NILPOTENCY OF ZINBIEL ALGEBRAS

A. S. DZHUMADIL'DAEV and K. M. TULENBAEV

Abstract

Zinbiel algebras are defined by the identity $(a \circ b) \circ c=$ $a \circ(b \circ c+c \circ b)$. We prove an analog of the Nagata-Higman theorem for Zinbiel algebras. We establish that every finite-dimensional Zinbiel algebra over an algebraically closed field is solvable. Every solvable Zinbiel algebra with solvability length N is a nil-algebra with nilindex 2^{N} if $p=\operatorname{char} K=0$ or $p>2^{N}-1$. Conversely, every Zinbiel nil-algebra with nil-index N is solvable with solvability length N if $p=0$ or $p>N-1$. Every finite-dimensional Zinbiel algebra over complex numbers is nilpotent, nil, and solvable.

1. Introduction

Let $A=(A, \circ)$ be an algebra, where A is a vector space over a field K of characteristic $p \geq 0$ and $A \times A \rightarrow A,(a, b) \mapsto a \circ b$, is a multiplication. Let $f=f\left(t_{1}, \ldots, t_{k}\right)$ be some noncommutative, nonassociative polynomial with k variables t_{1}, \ldots, t_{k}. We say that A satisfies an identity $f=0$ if $f\left(a_{1}, \ldots, a_{k}\right)=0$ for any substitutions $t_{1}:=a_{1}, \ldots, t_{k}:=a_{k}$ by elements of A. Here, multiplications are calculated in terms of the multiplication \circ.

For example, an algebra with the identity ass $=0$ is said to be associative if

$$
\text { ass }=t_{1}\left(t_{2} t_{3}\right)-\left(t_{1} t_{2}\right) t_{3} .
$$

An algebra with the identity $t^{n}=0$ is called a nil-algebra. An associative nil-algebra has nil-index n if $a^{n-1} \neq 0$ for some $a \in A$.

Any associative algebra with nil-index n is nilpotent with nilpotency index no greater than $2^{n}-1$: for some $N=N(n) \leq 2^{n}-1$, the identity

$$
t_{1} \cdots t_{N}=0
$$

holds (the Nagata-Higman theorem). In other words,

$$
a_{1} \circ \cdots \circ a_{N}=0
$$

[^0]for any $a_{1}, \ldots, a_{N} \in A[13,7,4]$. The problem of finding more exact estimates for $N(n)$ remains still difficult. For example, $N(2)=3$ and $N(3)=6$.

A similar problem for Lie algebras is also complicated and very interesting. It is related to the Engel theorem and Burnside problems [10].

An algebra with the identity r sym $=0$ is said to be right-symmetric, where

$$
r \operatorname{sym}=t_{1}\left(t_{2} t_{3}-t_{3} t_{2}\right)-\left(t_{1} t_{2}\right) t_{3}+\left(t_{1} t_{3}\right) t_{2}
$$

(see [5, 18]). In [2], such algebras are called chronological algebras. Later [8], the name "chronological" was used for a different algebra.

Algebras with the identity zinbiel $=0$, where

$$
\operatorname{zinbiel}\left(t_{1}, t_{2}, t_{3}\right)=\left(t_{1} t_{2}\right) t_{3}-t_{1}\left(t_{2} t_{3}\right)-t_{1}\left(t_{3} t_{2}\right)
$$

are called Zinbiel algebras.
Example. $(\mathbb{C}[x], \star)$, where $(a \star b)(x)=\frac{\partial}{\partial x} a(x) b(x)$, is right-symmetric. Moreover, it satisfies also the identity lcom $=0$, where

$$
\operatorname{lcom}\left(t_{1}, t_{2}, t_{3}\right)=t_{1}\left(t_{2} t_{3}\right)-t_{2}\left(t_{1} t_{3}\right)
$$

Example. $(\mathbb{C}[x], \circ)$, where $(a \circ b)(x)=a(x) \int_{0}^{x} b(t) d t$ is a Zinbiel algebra.
An algebra satisfying the identity leibniz $=0$, where

$$
\operatorname{leibniz}\left(t_{1}, t_{2}, t_{3}\right)=t_{1}\left(t_{2} t_{3}\right)-\left(t_{1} t_{2}\right) t_{3}+\left(t_{1} t_{3}\right) t_{2}
$$

is called a Leibniz algebra. Such algebras were introduced in [3, 11]. The Koszul dual [6] of the Leibniz operad is defined by the identity zinbiel $=0$, i.e., by the condition

$$
\begin{equation*}
(a \circ b) \circ c=a \circ(b \circ c+c \circ b) \tag{1}
\end{equation*}
$$

for any $a, b, c \in A$. Such algebras are called Leibniz dual or Zinbiel (read Leibniz in reverse order) algebras [12]. In our paper, we do not follow terminology of $[8,9]$ and use the term Zinbiel algebras for Leibniz dual algebras. For the history of the name "chronological," see [16].

An algebra A is said to be solvable if $A^{(k)}=0$ for some k, where $A^{(i)}$ are defined by

$$
A^{(0)}=A, \quad A^{(i+1)}=A^{(i)} \circ A^{(i)}, \quad i>0 .
$$

We say that A has solvability length N if $A^{(N)}=0, A^{(N-1)} \neq 0$.
An algebra A is said to be nilpotent if there exists N such that the right-bracketed product of any N elements of A vanishes:

$$
a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{N-1} \circ a_{N}\right) \cdots\right)\right)=0 .
$$

The minimal N with such property is called the nilpotency index. For every nilpotent Zinbiel algebra A, there exists N such that the product of arbitrary N elements of any bracketing type vanishes. It is obvious that any nilpotent algebra is solvable.

We denote by r_{a} and l_{a} the right and left multiplication operators on $A=(A, \circ)$:

$$
r_{a}(b)=b \circ a, \quad l_{a}(b)=a \circ b
$$

The powers $a^{\cdot k}$ and $a^{(\cdot k)}$ are defined by

$$
\begin{aligned}
a^{\cdot 1} & =a, & a^{\cdot k+1} & =l_{a}^{k}(a)=a \circ a^{\cdot k} \\
a^{(\cdot 1)} & =a, & a^{(\cdot k)} & =a^{(\cdot k-1)} \circ a^{(\cdot k-1)} .
\end{aligned}
$$

We say that a Zinbiel algebra A is a nil-algebra if for every $a \in A$, we have $a^{\cdot k}=0$ for some $k=k(a)$. Then, given an arbitrary element of a Zinbiel nil-algebra, some power of this element of any bracketing type vanishes. If $a^{\cdot n}=0$ for all $a \in A$ and $a^{\cdot n-1} \neq 0$ for some $a \in A$, then we say that A is a nil-algebra with nil-index n. A Zinbiel algebra is said to be simple if it has no proper ideal, i.e., if $I \circ A \subseteq I, A \circ I \subseteq I$, then $I=0$ or $I=A$.

In this paper, we prove the following results.
Theorem 1.1. Let K be an algebraically closed field of characteristic $p \geq 0$. Then every finite-dimensional Zinbiel algebra is solvable.

