a(· k−1).

We say that a Zinbiel algebra A is a nil-algebra if for every a ∈ A, we have
a·k = 0 for some k = k(a). Then, given an arbitrary element of a Zinbiel
nil-algebra, some power of this element of any bracketing type vanishes. If
a·n = 0 for all a ∈ A and a·n−1 �= 0 for some a ∈ A, then we say that A is a
nil-algebra with nil-index n. A Zinbiel algebra is said to be simple if it has
no proper ideal, i.e., if I ◦A ⊆ I, A ◦ I ⊆ I, then I = 0 or I = A.

In this paper, we prove the following results.

Theorem 1.1. Let K be an algebraically closed field of characteristic
p ≥ 0. Then every finite-dimensional Zinbiel algebra is solvable.

Theorem 1.2. Let K be a field of characteristic p ≥ 0 and A be a
solvable Zinbiel algebra with solvability length N . If p = 0 or p > 2N − 1,
then A is a nil-algebra with nil-index no greater than 2N . Conversely, if A
is a Zinbiel nil-algebra with nil-index N and if p = 0 or p > N − 1, then A
is solvable with solvability length N .

Theorem 1.3. Let K be a field of characteristic p ≥ 0. Every Zin-
biel nil-algebra is nilpotent. If A is a nil-algbera with nil-index n, then the
nilpotency index of A is no greater than 2n − 1.

Corollary 1.4. Every finite-dimensional, simple Zinbiel algebra over an
algebraically closed field of characteristic p ≥ 0 is isomorphic to the 1-
dimensional algebra with trivial multiplication.

Corollary 1.5. Every finite-dimensional Zinbiel algebra over the field of
complex numbers is nilpotent (and, hence solvable and nil). If p > 0, then
every finite-dimensional Zinbiel algebra over an algebraically closed field of
dimension < log2(p+1) and characteristic p is nilpotent (and hence solvable
and nil).

Let
Z(A) = {z ∈ A | a ◦ z = z ◦ a = 0 ∀a ∈ A}

be the center of A.

Corollary 1.6. Let A be a finite-dimensional Zinbiel algebra over the
field of complex numbers of dimension n. Then there exists N < n such
that the product of any N elements of A in any type of bracketing is equal
to 0. Moreover, A has the nontrivial center Z(A) �= 0. The same is true for
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any finite-dimensional Zinbiel algebra A over a field of characteristic p > 0
if n = dimA < log2(p+ 1).

We see that the infinite-dimensional Zinbiel algebra (C[x], ◦) with the
multiplication (a ◦ b)(x) = a(x)

∫ x

0
b(t)dt is not nilpotent and hence not

solvable. In other words, Theorem 1.1 and Corollary 1.5 are false in the
infinite-dimensional case.

As an application of our results, we classify Zinbiel algebras of dimension
≤3 over an algebraically closed field K.

Theorem 1.7. Let K be an algebraically closed field of any characteris-
tic p.

Any Zinbiel algebra of dimension 1 is isomorphic to an algebra with trivial
multiplication: A = 〈e1〉, e1 ◦ e1 = 0.

Any two-dimensional Zinbiel algebra is isomorphic to the algebra Q(β)
defined as follows:

Q(α) = 〈e1, e2〉 , α = 0 or 1,
e1 ◦ e1 = αe2, e1 ◦ e2 = 0, e2 ◦ e1 = 0, e2 ◦ e2 = 0.

Any three-dimensional Zinbiel algebra with dimA ◦ A ≤ 1 is isomorphic
to the algebra R(α, β, γ, δ) defined as follows:

R(α, β, γ, δ) = 〈e1, e2, e3〉 ,
e1 ◦ e1 = αe3, e1 ◦ e2 = βe3, e1 ◦ e3 = 0,
e2 ◦ e1 = γe3, e2 ◦ e2 = δe3, e2 ◦ e3 = 0,
e3 ◦ e1 = 0, e3 ◦ e2 = 0, e3 ◦ e3 = 0,

where α, β, γ, δ ∈ K.
Any three-dimensional Zinbiel algebra A over an algebraically closed field

of characteristic �=2 with dimA ◦ A = 2 is isomorphic to the algebra W (3)
defined as follows:

charK �= 2, W (3) = 〈e1, e2, e3〉 ,
e1 ◦ e1 = e2, e1 ◦ e2 =

1
2
e3, e1 ◦ e3 = 0,

e2 ◦ e1 = e3, e2 ◦ e2 = 0, e2 ◦ e3 = 0,
e3 ◦ e1 = 0, e3 ◦ e2 = 0, e3 ◦ e3 = 0.

There are no 3-dimensional Zinbiel algebras A such that dimA ◦A = 3.
The algebras R(α, β, γ, δ) and W (3) are not isomorphic. The following

isomorphisms hold :

R(α, β, γ, δ) ∼= R(1, β, γ, δ) if α �= 0,

R(α, β, γ, δ) ∼= R(α, β, γ, 1) if δ �= 0.
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Therefore, there are two types of nonisomorphic classes of three-
dimensional algebras R(α, β, γ, δ), where α, δ = 0 or 1 and β, γ ∈ K,
and W (3).