Theorem 1.2. Let K be a field of characteristic $p \geq 0$ and A be a solvable Zinbiel algebra with solvability length N. If $p=0$ or $p>2^{N}-1$, then A is a nil-algebra with nil-index no greater than 2^{N}. Conversely, if A is a Zinbiel nil-algebra with nil-index N and if $p=0$ or $p>N-1$, then A is solvable with solvability length N.

Theorem 1.3. Let K be a field of characteristic $p \geq 0$. Every Zinbiel nil-algebra is nilpotent. If A is a nil-algbera with nil-index n, then the nilpotency index of A is no greater than $2^{n}-1$.

Corollary 1.4. Every finite-dimensional, simple Zinbiel algebra over an algebraically closed field of characteristic $p \geq 0$ is isomorphic to the 1dimensional algebra with trivial multiplication.

Corollary 1.5. Every finite-dimensional Zinbiel algebra over the field of complex numbers is nilpotent (and, hence solvable and nil). If $p>0$, then every finite-dimensional Zinbiel algebra over an algebraically closed field of dimension $<\log _{2}(p+1)$ and characteristic p is nilpotent (and hence solvable and nil).

Let

$$
Z(A)=\{z \in A \mid a \circ z=z \circ a=0 \forall a \in A\}
$$

be the center of A.
Corollary 1.6. Let A be a finite-dimensional Zinbiel algebra over the field of complex numbers of dimension n. Then there exists $N<n$ such that the product of any N elements of A in any type of bracketing is equal to 0 . Moreover, A has the nontrivial center $Z(A) \neq 0$. The same is true for
any finite-dimensional Zinbiel algebra A over a field of characteristic $p>0$ if $n=\operatorname{dim} A<\log _{2}(p+1)$.

We see that the infinite-dimensional Zinbiel algebra ($\mathbb{C}[x], \circ$) with the multiplication $(a \circ b)(x)=a(x) \int_{0}^{x} b(t) d t$ is not nilpotent and hence not solvable. In other words, Theorem 1.1 and Corollary 1.5 are false in the infinite-dimensional case.

As an application of our results, we classify Zinbiel algebras of dimension ≤ 3 over an algebraically closed field K.

Theorem 1.7. Let K be an algebraically closed field of any characteristic p.

Any Zinbiel algebra of dimension 1 is isomorphic to an algebra with trivial multiplication: $A=\left\langle e_{1}\right\rangle, e_{1} \circ e_{1}=0$.

Any two-dimensional Zinbiel algebra is isomorphic to the algebra $Q(\beta)$ defined as follows:

$$
\begin{gathered}
Q(\alpha)=\left\langle e_{1}, e_{2}\right\rangle, \quad \alpha=0 \text { or } 1, \\
e_{1} \circ e_{1}=\alpha e_{2}, \quad e_{1} \circ e_{2}=0, \quad e_{2} \circ e_{1}=0, \quad e_{2} \circ e_{2}=0 .
\end{gathered}
$$

Any three-dimensional Zinbiel algebra with $\operatorname{dim} A \circ A \leq 1$ is isomorphic to the algebra $R(\alpha, \beta, \gamma, \delta)$ defined as follows:

$$
\begin{aligned}
& R(\alpha, \beta, \gamma, \delta)=\left\langle e_{1}, e_{2}, e_{3}\right\rangle, \\
& e_{1} \circ e_{1}=\alpha e_{3}, \quad e_{1} \circ e_{2}=\beta e_{3}, \quad e_{1} \circ e_{3}=0, \\
& e_{2} \circ e_{1}=\gamma e_{3}, \quad e_{2} \circ e_{2}=\delta e_{3}, \quad e_{2} \circ e_{3}=0, \\
& e_{3} \circ e_{1}=0, \quad e_{3} \circ e_{2}=0, \quad e_{3} \circ e_{3}=0,
\end{aligned}
$$

where $\alpha, \beta, \gamma, \delta \in K$.
Any three-dimensional Zinbiel algebra A over an algebraically closed field of characteristic $\neq 2$ with $\operatorname{dim} A \circ A=2$ is isomorphic to the algebra $W(3)$ defined as follows:

$$
\begin{array}{rlr}
\operatorname{char} K \neq 2, \quad W(3)=\left\langle e_{1}, e_{2}, e_{3}\right\rangle, \\
e_{1} \circ e_{1}=e_{2}, & e_{1} \circ e_{2}=\frac{1}{2} e_{3}, & e_{1} \circ e_{3}=0, \\
e_{2} \circ e_{1}=e_{3}, & e_{2} \circ e_{2}=0, & e_{2} \circ e_{3}=0, \\
e_{3} \circ e_{1}=0, & e_{3} \circ e_{2}=0, & e_{3} \circ e_{3}=0 .
\end{array}
$$

There are no 3-dimensional Zinbiel algebras A such that $\operatorname{dim} A \circ A=3$.
The algebras $R(\alpha, \beta, \gamma, \delta)$ and $W(3)$ are not isomorphic. The following isomorphisms hold:

$$
\begin{aligned}
& R(\alpha, \beta, \gamma, \delta) \cong R(1, \beta, \gamma, \delta) \quad \text { if } \quad \alpha \neq 0 \\
& R(\alpha, \beta, \gamma, \delta) \cong R(\alpha, \beta, \gamma, 1) \quad \text { if } \quad \delta \neq 0
\end{aligned}
$$

Therefore, there are two types of nonisomorphic classes of threedimensional algebras $R(\alpha, \beta, \gamma, \delta)$, where $\alpha, \delta=0$ or 1 and $\beta, \gamma \in K$, and $W(3)$.

Two-dimensional Zinbiel algebras over complex numbers were also studied in [14].

In our paper, the letter n is used in two senses: sometimes, n denotes the dimension of an algebra, sometimes, we use n as a nil-index. From the context it will be clear in what sense n is used. Note that the nil-index cannot be greater than the dimension of the algebra.

2. Proof of Theorem 1.1

Every Zinbiel algebra is right-commutative:

$$
(a \circ b) \circ c=(a \circ c) \circ b
$$

Let

$$
C(a)=\{x \in A: a \circ x=0\}
$$

be the right centralizer of $a \in A$. An important role in this paper is played by the following property of the right centralizer.

Lemma 2.1. Let A be a right-commutative algebra. Then for all $a, b \in$ A, we have $C(a) \subseteq C(a \circ b)$.
Proof. If $x \in C(a)$, then $(a \circ b) \circ x=(a \circ x) \circ b=0$ and $x \in C(a \circ b)$.
Lemma 2.2. Let A be a Zinbiel algebra and let $a \in A$. If v is an eigenvector of the linear operator l_{a} with eigenvalue $\mu \in K$, then $v \circ v$ is an eigenvector with eigenvalue $2^{-1} \mu$.

Proof. If $a \circ v=\mu v$, then $(a \circ v) \circ v=\mu v \circ v$ and, by the Zinbiel identity, $(a \circ v) \circ v=2 a \circ(v \circ v)$. Therefore, $l_{a}\left(v^{\cdot 2}\right)=2^{-1} \mu v^{2}$.

Lemma 2.3. Let A be a Zinbiel algebra of dimension n over an algebraically closed field K of characteristic char $K \neq 2$. Then for every $a \in A$, we have:

- $l_{a}^{n}=0$, or
- there exists $0 \neq b \in A$ such that $l_{a}(b)=\lambda b, b \circ b=0$, for some $0 \neq \lambda \in K$.