Two-dimensional Zinbiel algebras over complex numbers were also stud-
ied in [14].

In our paper, the letter n is used in two senses: sometimes, n denotes
the dimension of an algebra, sometimes, we use n as a nil-index. From the
context it will be clear in what sense n is used. Note that the nil-index
cannot be greater than the dimension of the algebra.

2. Proof of Theorem 1.1

Every Zinbiel algebra is right-commutative:

(a ◦ b) ◦ c = (a ◦ c) ◦ b.
Let

C(a) = {x ∈ A : a ◦ x = 0}
be the right centralizer of a ∈ A. An important role in this paper is played
by the following property of the right centralizer.

Lemma 2.1. Let A be a right-commutative algebra. Then for all a, b ∈
A, we have C(a) ⊆ C(a ◦ b).
Proof. If x ∈ C(a), then (a ◦ b) ◦ x = (a ◦ x) ◦ b = 0 and x ∈ C(a ◦ b).

Lemma 2.2. Let A be a Zinbiel algebra and let a ∈ A. If v is an eigen-
vector of the linear operator la with eigenvalue µ ∈ K, then v ◦ v is an
eigenvector with eigenvalue 2−1µ.

Proof. If a ◦ v = µv, then (a ◦ v) ◦ v = µv ◦ v and, by the Zinbiel identity,
(a ◦ v) ◦ v = 2a ◦ (v ◦ v). Therefore, la(v·2) = 2−1µv·2.

Lemma 2.3. Let A be a Zinbiel algebra of dimension n over an alge-
braically closed field K of characteristic charK �= 2. Then for every a ∈ A,
we have:

• lna = 0, or
• there exists 0 �= b ∈ A such that la(b) = λ b, b ◦ b = 0, for some

0 �= λ ∈ K.

Proof. If la ∈ EndA is nil, then by the Hamilton–Cayley theorem lna = 0.
If la is not nil, then by Hamilton–Cayley theorem la, as an operator

over an algebraically closed field, has a nontrivial eigenvalue 0 �= µ ∈ K.
Let v ∈ A be an eigenvector of la with the eigenvalue µ. By Lemma 2.2,
la(v(·k)) = 2−kµv(·k) for all k. Therefore, if µ �= 0, then there exists N ≤
n = dimA such that v(·N−1) �= 0, v(·N) = 0.

Therefore, if la is not nil, then there exists a nonzero eigenvalue µ ∈ K
and la(b) = λb, b ◦ b = 0, for b = v(·N−1), λ = 2−N+1µ �= 0.
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Lemma 2.4. For every finite-dimensional Zinbiel algebra A over an al-
gebraically closed field, there exists x �= 0 such that C(x) = A.

Proof. Prove that there exists a0 �= 0 such that C(a0) = C(a0 ◦ b) for all
0 �= b ∈ A.

Take any nonzero element a1 ∈ A as a0. If C(a1) = A, then there is
nothing to prove: C(a0) = A = C(a0 ◦ b) for any b ∈ A. Assume that
C(a1) �= A.

If C(a1) �= C(a1 ◦ a2) for some a2 ∈ A, then by Lemma 2.1,

C(a1) ⊂ C(a1 ◦ a2).

Now take a1 ◦ a2 as a0 and repeat the procedure. If

C(a1 ◦ a2) �= C((a1 ◦ a2) ◦ a3)

for some a3 ∈ A, then take (a1 ◦a2)◦a3 as a0, and so on. Finally, we obtain
a sequence of nonzero elements a1, a2, . . . , ak ∈ A such that

C(a1) ⊂ C(a1 ◦ a2) ⊂ C((· · · (a1 ◦ a2) · · · ak−1) ◦ ak) ⊆ A.

Since A is finite-dimensional, this sequence terminates at some k. In other
words,

C((· · · (a1 ◦ a2) · · · ak−1) ◦ ak) = C(((· · · (a1 ◦ a2) · · · ak−1) ◦ ak) ◦ ak+1)

for any 0 �= ak+1 ∈ A. Now take a0 = (· · · (a1 ◦ a2) · · · ) ◦ ak.
Therefore, we have proved that there exists a0 �= 0 such that C(a0) =

C(a0 ◦ b) for all b �= 0.
Now prove that C(a0) = A.
If la0 = 0, then C(a0) = A. Assume that la0 �= 0 and N is the nilpotency

index of la0 , i.e., 1 < N ≤ n, lN−1
a0

�= 0, and lNa0
= 0.

If charK = 2, then by the Zinbiel identity, (a0 ◦ b)◦ b = 2(a0 ◦ (b◦ b)) = 0
for all b ∈ A. Therefore, b ∈ C(a0 ◦ b) = C(a0) for all 0 �= b ∈ A. In other
words, C(a0) = A.

If charK �= 2, then by Lemma 2.3 lna0
= 0 for n = dimA or there exists

0 �= b ∈ A such that a0 ◦ b = λb, where λ �= 0 and b ◦ b = 0. The second case
is not possible:

b ∈ C(a0 ◦ b) = C(a0) ⇒ a0 ◦ b = 0 ⇒ λ = 0,

a contradiction. Therefore, lna0
= 0. Let N be the nilpotency index of la0 :

lN−1
a0

�= 0, lNa0
= 0 for 1 < N ≤ n = dimA. There exists c ∈ A such that

b = lN−1
a0

(c) �= 0. Then a0 ◦ b = lNa0
(c) = 0 and, by the definition of a0,

C(a0) = C(a0 ◦ b) = C(0) = A.

Therefore, in all cases we can take x = a0.

Lemma 2.5. Every finite-dimensional Zinbiel algebra over an alge-
braically closed field of dimension >1 has a proper ideal.
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Proof. By Lemma 2.4, there exists 0 �= x ∈ A such that C(x) = A. Prove
that I = A ◦ x = {y ◦ x : y ∈ A} is an ideal of A. For every a ∈ A, we have

(y ◦ x) ◦ a = (y ◦ a) ◦ x ∈ I.

Since C(x) = A, we have x ◦ y = 0 for any y ∈ A. Therefore,

a ◦ (y ◦ x) = a ◦ (y ◦ x+ x ◦ y) = (a ◦ y) ◦ x ∈ I

for all a ∈ A. Therefore, I is a two-sided ideal of A.
Prove that dim I < n = dimA. Take a basis {e1, . . . , en} for A with

e1 = x. Then x ◦ x = 0 since C(x) = A. Therefore, I is the linear span of
the vectors e1◦x = x◦x = 0, e2◦x, . . . , en◦x. Therefore, dim I < n = dimA.
If I �= 0, then we can take I as a proper ideal of A.

If I = A ◦ x = 0, then we can take as a proper ideal the one-dimensional
ideal generated by x.

Proof of Theorem 1.1. We use induction on n = dimA.
Assume that n = 1. Prove that any one-dimensional Zinbiel algebra is

isomorphic to an algebra with trivial multiplication. If dimA = 1 and A is
generated by the basis element e1, then e1 ◦ e1 = αe1 for some α ∈ K. By
the Zinbiel identity,

zinbiel(e1, e1, e1) = 0 ⇒ α2e1 = 0 ⇒ α = 0.

Therefore, any 1-dimensional algebra A is solvable.
Assume that n > 1 and our statement is true for n− 1. By Lemma 2.5,

A has some proper ideal J . Since dimJ < n and dimA/J < n, by the
induction hypothesis J and A/J are solvable. Therefore, A is solvable.
This completes the proof.

3. Proof of Theorem 1.2

In this section, n is a positive integer, not necessarily equal to dimA.

Lemma 3.1. For arbitrary elements a1, . . . , ak+s of a Zinbiel algebra A,
the product

(a1 ◦ (a2 ◦ (· · · (ak−1 ◦ ak) · · · ))) ◦ (ak+1 ◦ (ak+2 ◦ (· · · (ak+s−1 ◦ ak+s) · · · )))
is the sum of

(
k+s−1

s

)
elements of the form

aσ(1) ◦ (aσ(2) ◦ (· · · (aσ(k+s−1) ◦ aσ(k+s)) · · · )),
where σ ∈ Symk+s runs through all permutations such that

σ(i) < σ(j) ≤ k ⇒ i < j,

k < σ(i) < σ(j) ≤ k + s ⇒ i < j.

Proof. This is easy induction on k + s that uses the Zinbiel identity.
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Corollary 3.2. Let A be a Zinbiel algebra. Then for every a ∈ A and
all i, j ∈ Z+, we have

a·i ◦ a·j =
(
i+ j − 1

j

)
a·i+j .

Given a1, a2, . . . , an ∈ A, denote by Sn(a1, a2, . . . , an) the sum of n! right-
bracketed products formed by taking a1, a2, . . . , an in all possible orders.
Let a � b = a ◦ b+ b ◦ a be the Jordan product in A = (A, ◦). The product
(a, b) �→ a � b is also known as the shuffle product [15, 17]. If A is a Zinbiel
algebra, then (A, �) is associative and commutative [12].

Let In be the ideal of A generated by the right-bracketed nth powers a·n,
a ∈ A.

Lemma 3.3. For arbitrary elements a1, . . . , ak+r of a Zinbiel algebra A,
we have

Sk(a1, . . . , ak) � Sr(ak+1, . . . , ak+r) = Sk+r(a1, . . . , ak+r).

Proof. We use induction on k. Let k = 1. By Lemma 3.1,

a1 � Sr−1(a2, . . . , ar) = a1 ◦ Sr−1(a2, . . . , ar) + Sr−1(a2, . . . , ar) ◦ a1

= Sr(a1, . . . , ar).