Proof. If $l_{a} \in \operatorname{End} A$ is nil, then by the Hamilton-Cayley theorem $l_{a}^{n}=0$.
If l_{a} is not nil, then by Hamilton-Cayley theorem l_{a}, as an operator over an algebraically closed field, has a nontrivial eigenvalue $0 \neq \mu \in K$. Let $v \in A$ be an eigenvector of l_{a} with the eigenvalue μ. By Lemma 2.2, $l_{a}\left(v^{(\cdot k)}\right)=2^{-k} \mu v^{(\cdot k)}$ for all k. Therefore, if $\mu \neq 0$, then there exists $N \leq$ $n=\operatorname{dim} A$ such that $v^{(\cdot N-1)} \neq 0, v^{(\cdot N)}=0$.

Therefore, if l_{a} is not nil, then there exists a nonzero eigenvalue $\mu \in K$ and $l_{a}(b)=\lambda b, b \circ b=0$, for $b=v^{(\cdot N-1)}, \lambda=2^{-N+1} \mu \neq 0$.

Lemma 2.4. For every finite-dimensional Zinbiel algebra A over an algebraically closed field, there exists $x \neq 0$ such that $C(x)=A$.

Proof. Prove that there exists $a_{0} \neq 0$ such that $C\left(a_{0}\right)=C\left(a_{0} \circ b\right)$ for all $0 \neq b \in A$.

Take any nonzero element $a_{1} \in A$ as a_{0}. If $C\left(a_{1}\right)=A$, then there is nothing to prove: $C\left(a_{0}\right)=A=C\left(a_{0} \circ b\right)$ for any $b \in A$. Assume that $C\left(a_{1}\right) \neq A$.

If $C\left(a_{1}\right) \neq C\left(a_{1} \circ a_{2}\right)$ for some $a_{2} \in A$, then by Lemma 2.1,

$$
C\left(a_{1}\right) \subset C\left(a_{1} \circ a_{2}\right) .
$$

Now take $a_{1} \circ a_{2}$ as a_{0} and repeat the procedure. If

$$
C\left(a_{1} \circ a_{2}\right) \neq C\left(\left(a_{1} \circ a_{2}\right) \circ a_{3}\right)
$$

for some $a_{3} \in A$, then take $\left(a_{1} \circ a_{2}\right) \circ a_{3}$ as a_{0}, and so on. Finally, we obtain a sequence of nonzero elements $a_{1}, a_{2}, \ldots, a_{k} \in A$ such that

$$
C\left(a_{1}\right) \subset C\left(a_{1} \circ a_{2}\right) \subset C\left(\left(\cdots\left(a_{1} \circ a_{2}\right) \cdots a_{k-1}\right) \circ a_{k}\right) \subseteq A
$$

Since A is finite-dimensional, this sequence terminates at some k. In other words,

$$
C\left(\left(\cdots\left(a_{1} \circ a_{2}\right) \cdots a_{k-1}\right) \circ a_{k}\right)=C\left(\left(\left(\cdots\left(a_{1} \circ a_{2}\right) \cdots a_{k-1}\right) \circ a_{k}\right) \circ a_{k+1}\right)
$$

for any $0 \neq a_{k+1} \in A$. Now take $a_{0}=\left(\cdots\left(a_{1} \circ a_{2}\right) \cdots\right) \circ a_{k}$.
Therefore, we have proved that there exists $a_{0} \neq 0$ such that $C\left(a_{0}\right)=$ $C\left(a_{0} \circ b\right)$ for all $b \neq 0$.

Now prove that $C\left(a_{0}\right)=A$.
If $l_{a_{0}}=0$, then $C\left(a_{0}\right)=A$. Assume that $l_{a_{0}} \neq 0$ and N is the nilpotency index of $l_{a_{0}}$, i.e., $1<N \leq n, l_{a_{0}}^{N-1} \neq 0$, and $l_{a_{0}}^{N}=0$.

If char $K=2$, then by the Zinbiel identity, $\left(a_{0} \circ b\right) \circ b=2\left(a_{0} \circ(b \circ b)\right)=0$ for all $b \in A$. Therefore, $b \in C\left(a_{0} \circ b\right)=C\left(a_{0}\right)$ for all $0 \neq b \in A$. In other words, $C\left(a_{0}\right)=A$.

If char $K \neq 2$, then by Lemma $2.3 l_{a_{0}}^{n}=0$ for $n=\operatorname{dim} A$ or there exists $0 \neq b \in A$ such that $a_{0} \circ b=\lambda b$, where $\lambda \neq 0$ and $b \circ b=0$. The second case is not possible:

$$
b \in C\left(a_{0} \circ b\right)=C\left(a_{0}\right) \Rightarrow a_{0} \circ b=0 \Rightarrow \lambda=0
$$

a contradiction. Therefore, $l_{a_{0}}^{n}=0$. Let N be the nilpotency index of $l_{a_{0}}$: $l_{a_{0}}^{N-1} \neq 0, l_{a_{0}}^{N}=0$ for $1<N \leq n=\operatorname{dim} A$. There exists $c \in A$ such that $b=l_{a_{0}}^{N-1}(c) \neq 0$. Then $a_{0} \circ b=l_{a_{0}}^{N}(c)=0$ and, by the definition of a_{0},

$$
C\left(a_{0}\right)=C\left(a_{0} \circ b\right)=C(0)=A .
$$

Therefore, in all cases we can take $x=a_{0}$.
Lemma 2.5. Every finite-dimensional Zinbiel algebra over an algebraically closed field of dimension >1 has a proper ideal.

Proof. By Lemma 2.4, there exists $0 \neq x \in A$ such that $C(x)=A$. Prove that $I=A \circ x=\{y \circ x: y \in A\}$ is an ideal of A. For every $a \in A$, we have

$$
(y \circ x) \circ a=(y \circ a) \circ x \in I
$$

Since $C(x)=A$, we have $x \circ y=0$ for any $y \in A$. Therefore,

$$
a \circ(y \circ x)=a \circ(y \circ x+x \circ y)=(a \circ y) \circ x \in I
$$

for all $a \in A$. Therefore, I is a two-sided ideal of A.
Prove that $\operatorname{dim} I<n=\operatorname{dim} A$. Take a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for A with $e_{1}=x$. Then $x \circ x=0$ since $C(x)=A$. Therefore, I is the linear span of the vectors $e_{1} \circ x=x \circ x=0, e_{2} \circ x, \ldots, e_{n} \circ x$. Therefore, $\operatorname{dim} I<n=\operatorname{dim} A$. If $I \neq 0$, then we can take I as a proper ideal of A.

If $I=A \circ x=0$, then we can take as a proper ideal the one-dimensional ideal generated by x.

Proof of Theorem 1.1. We use induction on $n=\operatorname{dim} A$.
Assume that $n=1$. Prove that any one-dimensional Zinbiel algebra is isomorphic to an algebra with trivial multiplication. If $\operatorname{dim} A=1$ and A is generated by the basis element e_{1}, then $e_{1} \circ e_{1}=\alpha e_{1}$ for some $\alpha \in K$. By the Zinbiel identity,

$$
\operatorname{zinbiel}\left(e_{1}, e_{1}, e_{1}\right)=0 \quad \Rightarrow \quad \alpha^{2} e_{1}=0 \quad \Rightarrow \quad \alpha=0
$$

Therefore, any 1-dimensional algebra A is solvable.
Assume that $n>1$ and our statement is true for $n-1$. By Lemma 2.5, A has some proper ideal J. Since $\operatorname{dim} J<n$ and $\operatorname{dim} A / J<n$, by the induction hypothesis J and A / J are solvable. Therefore, A is solvable. This completes the proof.