Assume that our statement is true for k − 1. Since

Sk(a1, . . . , ak) = S1(a1) � Sk−1(a2, . . . , ak),

by the result of [12], we have

Sk(a1, . . . , ak) � Sr(ak+1, . . . , ak+r)

= (S1(a1) � Sk−1(a2, . . . , ak)) � Sr(ak+1, . . . , ak+r)

(the associativity of �)
= S1(a1) � (Sk−1(a2, . . . , ak) � Sr(ak+1, . . . , ak+r))

(the induction assumption)
= S1(a1) � Sk+r−1(a2, . . . , ak+r)

(the induction assumption)
= Sk+r(a1, . . . , ak+r).

The lemma is proved.

Lemma 3.4. Let A be a Zinbiel algebra. Then for arbitrary a1, . . . , an,
u ∈ A,

Sn(a1, . . . , an) ◦ u =
n∑

i=1

ai ◦ Sn(a1, . . . , âi, . . . , an, u),

where âi means that the element ai is omitted.
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Proof. By Lemma 3.3,

Sn(a1, . . . , an) ◦ u = (a1 � Sn−1(a2, . . . , an)) ◦ u
= a1 ◦ (Sn−1(a2, . . . , an) � u) + Sn−1(a2, . . . , an) ◦ (a1 � u)

= a1 ◦ Sn(a2, . . . , an, u) + Sn−1(a2, . . . , an) ◦ S2(a1, u)

= a1 ◦ Sn(a2, . . . , an, u) + (a2 � Sn−2(a3, . . . , an)) ◦ S2(a1, u)

= a1 ◦ Sn(a2, . . . , an, u) + a2 ◦ (Sn−2(a3, . . . , an) � S2(a1, u))

+Sn−2(a3, . . . , an) ◦ (a2 � S2(a1, u))

= a1 ◦ Sn(a2, . . . , an, u) + a2 ◦ (Sn(a1, a3, . . . , an, u))

+Sn−2(a3, . . . , an) ◦ S3(a1, a2, u)

= · · · = a1 ◦ Sn(a2, . . . , an, u) + a2 ◦ (Sn(a1, a3, . . . , an, u)) + . . .

+S1(an) ◦ Sn(a1, a2, . . . , an−1, u).

The lemma is proved.

Lemma 3.5. Let A be a Zinbiel algebra, n be an integer, and n < p
or p = 0. Then the ideal In = 〈a·n : a ∈ A〉 generated by nth right-
bracketed powers is, as a vector space, the linear span of elements of the
form a1 ◦ (a2 ◦ (· · · (ak ◦ Sn(ak+1, . . . , ak+n)) · · · )), where a1, . . . , ak+n are
any elements of A.

Proof. Denote by Jn the linear span of elements of the form X = a1 ◦ (a2 ◦
(· · · (ak ◦ Sn(ak+1, . . . , ak+n)) · · · )). We will prove that In = Jn.

We have

Sn(a1, a2, . . . , an) =
∑

(−1)n−r(ai1 + ai2 + · · · + air
)·n,

where the summation is taken over all nonempty subsets {i1, i2, . . . , ir} ⊆
{1, 2, . . . , n} and all products are right-bracketed. Therefore,

Sn(a1, . . . , an) ∈ In.

Hence,
a1 ◦ (a2 ◦ (· · · (ak ◦ Sn(ak+1, . . . , ak+n)) · · · )) ∈ In

for all k. In other words, Jn ⊆ In.
Now we prove that In ⊆ Jn. It is clear that Jn is a left ideal and

A ◦ Jn ⊆ Jn. If p = 0 or n < p, then

a·n = (n!)−1Sn(a, . . . , a).

Therefore, in the case of p = 0 or n < p, we can choose generators for In of
the form Sn(x1, . . . , xn). Therefore, to establish that In = Jn, it suffices to
prove that X ◦ u ∈ Jn for all X ∈ Jn and u ∈ A.

By induction on k = 0, 1, 2, . . ., we prove that X ◦ u ∈ Jn for all u ∈ A,
where X ∈ Jn has the form a1 ◦ (a2 ◦ (· · · (ak ◦ Sn(ak+1, . . . , ak+n)) · · · )).
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Let k = 0. Then by Lemma 3.3,

X = Sn(a1, . . . , an) = a1 � Sn−1(a2, . . . , an)

and by Lemma 3.4,

X ◦ u =
n∑

i=1

ai ◦ Sn(a1, . . . , âi, . . . , an, u) ∈ In.

Therefore, our statement is true for k = 0.
Assume that our statement is true for k− 1. In other words, for all Y =

a2 ◦ (· · · (ak ◦ Sn(ak+1, . . . , ak+n)) · · · ) ∈ Jn and u ∈ A we have Y ◦ u ∈ Jn.
We know that a1◦(u◦Y ) ∈ Jn. Then for X = a1◦Y , by the Zinbiel identity,

X ◦ u = a1 ◦ (Y ◦ u+ u ◦ Y ) = a1 ◦ (Y ◦ u) + a1 ◦ (u ◦ Y ) ∈ Jn.

Hence, our statement is proved for k.

Lemma 3.6. Let (A, ◦) be a Zinbiel algebra. Then for any a1, . . . , ak ∈
A, we have

(· · · (a1 ◦ a2) · · · ◦ ak−1) ◦ ak = a1 ◦ Sk−1(a2, . . . , ak).

Proof. By the Zinbiel identity, our statement is true for k = 3. Assume that
it is true for k − 1. Then

(· · · (a1 ◦ a2) · · · ◦ ak−1) ◦ ak = (a1 ◦ Sk−2(a2, . . . , ak−1)) ◦ ak

= a1 ◦ (Sk−2(a2, . . . , ak−1) � ak).

By Lemma 3.3,

Sk−2(a2, . . . , ak−1) � ak = Sk−1(a2, . . . , ak−1, ak).

Therefore, our statement is true for k. The lemma is proved.

Lemma 3.7. Let n be an integer and n − 2 < p or p = 0. Then
Sn−1(a1, . . . , an−1) ◦ S2(b1, b2) ∈ In for any a1, . . . , an−1, b1, b2 ∈ A.

Proof. By Lemma 3.6, (n− 1)th right-bracketed product of a by b ◦ b is

(a·n−1) ◦ (b ◦ b) = (1/(n− 2)!)(1/2)((((a ◦ a) ◦ · · · ) ◦ a) ◦ b) ◦ b
= (1/(n− 2)!)(1/2)a ◦ Sn(a, a, · · · , a, b, b) ∈ In.

Since Sk(a1, . . . , ak) is the sum of elements of the form a·k, the proof is
complete.

Lemma 3.8.

a ◦ (b ◦ c) = S2(a, b ◦ c) − b ◦ S2(a, c).
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Proof. We have

S2(a, b ◦ c) − b ◦ S2(a, c) = a ◦ (b ◦ c) + (b ◦ c) ◦ a− b ◦ (a ◦ c) − b ◦ (c ◦ a)
= (a ◦ b) ◦ c.

The lemma is proved.

Lemma 3.9. Let A be a Zinbiel algebra, n ≥ 3, and let p = 0 or
n− 1 < p. Then

In−1 ◦ In−1 ⊆ In.

Proof. By Lemma 3.5, every two elements u, v ∈ In−1 can be represented
in the form

u = a1 ◦ (a2 ◦ (· · · (ak ◦ Sn−1(ak+1, . . . , ak+n−1)) · · · )),
v = b1 ◦ (b2 ◦ (· · · (br ◦ Sn−1(br+1, . . . , br+n−1)) · · · ))

for some ai, bj ∈ A.
We use induction on k + r and prove that u ◦ v ∈ In. Assume that

k + r = 0. Then

u = Sn−1(a1, · · · , an−1), v = Sn−1(b1, · · · , bn−1).

By Lemma 3.3, v = S2(b1, Sn−1(b2, . . . , bn−1)). Therefore, by the Zinbiel
identity,

u ◦ v = Sn−1(a1, · · · , an−1) ◦ S2(b1, Sn−2(b2, · · · , bn−1))

= (Sn−1(a1, . . . , an−1) ◦ b1) ◦ Sn−2(b2, . . . , bn−1)

(see Lemma 3.4)

=
n−1∑
i=1

(ai ◦ Sn−1(a1, . . . , âi, . . . , an−1, b1)) ◦ Sn−2(b2, . . . , bn−1)

=
n−1∑
i=1

ai ◦ (Sn−1(a1, . . . , âi, . . . , an−1, b1) � Sn−2(b2, . . . , bn−1))

(Lemma 3.3)

=
n−1∑
i=1

ai ◦ S2n−3(a1, . . . , âi, . . . , an−1, b1, b2, . . . , bn−1).

Therefore, in view of

S2n−3(x1, . . . , x2n−3) ∈ I2n−3 ⊆ In,

we see that u ◦ v ∈ In.
Assume that for k + r − 1 our statement is true. Consider two cases:

k > 0 and r > 0.
If k > 0, then u = a1 ◦ u1 for

u1 = a2 ◦ (· · · (ak ◦ Sn−1(ak+1, . . . , ak+n−1)) · · · ).
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By the induction assumption, u1 ◦ v ∈ In and v ◦ u1 ∈ In. Therefore,

u ◦ v = a1 ◦ (u1 ◦ v + v ◦ u1) ∈ In.

If r > 0, then v = b1 ◦ v1, where

v1 = b2 ◦ (· · · (br ◦ Sn−1(br+1, . . . , bn+r−1)) · · · ).
As we have verified above,

v ◦ u = (b1 ◦ v1) ◦ u = b1 ◦ (v1 ◦ u+ u ◦ v1) ∈ In,

and by Lemma 3.3,
u � v ∈ I2n−2 ⊆ In.

Hence
u ◦ v = u � v − v ◦ u ∈ In.

Therefore, our statement is true for k + r. The lemma is proved.

Lemma 3.10. Let A be a Zinbiel algebra and p = 0 or n− 1 < p. Then

A(n) ⊆ In.