3. Proof of Theorem 1.2

In this section, n is a positive integer, not necessarily equal to $\operatorname{dim} A$.
Lemma 3.1. For arbitrary elements a_{1}, \ldots, a_{k+s} of a Zinbiel algebra A, the product
$\left(a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{k-1} \circ a_{k}\right) \cdots\right)\right)\right) \circ\left(a_{k+1} \circ\left(a_{k+2} \circ\left(\cdots\left(a_{k+s-1} \circ a_{k+s}\right) \cdots\right)\right)\right)$
is the sum of $\binom{k+s-1}{s}$ elements of the form

$$
a_{\sigma(1)} \circ\left(a_{\sigma(2)} \circ\left(\cdots\left(a_{\sigma(k+s-1)} \circ a_{\sigma(k+s)}\right) \cdots\right)\right),
$$

where $\sigma \in \operatorname{Sym}_{k+s}$ runs through all permutations such that

$$
\begin{gathered}
\sigma(i)<\sigma(j) \leq k \quad \Rightarrow \quad i<j, \\
k<\sigma(i)<\sigma(j) \leq k+s \quad \Rightarrow \quad i<j .
\end{gathered}
$$

Proof. This is easy induction on $k+s$ that uses the Zinbiel identity.

Corollary 3.2. Let A be a Zinbiel algebra. Then for every $a \in A$ and all $i, j \in \mathbb{Z}_{+}$, we have

$$
a^{\cdot i} \circ a^{\cdot j}=\binom{i+j-1}{j} a^{\cdot i+j} .
$$

Given $a_{1}, a_{2}, \ldots, a_{n} \in A$, denote by $S_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ the sum of $n!$ rightbracketed products formed by taking $a_{1}, a_{2}, \ldots, a_{n}$ in all possible orders. Let $a \star b=a \circ b+b \circ a$ be the Jordan product in $A=(A, \circ)$. The product $(a, b) \mapsto a \star b$ is also known as the shuffle product $[15,17]$. If A is a Zinbiel algebra, then (A, \star) is associative and commutative [12].

Let I_{n} be the ideal of A generated by the right-bracketed nth powers $a^{\cdot n}$, $a \in A$.

Lemma 3.3. For arbitrary elements a_{1}, \ldots, a_{k+r} of a Zinbiel algebra A, we have

$$
S_{k}\left(a_{1}, \ldots, a_{k}\right) \star S_{r}\left(a_{k+1}, \ldots, a_{k+r}\right)=S_{k+r}\left(a_{1}, \ldots, a_{k+r}\right) .
$$

Proof. We use induction on k. Let $k=1$. By Lemma 3.1,

$$
\begin{aligned}
a_{1} \star S_{r-1}\left(a_{2}, \ldots, a_{r}\right) & =a_{1} \circ S_{r-1}\left(a_{2}, \ldots, a_{r}\right)+S_{r-1}\left(a_{2}, \ldots, a_{r}\right) \circ a_{1} \\
& =S_{r}\left(a_{1}, \ldots, a_{r}\right)
\end{aligned}
$$

Assume that our statement is true for $k-1$. Since

$$
S_{k}\left(a_{1}, \ldots, a_{k}\right)=S_{1}\left(a_{1}\right) \star S_{k-1}\left(a_{2}, \ldots, a_{k}\right)
$$

by the result of [12], we have

$$
\begin{aligned}
S_{k}\left(a_{1}, \ldots, a_{k}\right) & \star S_{r}\left(a_{k+1}, \ldots, a_{k+r}\right) \\
& =\left(S_{1}\left(a_{1}\right) \star S_{k-1}\left(a_{2}, \ldots, a_{k}\right)\right) \star S_{r}\left(a_{k+1}, \ldots, a_{k+r}\right)
\end{aligned}
$$

(the associativity of \star)

$$
=S_{1}\left(a_{1}\right) \star\left(S_{k-1}\left(a_{2}, \ldots, a_{k}\right) \star S_{r}\left(a_{k+1}, \ldots, a_{k+r}\right)\right)
$$

(the induction assumption)

$$
=S_{1}\left(a_{1}\right) \star S_{k+r-1}\left(a_{2}, \ldots, a_{k+r}\right)
$$

(the induction assumption)

$$
=S_{k+r}\left(a_{1}, \ldots, a_{k+r}\right)
$$

The lemma is proved.
Lemma 3.4. Let A be a Zinbiel algebra. Then for arbitrary a_{1}, \ldots, a_{n}, $u \in A$,

$$
S_{n}\left(a_{1}, \ldots, a_{n}\right) \circ u=\sum_{i=1}^{n} a_{i} \circ S_{n}\left(a_{1}, \ldots, \hat{a_{i}}, \ldots, a_{n}, u\right),
$$

where $\hat{a_{i}}$ means that the element a_{i} is omitted.

Proof. By Lemma 3.3,

$$
\begin{gathered}
S_{n}\left(a_{1}, \ldots, a_{n}\right) \circ u=\left(a_{1} \star S_{n-1}\left(a_{2}, \ldots, a_{n}\right)\right) \circ u \\
=a_{1} \circ\left(S_{n-1}\left(a_{2}, \ldots, a_{n}\right) \star u\right)+S_{n-1}\left(a_{2}, \ldots, a_{n}\right) \circ\left(a_{1} \star u\right) \\
=a_{1} \circ S_{n}\left(a_{2}, \ldots, a_{n}, u\right)+S_{n-1}\left(a_{2}, \ldots, a_{n}\right) \circ S_{2}\left(a_{1}, u\right) \\
=a_{1} \circ S_{n}\left(a_{2}, \ldots, a_{n}, u\right)+\left(a_{2} \star S_{n-2}\left(a_{3}, \ldots, a_{n}\right)\right) \circ S_{2}\left(a_{1}, u\right) \\
=a_{1} \circ S_{n}\left(a_{2}, \ldots, a_{n}, u\right)+a_{2} \circ\left(S_{n-2}\left(a_{3}, \ldots, a_{n}\right) \star S_{2}\left(a_{1}, u\right)\right) \\
+S_{n-2}\left(a_{3}, \ldots, a_{n}\right) \circ\left(a_{2} \star S_{2}\left(a_{1}, u\right)\right) \\
=a_{1} \circ S_{n}\left(a_{2}, \ldots, a_{n}, u\right)+a_{2} \circ\left(S_{n}\left(a_{1}, a_{3}, \ldots, a_{n}, u\right)\right) \\
\quad+S_{n-2}\left(a_{3}, \ldots, a_{n}\right) \circ S_{3}\left(a_{1}, a_{2}, u\right) \\
=\cdots=a_{1} \circ S_{n}\left(a_{2}, \ldots, a_{n}, u\right)+a_{2} \circ\left(S_{n}\left(a_{1}, a_{3}, \ldots, a_{n}, u\right)\right)+\ldots \\
\quad+S_{1}\left(a_{n}\right) \circ S_{n}\left(a_{1}, a_{2}, \ldots, a_{n-1}, u\right) .
\end{gathered}
$$

The lemma is proved.
Lemma 3.5. Let A be a Zinbiel algebra, n be an integer, and $n<p$ or $p=0$. Then the ideal $I_{n}=\left\langle a^{\cdot n}: a \in A\right\rangle$ generated by nth rightbracketed powers is, as a vector space, the linear span of elements of the form $a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{k} \circ S_{n}\left(a_{k+1}, \ldots, a_{k+n}\right)\right) \cdots\right)\right)$, where a_{1}, \ldots, a_{k+n} are any elements of A.