Proof. We use induction on n ≥ 2. It is easy to see that

a ◦ (b ◦ c) = S2(a, b ◦ c) − b ◦ S2(a, c).

Thus,
(x ◦ y) ◦ (b ◦ c) = S2(x ◦ y, b ◦ c) − b ◦ S2(x ◦ y, c).

Therefore,
(x ◦ y) ◦ (b ◦ c) ∈ I2.

In other words, A(2) ⊆ I2.
Now assume that A(n−1) ⊆ In−1. Then by Lemma 3.9,

A(n) = A(n−1) ◦A(n−1) ⊆ In−1 ◦ In−1 ⊆ In.

Proof of Theorem 1.2. Let A be a solvable Zinbiel algebra with solvability
length N and let p = 0 or p > 2N − 1. Prove that A is nil with nil-index
2N by induction on N . For N = 1, the statement is obvious. Assume that
the condition A(N−1) = 0 implies a·2

N−1
= 0 for every a ∈ A.

Now assume that A(N) = 0. Then Ā(N−1) = 0 for Ā = A/A(N−1).
Therefore, by the induction hypothesis, a·2

N−1 ∈ A(N−1) for all a ∈ A.
Thus,

a·2
N−1 ◦ a·2N−1 ∈ A(N) = 0.

By Corollary 3.2,

a·2
N−1 ◦ a·2N−1

=
(

2N − 1
2N−1

)
a·2

N

.

Therefore, if p > 2N − 1, then A is nil with nil-index 2N .
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Now we prove that A is solvable with solvability length N if A is nil with
nil-index N . If N = 2, then

(d ◦ e) ◦ (b ◦ c) = S2(d ◦ e, b ◦ c) − b ◦ S2(d ◦ e, c).
Thus, by Lemma 3.5, A(2) ⊆ I2. By Lemma 3.10, A(n) ⊆ In if p = 0 or
n > p − 1. Hence, A is solvable with solvability length N if IN = 0 and
p = 0 or N − 1 < p.

4. Proof of theorem 1.3

Let n be any positive integer. For x, y ∈ A, write x ≡ y if x − y ∈ In.
Note that for any a ∈ A,

a ◦ x ≡ a ◦ y, x ◦ a ≡ y ◦ a
if x ≡ y.

Lemma 4.1. For any a1, . . . , an−1, b ∈ A,

Sn−1(a1, . . . , an−1) ◦ b ≡ −b ◦ Sn−1(a1, . . . , an−1).

Proof. By Lemma 3.3,

b ◦ Sn−1(a1, a2, . . . , an−1) + Sn−1(a1, a2, . . . , an−1) ◦ b
= Sn(a1, a2, . . . , an−1, b) ∈ In.

The lemma is proved.

Lemma 4.2. For any x1, . . . , xn−1, f, e ∈ A,

f ◦ (Sn−1(x1, x2, . . . , xn−1) ◦ e) ≡ S2(f, Sn−1(x1, x2, . . . , xn−1) ◦ e),
f ◦ (e ◦ Sn−1(x1, x2, . . . , xn−1)) ≡ S2(f, e ◦ Sn−1(x1, x2, . . . , xn−1)).

Proof. By Lemma 4.1,

f ◦ (Sn−1(x1, x2, . . . , xn−1) ◦ e) = −f ◦ (e ◦ Sn−1(x1, x2, . . . , xn−1)) + y1,

where
y1 = f ◦ Sn(x1, . . . , xn−1, e) ∈ In.

Therefore, by Lemma 3.8,

f ◦ (Sn−1(x1, x2, . . . , xn−1) ◦ e) = S2(f, Sn−1(x1, x2, . . . , xn−1) ◦ e+ y2,

where by Lemma 3.7

y2 = −Sn−1(x1, x2, . . . , xn−1) ◦ S2(f, e) ∈ In.

Further,

f ◦ (e ◦ Sn−1(x1, x2, . . . , xn−1)) ≡ −f ◦ (Sn−1(x1, x2, . . . , xn−1) ◦ e)
≡ −S2(f, Sn−1(x1, x2, . . . , xn−1) ◦ e) ≡ S2(f, e ◦ Sn−1(x1, x2, . . . , xn−1)).

The lemma is proved.
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Lemma 4.3. For any a, b, x1, . . . , xn−1, e ∈ A,

a ◦ (b ◦ (Sn−1(x1, x2, . . . , xn−1) ◦ e)) ≡ (a ◦ b) ◦ (Sn−1(x1, x2, . . . , xn−1) ◦ e),
a ◦ (b ◦ (e ◦ Sn−1(x1, x2, . . . , xn−1))) ≡ (a ◦ b) ◦ (e ◦ Sn−1(x1, x2, . . . , xn−1)).

Proof. By Lemma 4.2,

a ◦ (b ◦ (Sn−1(x1, x2, . . . , xn−1) ◦ e)) ≡ a ◦ S2(b, Sn−1(x1, . . . , xn−1) ◦ e)
(Zinbiel identity)

≡ (a ◦ b) ◦ (Sn−1(x1, x2, · · ·xn−1) ◦ e).
Therefore,

a ◦ (b ◦ (e ◦ Sn−1(x1, x2, · · ·xn−1)))

(see Lemma 3.3)
≡ a ◦ (b ◦ (−Sn−1(x1, x2, · · ·xn−1) ◦ e))
≡ −(a ◦ b) ◦ (Sn−1(x1, x2, · · ·xn−1) ◦ e)

(see Lemma 3.3)
≡ (a ◦ b) ◦ (e ◦ Sn−1(x1, x2, · · ·xn−1)).

The lemma is proved.

Proof of Theorem 1.3. Use induction on the nil-index n. Let n = 2. By
Lemma 3.8, any Zinbiel algebra with identity a·2 = 0 is nilpotent with
nil-index 3: a ◦ (b ◦ c) = 0 for any a, b, c ∈ A.

Assume that for any a1, . . . , ak ∈ A,

a1 ◦ (a2 ◦ (· · · (ak−1 ◦ ak))) ∈ In−1

for some k ≤ 2n−1 − 1. Prove that for any a1, . . . , a2k+1 ∈ A,

a1 ◦ (a2 ◦ (· · · (a2k ◦ a2k+1))) ∈ In.

By the induction assumption,

ak+2 ◦ (· · · (a2k ◦ a2k+1)) ∈ In−1.

Therefore, by Lemma 3.5,

ak+2 ◦ (· · · (a2k ◦ a2k+1)) = Sn−1(x1, . . . , xn−1)

or

ak+2 ◦ (· · · (a2k ◦ a2k+1)) = y1 ◦ (y2 ◦ (· · · (ys ◦ Sn−1(x1, . . . , xn−1))))

for some x1, . . . , xn−1, y1, . . . , ys ∈ A.
In the first case, by Lemma 4.3,

a1 ◦ (a2 ◦ (· · · (ak ◦ (ak+1 ◦ Sn−1(x1, x2, · · · , xn−1)))))

≡ (a1 ◦ (a2 ◦ (· · · (ak−1 ◦ ak)))) ◦ (ak+1 ◦ Sn−1(x1, . . . , xn−1)).
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By the induction assumption,

(a1 ◦ (a2 ◦ (· · · (ak−1 ◦ ak)))) ∈ In−1.

Therefore, by Lemma 3.9,

a1 ◦ (a2 ◦ (· · · (a2k ◦ a2k+1))) ∈ In−1 ◦ In−1 ⊆ In.

In the second case, by Lemma 4.3,

ak ◦ (ak+1 ◦ (· · · (a2k ◦ a2k+1)))

≡ ak ◦ (ak+1 ◦ (y1 ◦ (y2 ◦ (· · · (ys ◦ Sn−1(x1, . . . , xn−1))))))

≡ b ◦ (Sn−1(x1, . . . , xn−1) ◦ e),
where

b = −ak ◦ (ak+1 ◦ (y1 ◦ (· · · (ys−2 ◦ ys−1)))) ∈ A, e = ys ∈ A.

Thus, by Lemma 4.3,

a1 ◦ (· · · ◦ (ak−1 ◦ (b ◦ (Sn−1(x1, x2, . . . , xn−1) ◦ e)))))
≡ (a1 ◦ (· · · (ak−1 ◦ b))) ◦ (Sn−1(x1, x2, . . . , xn−1) ◦ e)

By the induction assumption,

a1 ◦ (· · · (ak−1 ◦ b)) ∈ In−1.

Therefore, by Lemma 3.9,

a1 ◦ (· · · (a2k ◦ a2k+1)) ∈ In−1 ◦ In−1 ⊆ In.

We obtain that the right-bracketed product of any 2k + 1 ≤ 2n − 1
elements of A belongs to In. In other words, any Zinbiel nil-algebra is
nilpotent.

Any solvable algebra with solvability index N is nil if p = 0 or p >
2N−1. Any nil-algebra, as we have proved above, is nilpotent. Any nilpotent
algebra is solvable.

5. Proof of Theorem 1.7

Before giving the proof, recall some facts about central extensions of
algebras.

Let A be a Zinbiel algebra, C1(A,K) be a space of linear forms f : A→
K, C2(A,K) be a space of bilinear forms ψ : A × A → K, and C3(A,K)
be a space of trilinear forms φ : A × A × A → K. Recall the definitions of
coboundary operators for small degrees:

d : C1(A,K) → C2(A,K)

is given by
df(a, b) = −f(a ◦ b)

and
d : C2(A,K) → C3(A,K)
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is given by

dψ(a, b, c) = ψ(a ◦ b, c) − ψ(a, b ◦ c) − ψ(a, c ◦ b).
Then B2(A,K) is a space of bilinear forms of the form df , where f ∈
C1(A,K), and Z2(A,K) is a space of bilinear forms ψ such that dψ = 0.
It is easy to verify that d2f = 0 for any linear form f : A→ K. Therefore,
for any Zinbiel algebra A,

B2(A,K) ⊆ Z2(A,K).