Proof. Denote by J_{n} the linear span of elements of the form $X=a_{1} \circ\left(a_{2} \circ\right.$ $\left.\left(\cdots\left(a_{k} \circ S_{n}\left(a_{k+1}, \ldots, a_{k+n}\right)\right) \cdots\right)\right)$. We will prove that $I_{n}=J_{n}$.

We have

$$
S_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum(-1)^{n-r}\left(a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{r}}\right)^{\cdot n}
$$

where the summation is taken over all nonempty subsets $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \subseteq$ $\{1,2, \ldots, n\}$ and all products are right-bracketed. Therefore,

$$
S_{n}\left(a_{1}, \ldots, a_{n}\right) \in I_{n} .
$$

Hence,

$$
a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{k} \circ S_{n}\left(a_{k+1}, \ldots, a_{k+n}\right)\right) \cdots\right)\right) \in I_{n}
$$

for all k. In other words, $J_{n} \subseteq I_{n}$.
Now we prove that $I_{n} \subseteq J_{n}$. It is clear that J_{n} is a left ideal and $A \circ J_{n} \subseteq J_{n}$. If $p=0$ or $n<p$, then

$$
a^{\cdot n}=(n!)^{-1} S_{n}(a, \ldots, a)
$$

Therefore, in the case of $p=0$ or $n<p$, we can choose generators for I_{n} of the form $S_{n}\left(x_{1}, \ldots, x_{n}\right)$. Therefore, to establish that $I_{n}=J_{n}$, it suffices to prove that $X \circ u \in J_{n}$ for all $X \in J_{n}$ and $u \in A$.

By induction on $k=0,1,2, \ldots$, we prove that $X \circ u \in J_{n}$ for all $u \in A$, where $X \in J_{n}$ has the form $a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{k} \circ S_{n}\left(a_{k+1}, \ldots, a_{k+n}\right)\right) \cdots\right)\right)$.

Let $k=0$. Then by Lemma 3.3,

$$
X=S_{n}\left(a_{1}, \ldots, a_{n}\right)=a_{1} \star S_{n-1}\left(a_{2}, \ldots, a_{n}\right)
$$

and by Lemma 3.4,

$$
X \circ u=\sum_{i=1}^{n} a_{i} \circ S_{n}\left(a_{1}, \ldots, \hat{a_{i}}, \ldots, a_{n}, u\right) \in I_{n}
$$

Therefore, our statement is true for $k=0$.
Assume that our statement is true for $k-1$. In other words, for all $Y=$ $a_{2} \circ\left(\cdots\left(a_{k} \circ S_{n}\left(a_{k+1}, \ldots, a_{k+n}\right)\right) \cdots\right) \in J_{n}$ and $u \in A$ we have $Y \circ u \in J_{n}$. We know that $a_{1} \circ(u \circ Y) \in J_{n}$. Then for $X=a_{1} \circ Y$, by the Zinbiel identity,

$$
X \circ u=a_{1} \circ(Y \circ u+u \circ Y)=a_{1} \circ(Y \circ u)+a_{1} \circ(u \circ Y) \in J_{n} .
$$

Hence, our statement is proved for k.
Lemma 3.6. Let (A, \circ) be a Zinbiel algebra. Then for any $a_{1}, \ldots, a_{k} \in$ A, we have

$$
\left(\cdots\left(a_{1} \circ a_{2}\right) \cdots \circ a_{k-1}\right) \circ a_{k}=a_{1} \circ S_{k-1}\left(a_{2}, \ldots, a_{k}\right)
$$

Proof. By the Zinbiel identity, our statement is true for $k=3$. Assume that it is true for $k-1$. Then

$$
\begin{aligned}
\left(\cdots\left(a_{1} \circ a_{2}\right)\right. & \left.\cdots \circ a_{k-1}\right) \circ a_{k}=\left(a_{1} \circ S_{k-2}\left(a_{2}, \ldots, a_{k-1}\right)\right) \circ a_{k} \\
& =a_{1} \circ\left(S_{k-2}\left(a_{2}, \ldots, a_{k-1}\right) \star a_{k}\right)
\end{aligned}
$$

By Lemma 3.3,

$$
S_{k-2}\left(a_{2}, \ldots, a_{k-1}\right) \star a_{k}=S_{k-1}\left(a_{2}, \ldots, a_{k-1}, a_{k}\right)
$$

Therefore, our statement is true for k. The lemma is proved.
Lemma 3.7. Let n be an integer and $n-2<p$ or $p=0$. Then $S_{n-1}\left(a_{1}, \ldots, a_{n-1}\right) \circ S_{2}\left(b_{1}, b_{2}\right) \in I_{n}$ for any $a_{1}, \ldots, a_{n-1}, b_{1}, b_{2} \in A$.

Proof. By Lemma 3.6, $(n-1)$ th right-bracketed product of a by $b \circ b$ is

$$
\begin{aligned}
\left(a^{\cdot n-1}\right) & \circ(b \circ b)=(1 /(n-2)!)(1 / 2)((((a \circ a) \circ \cdots) \circ a) \circ b) \circ b \\
& =(1 /(n-2)!)(1 / 2) a \circ S_{n}(a, a, \cdots, a, b, b) \in I_{n} .
\end{aligned}
$$

Since $S_{k}\left(a_{1}, \ldots, a_{k}\right)$ is the sum of elements of the form a^{-k}, the proof is complete.

Lemma 3.8.

$$
a \circ(b \circ c)=S_{2}(a, b \circ c)-b \circ S_{2}(a, c)
$$

Proof. We have

$$
\begin{aligned}
S_{2}(a, b \circ c)-b \circ S_{2}(a, c)=a \circ & (b \circ c)+(b \circ c) \circ a-b \circ(a \circ c)-b \circ(c \circ a) \\
& =(a \circ b) \circ c .
\end{aligned}
$$

The lemma is proved.
Lemma 3.9. Let A be a Zinbiel algebra, $n \geq 3$, and let $p=0$ or $n-1<p$. Then

$$
I_{n-1} \circ I_{n-1} \subseteq I_{n}
$$

Proof. By Lemma 3.5, every two elements $u, v \in I_{n-1}$ can be represented in the form

$$
\begin{gathered}
u=a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{k} \circ S_{n-1}\left(a_{k+1}, \ldots, a_{k+n-1}\right)\right) \cdots\right)\right), \\
v=b_{1} \circ\left(b_{2} \circ\left(\cdots\left(b_{r} \circ S_{n-1}\left(b_{r+1}, \ldots, b_{r+n-1}\right)\right) \cdots\right)\right)
\end{gathered}
$$

for some $a_{i}, b_{j} \in A$.
We use induction on $k+r$ and prove that $u \circ v \in I_{n}$. Assume that $k+r=0$. Then

$$
u=S_{n-1}\left(a_{1}, \cdots, a_{n-1}\right), \quad v=S_{n-1}\left(b_{1}, \cdots, b_{n-1}\right)
$$