The second cohomology space is defined as follows:

H2(A,K) = Z2(A,K)/B2(A,K).

Standard homological arguments show that H2(A,K) can be interpreted as
a space of central extensions of A:

0 → Z → Ã→ A→ 0.

In other words, any algebra Ã with abelian ideal Z is equal as a vector space
to the direct sum A⊕ Z and the multiplication in Ã is given by

(a+ z) ◦ (a1 + z1) = a ◦ a1 + η(a, a1),

where a bilinear mapping η : A×A→ Z satisfies the relation

η(a ◦ b, c) − η(a, b ◦ c) − η(a, c ◦ b) = 0 ∀a, b, c ∈ A.

If for some linear mapping ω : A→ Z,

η(a, b) = −ω(a ◦ b) ∀a, b ∈ A,

then the algebra Ã under this multiplication is isomorphic to the direct sum
of the algebras A⊕ Z.

This interpretation of the second cohomology spaces will be used in de-
scribing algebras of small dimensions.

We will use one more result. Assume that A is ableian: a ◦ b = 0 for
any a, b ∈ A. Then B2(A,K) = 0. Therefore, for any abelian algebra A of
dimension n, the second cohomology space is isomorphic to n2-dimensional
matrix space:

H2(A,K) = Z2(A,K) ∼= Matn .

Proof of Theorem 1.7. It is easy to verify that all algebras mentioned in
Theorem 1.7 are Zinbiel.

If dimA = 1 and A is generated by the basis element e1, then e1◦e1 = αe1
for some α ∈ K. By the Zinbiel identity,

zinbiel(e1, e1, e1) = 0 ⇒ α2e1 = 0 ⇒ α1 = 0.

By Corollary 1.6, for any Zinbiel algebra A over an algebraically closed
field of characteristic 0 or p > 7, there exists the nontrivial center Z(A) and
an exact extension of Zinbiel algebras

0 → Z(A) → A→ Ā→ 0
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holds. In other words, A/Z(A) ∼= Ā. Therefore, the classification of algebras
A is equivalent to the problem of calculation of second cohomology group
H2(Ā,K).

Let A = 〈e1〉 be a one-dimensional Zinbiel algebra. Since any one-
dimensional algebra is abelian, H2(A,K) is one-dimensional and is gen-
erated by a cocycle

ψ(e1, e1) = 1.
Therefore, any 2-dimensional Zinbiel algebra Ã = 〈e1, e2〉 with the central
element e2 has the following multiplication table:

e1 ◦ e1 = βe2, e1 ◦ e2 = 0, e2 ◦ e1 = 0, e2 ◦ e2 = 0.

If β = 0, then we obtain the algebra Q(0). If β �= 0 under the new basis
{1/√βe1, e2}, then we obtain the algebra Q(1).

Since Q(0) is abelian and two-dimensional, H2(Q(0),K) is four-
dimensional and is generated by four cocycles ψi, i = 1, 2, 3, 4, such that

ψ1(e1, e1) = 1, ψ2(e1, e2) = 1, ψ3(e2, e1) = 1, ψ4(e2, e2) = 1

(non-written components are 0). Therefore, any three-dimensional exten-
sion of Q(0) by the one-dimensional center is equivalent to R(α, β, γ, δ).
Take a new basis in R(α, β, γ, δ). Under the basis {1/√αe1, e2, e3},
we obtain the algebra R(1, β, γ, δ) if α �= 0. Similarly, the new basis
{e1, 1/

√
δe2, e3} gives us the algebra R(α, β, γ, 1) if δ �= 0.

Now we calculate the second cohomology of Q(1). Note that there are
six cocyclicity conditions dψ(ei, ej , es) = 0, where i, j, s = 1, 2, j ≤ s. They
give us the following three nontrivial relations:

ψ(e1, e1) = 1, 2ψ(e1, e2) = ψ(e2, e1), ψ(e2, e2) = 0.

Therefore, Z2(Q(1),K) is two-dimensional and is generated by the cocycles
ψ1 and ψ2 such that

ψ1(e1, e1) = 1, ψ2(e2, e1) = 1, ψ2(e1, e2) = 1/2

(non-written components are 0). Note that ψ1 = dω for ω ∈ C1(Q(1),K)
given by ω(e2) = −1. Therefore, H2(Q(1),K) is one-dimensional and is
generated by a class of the cocycle ψ2. The corresponding central extension
is equivalent to the algebra Ã = Q(1)+K with the following multiplication
table:

e1 ◦ e1 = e2, e1 ◦ e2 =
α

2
e3, e2 ◦ e1 = αe3, e2 ◦ e2 = 0,

where Q(1) = 〈e1, e2〉 and one-dimensional center element is denoted by e3.
Note that in Ã, one can obtain the new basis {e1, e2, 1/

√
αe3} if α �= 0.

Under this basis, we obtain the algebra W (3). If α = 0, then we obtain the
algebra R(1, 0, 0, 0).

A direct calculation shows that Theorem 1.7 is true also for cases p =
2, 3, 5, 7.
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