By Lemma 3.3, $v=S_{2}\left(b_{1}, S_{n-1}\left(b_{2}, \ldots, b_{n-1}\right)\right)$. Therefore, by the Zinbiel identity,

$$
\begin{aligned}
u \circ v & =S_{n-1}\left(a_{1}, \cdots, a_{n-1}\right) \circ S_{2}\left(b_{1}, S_{n-2}\left(b_{2}, \cdots, b_{n-1}\right)\right) \\
& =\left(S_{n-1}\left(a_{1}, \ldots, a_{n-1}\right) \circ b_{1}\right) \circ S_{n-2}\left(b_{2}, \ldots, b_{n-1}\right)
\end{aligned}
$$

(see Lemma 3.4)

$$
\begin{aligned}
& =\sum_{i=1}^{n-1}\left(a_{i} \circ S_{n-1}\left(a_{1}, \ldots, \hat{a_{i}}, \ldots, a_{n-1}, b_{1}\right)\right) \circ S_{n-2}\left(b_{2}, \ldots, b_{n-1}\right) \\
& =\sum_{i=1}^{n-1} a_{i} \circ\left(S_{n-1}\left(a_{1}, \ldots, \hat{a_{i}}, \ldots, a_{n-1}, b_{1}\right) \star S_{n-2}\left(b_{2}, \ldots, b_{n-1}\right)\right)
\end{aligned}
$$

(Lemma 3.3)

$$
=\sum_{i=1}^{n-1} a_{i} \circ S_{2 n-3}\left(a_{1}, \ldots, \hat{a_{i}}, \ldots, a_{n-1}, b_{1}, b_{2}, \ldots, b_{n-1}\right)
$$

Therefore, in view of

$$
S_{2 n-3}\left(x_{1}, \ldots, x_{2 n-3}\right) \in I_{2 n-3} \subseteq I_{n}
$$

we see that $u \circ v \in I_{n}$.
Assume that for $k+r-1$ our statement is true. Consider two cases: $k>0$ and $r>0$.

If $k>0$, then $u=a_{1} \circ u_{1}$ for

$$
u_{1}=a_{2} \circ\left(\cdots\left(a_{k} \circ S_{n-1}\left(a_{k+1}, \ldots, a_{k+n-1}\right)\right) \cdots\right)
$$

By the induction assumption, $u_{1} \circ v \in I_{n}$ and $v \circ u_{1} \in I_{n}$. Therefore,

$$
u \circ v=a_{1} \circ\left(u_{1} \circ v+v \circ u_{1}\right) \in I_{n} .
$$

If $r>0$, then $v=b_{1} \circ v_{1}$, where

$$
v_{1}=b_{2} \circ\left(\cdots\left(b_{r} \circ S_{n-1}\left(b_{r+1}, \ldots, b_{n+r-1}\right)\right) \cdots\right)
$$

As we have verified above,

$$
v \circ u=\left(b_{1} \circ v_{1}\right) \circ u=b_{1} \circ\left(v_{1} \circ u+u \circ v_{1}\right) \in I_{n},
$$

and by Lemma 3.3,

$$
u \star v \in I_{2 n-2} \subseteq I_{n}
$$

Hence

$$
u \circ v=u \star v-v \circ u \in I_{n} .
$$

Therefore, our statement is true for $k+r$. The lemma is proved.
Lemma 3.10. Let A be a Zinbiel algebra and $p=0$ or $n-1<p$. Then

$$
A^{(n)} \subseteq I_{n}
$$

Proof. We use induction on $n \geq 2$. It is easy to see that

$$
a \circ(b \circ c)=S_{2}(a, b \circ c)-b \circ S_{2}(a, c) .
$$

Thus,

$$
(x \circ y) \circ(b \circ c)=S_{2}(x \circ y, b \circ c)-b \circ S_{2}(x \circ y, c) .
$$

Therefore,

$$
(x \circ y) \circ(b \circ c) \in I_{2} .
$$

In other words, $A^{(2)} \subseteq I_{2}$.
Now assume that $A^{(n-1)} \subseteq I_{n-1}$. Then by Lemma 3.9,

$$
A^{(n)}=A^{(n-1)} \circ A^{(n-1)} \subseteq I_{n-1} \circ I_{n-1} \subseteq I_{n}
$$

Proof of Theorem 1.2. Let A be a solvable Zinbiel algebra with solvability length N and let $p=0$ or $p>2^{N}-1$. Prove that A is nil with nil-index 2^{N} by induction on N. For $N=1$, the statement is obvious. Assume that the condition $A^{(N-1)}=0$ implies $a^{\cdot 2^{N-1}}=0$ for every $a \in A$.

Now assume that $A^{(N)}=0$. Then $\bar{A}^{(N-1)}=0$ for $\bar{A}=A / A^{(N-1)}$. Therefore, by the induction hypothesis, $a^{2^{N-1}} \in A^{(N-1)}$ for all $a \in A$. Thus,

$$
a^{\cdot 2^{N-1}} \circ a^{\cdot 2^{N-1}} \in A^{(N)}=0
$$

By Corollary 3.2,

$$
a^{\cdot 2^{N-1}} \circ a^{\cdot 2^{N-1}}=\binom{2^{N}-1}{2^{N-1}} a^{\cdot 2^{N}}
$$

Therefore, if $p>2^{N}-1$, then A is nil with nil-index 2^{N}.

Now we prove that A is solvable with solvability length N if A is nil with nil-index N. If $N=2$, then

$$
(d \circ e) \circ(b \circ c)=S_{2}(d \circ e, b \circ c)-b \circ S_{2}(d \circ e, c) .
$$

Thus, by Lemma 3.5, $A^{(2)} \subseteq I_{2}$. By Lemma 3.10, $A^{(n)} \subseteq I_{n}$ if $p=0$ or $n>p-1$. Hence, A is solvable with solvability length N if $I_{N}=0$ and $p=0$ or $N-1<p$.

4. Proof of theorem 1.3

Let n be any positive integer. For $x, y \in A$, write $x \equiv y$ if $x-y \in I_{n}$. Note that for any $a \in A$,

$$
a \circ x \equiv a \circ y, \quad x \circ a \equiv y \circ a
$$

if $x \equiv y$.
Lemma 4.1. For any $a_{1}, \ldots, a_{n-1}, b \in A$,

$$
S_{n-1}\left(a_{1}, \ldots, a_{n-1}\right) \circ b \equiv-b \circ S_{n-1}\left(a_{1}, \ldots, a_{n-1}\right)
$$

Proof. By Lemma 3.3,

$$
\begin{gathered}
b \circ S_{n-1}\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)+S_{n-1}\left(a_{1}, a_{2}, \ldots, a_{n-1}\right) \circ b \\
=S_{n}\left(a_{1}, a_{2}, \ldots, a_{n-1}, b\right) \in I_{n} .
\end{gathered}
$$

The lemma is proved.
Lemma 4.2. For any $x_{1}, \ldots, x_{n-1}, f, e \in A$,

$$
\begin{aligned}
& f \circ\left(S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ e\right) \equiv S_{2}\left(f, S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ e\right), \\
& f \circ\left(e \circ S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)\right) \equiv S_{2}\left(f, e \circ S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)\right) .
\end{aligned}
$$

Proof. By Lemma 4.1,

$$
f \circ\left(S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ e\right)=-f \circ\left(e \circ S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)\right)+y_{1}
$$ where

$$
y_{1}=f \circ S_{n}\left(x_{1}, \ldots, x_{n-1}, e\right) \in I_{n} .
$$

Therefore, by Lemma 3.8,

$$
f \circ\left(S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ e\right)=S_{2}\left(f, S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ e+y_{2},\right.
$$

where by Lemma 3.7

$$
y_{2}=-S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ S_{2}(f, e) \in I_{n}
$$

Further,

$$
\begin{aligned}
& f \circ\left(e \circ S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)\right) \equiv-f \circ\left(S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ e\right) \\
& \equiv-S_{2}\left(f, S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ e\right) \equiv S_{2}\left(f, e \circ S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)\right) .
\end{aligned}
$$

The lemma is proved.

Lemma 4.3. For any $a, b, x_{1}, \ldots, x_{n-1}, e \in A$, $a \circ\left(b \circ\left(S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ e\right)\right) \equiv(a \circ b) \circ\left(S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ e\right)$, $a \circ\left(b \circ\left(e \circ S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)\right)\right) \equiv(a \circ b) \circ\left(e \circ S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)\right)$.

Proof. By Lemma 4.2,

$$
a \circ\left(b \circ\left(S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ e\right)\right) \equiv a \circ S_{2}\left(b, S_{n-1}\left(x_{1}, \ldots, x_{n-1}\right) \circ e\right)
$$

(Zinbiel identity)

$$
\equiv(a \circ b) \circ\left(S_{n-1}\left(x_{1}, x_{2}, \cdots x_{n-1}\right) \circ e\right)
$$

Therefore,

$$
a \circ\left(b \circ\left(e \circ S_{n-1}\left(x_{1}, x_{2}, \cdots x_{n-1}\right)\right)\right)
$$

(see Lemma 3.3)

$$
\begin{aligned}
& \equiv a \circ\left(b \circ\left(-S_{n-1}\left(x_{1}, x_{2}, \cdots x_{n-1}\right) \circ e\right)\right) \\
& \equiv-(a \circ b) \circ\left(S_{n-1}\left(x_{1}, x_{2}, \cdots x_{n-1}\right) \circ e\right)
\end{aligned}
$$

(see Lemma 3.3)

$$
\equiv(a \circ b) \circ\left(e \circ S_{n-1}\left(x_{1}, x_{2}, \cdots x_{n-1}\right)\right)
$$

The lemma is proved.
Proof of Theorem 1.3. Use induction on the nil-index n. Let $n=2$. By Lemma 3.8, any Zinbiel algebra with identity $a^{\cdot 2}=0$ is nilpotent with nil-index 3: $a \circ(b \circ c)=0$ for any $a, b, c \in A$.

Assume that for any $a_{1}, \ldots, a_{k} \in A$,

$$
a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{k-1} \circ a_{k}\right)\right)\right) \in I_{n-1}
$$

for some $k \leq 2^{n-1}-1$. Prove that for any $a_{1}, \ldots, a_{2 k+1} \in A$,

$$
a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{2 k} \circ a_{2 k+1}\right)\right)\right) \in I_{n} .
$$

By the induction assumption,

$$
a_{k+2} \circ\left(\cdots\left(a_{2 k} \circ a_{2 k+1}\right)\right) \in I_{n-1} .
$$

Therefore, by Lemma 3.5,

$$
a_{k+2} \circ\left(\cdots\left(a_{2 k} \circ a_{2 k+1}\right)\right)=S_{n-1}\left(x_{1}, \ldots, x_{n-1}\right)
$$

or

$$
a_{k+2} \circ\left(\cdots\left(a_{2 k} \circ a_{2 k+1}\right)\right)=y_{1} \circ\left(y_{2} \circ\left(\cdots\left(y_{s} \circ S_{n-1}\left(x_{1}, \ldots, x_{n-1}\right)\right)\right)\right)
$$

for some $x_{1}, \ldots, x_{n-1}, y_{1}, \ldots, y_{s} \in A$.
In the first case, by Lemma 4.3,

$$
\begin{gathered}
a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{k} \circ\left(a_{k+1} \circ S_{n-1}\left(x_{1}, x_{2}, \cdots, x_{n-1}\right)\right)\right)\right)\right) \\
\equiv\left(a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{k-1} \circ a_{k}\right)\right)\right)\right) \circ\left(a_{k+1} \circ S_{n-1}\left(x_{1}, \ldots, x_{n-1}\right)\right) .
\end{gathered}
$$

By the induction assumption,

$$
\left(a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{k-1} \circ a_{k}\right)\right)\right)\right) \in I_{n-1}
$$

Therefore, by Lemma 3.9,

$$
a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{2 k} \circ a_{2 k+1}\right)\right)\right) \in I_{n-1} \circ I_{n-1} \subseteq I_{n}
$$

In the second case, by Lemma 4.3,

$$
\begin{gathered}
a_{k} \circ\left(a_{k+1} \circ\left(\cdots\left(a_{2 k} \circ a_{2 k+1}\right)\right)\right) \\
\equiv a_{k} \circ\left(a_{k+1} \circ\left(y_{1} \circ\left(y_{2} \circ\left(\cdots\left(y_{s} \circ S_{n-1}\left(x_{1}, \ldots, x_{n-1}\right)\right)\right)\right)\right)\right) \\
\equiv b \circ\left(S_{n-1}\left(x_{1}, \ldots, x_{n-1}\right) \circ e\right),
\end{gathered}
$$

where

$$
b=-a_{k} \circ\left(a_{k+1} \circ\left(y_{1} \circ\left(\cdots\left(y_{s-2} \circ y_{s-1}\right)\right)\right)\right) \in A, \quad e=y_{s} \in A
$$

Thus, by Lemma 4.3,

$$
\begin{aligned}
& \left.a_{1} \circ\left(\cdots \circ\left(a_{k-1} \circ\left(b \circ\left(S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ e\right)\right)\right)\right)\right) \\
& \equiv\left(a_{1} \circ\left(\cdots\left(a_{k-1} \circ b\right)\right)\right) \circ\left(S_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \circ e\right)
\end{aligned}
$$

By the induction assumption,

$$
a_{1} \circ\left(\cdots\left(a_{k-1} \circ b\right)\right) \in I_{n-1}
$$

Therefore, by Lemma 3.9,

$$
a_{1} \circ\left(\cdots\left(a_{2 k} \circ a_{2 k+1}\right)\right) \in I_{n-1} \circ I_{n-1} \subseteq I_{n} .
$$

We obtain that the right-bracketed product of any $2 k+1 \leq 2^{n}-1$ elements of A belongs to I_{n}. In other words, any Zinbiel nil-algebra is nilpotent.

Any solvable algebra with solvability index N is nil if $p=0$ or $p>$ $2^{N}-1$. Any nil-algebra, as we have proved above, is nilpotent. Any nilpotent algebra is solvable.

5. Proof of Theorem 1.7

Before giving the proof, recall some facts about central extensions of algebras.

Let A be a Zinbiel algebra, $C^{1}(A, K)$ be a space of linear forms $f: A \rightarrow$ $K, C^{2}(A, K)$ be a space of bilinear forms $\psi: A \times A \rightarrow K$, and $C^{3}(A, K)$ be a space of trilinear forms $\phi: A \times A \times A \rightarrow K$. Recall the definitions of coboundary operators for small degrees:

$$
d: C^{1}(A, K) \rightarrow C^{2}(A, K)
$$

is given by

$$
d f(a, b)=-f(a \circ b)
$$

and

$$
d: C^{2}(A, K) \rightarrow C^{3}(A, K)
$$

is given by

$$
d \psi(a, b, c)=\psi(a \circ b, c)-\psi(a, b \circ c)-\psi(a, c \circ b)
$$

Then $B^{2}(A, K)$ is a space of bilinear forms of the form $d f$, where $f \in$ $C^{1}(A, K)$, and $Z^{2}(A, K)$ is a space of bilinear forms ψ such that $d \psi=0$. It is easy to verify that $d^{2} f=0$ for any linear form $f: A \rightarrow K$. Therefore, for any Zinbiel algebra A,

$$
B^{2}(A, K) \subseteq Z^{2}(A, K)
$$

The second cohomology space is defined as follows:

$$
H^{2}(A, K)=Z^{2}(A, K) / B^{2}(A, K)
$$

Standard homological arguments show that $H^{2}(A, K)$ can be interpreted as a space of central extensions of A :

$$
0 \rightarrow Z \rightarrow \tilde{A} \rightarrow A \rightarrow 0
$$

In other words, any algebra \tilde{A} with abelian ideal Z is equal as a vector space to the direct sum $A \oplus Z$ and the multiplication in \tilde{A} is given by

$$
(a+z) \circ\left(a_{1}+z_{1}\right)=a \circ a_{1}+\eta\left(a, a_{1}\right),
$$

where a bilinear mapping $\eta: A \times A \rightarrow Z$ satisfies the relation

$$
\eta(a \circ b, c)-\eta(a, b \circ c)-\eta(a, c \circ b)=0 \quad \forall a, b, c \in A .
$$

If for some linear mapping $\omega: A \rightarrow Z$,

$$
\eta(a, b)=-\omega(a \circ b) \quad \forall a, b \in A
$$

then the algebra \tilde{A} under this multiplication is isomorphic to the direct sum of the algebras $A \oplus Z$.

This interpretation of the second cohomology spaces will be used in describing algebras of small dimensions.

We will use one more result. Assume that A is ableian: $a \circ b=0$ for any $a, b \in A$. Then $B^{2}(A, K)=0$. Therefore, for any abelian algebra A of dimension n, the second cohomology space is isomorphic to n^{2}-dimensional matrix space:

$$
H^{2}(A, K)=Z^{2}(A, K) \cong \operatorname{Mat}_{n}
$$

Proof of Theorem 1.7. It is easy to verify that all algebras mentioned in Theorem 1.7 are Zinbiel.

If $\operatorname{dim} A=1$ and A is generated by the basis element e_{1}, then $e_{1} \circ e_{1}=\alpha e_{1}$ for some $\alpha \in K$. By the Zinbiel identity,

$$
\operatorname{zinbiel}\left(e_{1}, e_{1}, e_{1}\right)=0 \Rightarrow \alpha^{2} e_{1}=0 \Rightarrow \alpha_{1}=0
$$

By Corollary 1.6, for any Zinbiel algebra A over an algebraically closed field of characteristic 0 or $p>7$, there exists the nontrivial center $Z(A)$ and an exact extension of Zinbiel algebras

$$
0 \rightarrow Z(A) \rightarrow A \rightarrow \bar{A} \rightarrow 0
$$

holds. In other words, $A / Z(A) \cong \bar{A}$. Therefore, the classification of algebras A is equivalent to the problem of calculation of second cohomology group $H^{2}(\bar{A}, K)$.

Let $A=\left\langle e_{1}\right\rangle$ be a one-dimensional Zinbiel algebra. Since any onedimensional algebra is abelian, $H^{2}(A, K)$ is one-dimensional and is generated by a cocycle

$$
\psi\left(e_{1}, e_{1}\right)=1
$$

Therefore, any 2-dimensional Zinbiel algebra $\tilde{A}=\left\langle e_{1}, e_{2}\right\rangle$ with the central element e_{2} has the following multiplication table:

$$
e_{1} \circ e_{1}=\beta e_{2}, \quad e_{1} \circ e_{2}=0, \quad e_{2} \circ e_{1}=0, \quad e_{2} \circ e_{2}=0
$$

If $\beta=0$, then we obtain the algebra $Q(0)$. If $\beta \neq 0$ under the new basis $\left\{1 / \sqrt{\beta} e_{1}, e_{2}\right\}$, then we obtain the algebra $Q(1)$.

Since $Q(0)$ is abelian and two-dimensional, $H^{2}(Q(0), K)$ is fourdimensional and is generated by four cocycles $\psi_{i}, i=1,2,3,4$, such that

$$
\psi_{1}\left(e_{1}, e_{1}\right)=1, \quad \psi_{2}\left(e_{1}, e_{2}\right)=1, \quad \psi_{3}\left(e_{2}, e_{1}\right)=1, \quad \psi_{4}\left(e_{2}, e_{2}\right)=1
$$

(non-written components are 0). Therefore, any three-dimensional extension of $Q(0)$ by the one-dimensional center is equivalent to $R(\alpha, \beta, \gamma, \delta)$. Take a new basis in $R(\alpha, \beta, \gamma, \delta)$. Under the basis $\left\{1 / \sqrt{\alpha} e_{1}, e_{2}, e_{3}\right\}$, we obtain the algebra $R(1, \beta, \gamma, \delta)$ if $\alpha \neq 0$. Similarly, the new basis $\left\{e_{1}, 1 / \sqrt{\delta} e_{2}, e_{3}\right\}$ gives us the algebra $R(\alpha, \beta, \gamma, 1)$ if $\delta \neq 0$.

Now we calculate the second cohomology of $Q(1)$. Note that there are six cocyclicity conditions $d \psi\left(e_{i}, e_{j}, e_{s}\right)=0$, where $i, j, s=1,2, j \leq s$. They give us the following three nontrivial relations:

$$
\psi\left(e_{1}, e_{1}\right)=1, \quad 2 \psi\left(e_{1}, e_{2}\right)=\psi\left(e_{2}, e_{1}\right), \quad \psi\left(e_{2}, e_{2}\right)=0
$$

Therefore, $Z^{2}(Q(1), K)$ is two-dimensional and is generated by the cocycles ψ_{1} and ψ_{2} such that

$$
\psi_{1}\left(e_{1}, e_{1}\right)=1, \quad \psi_{2}\left(e_{2}, e_{1}\right)=1, \quad \psi_{2}\left(e_{1}, e_{2}\right)=1 / 2
$$

(non-written components are 0). Note that $\psi_{1}=d \omega$ for $\omega \in C^{1}(Q(1), K)$ given by $\omega\left(e_{2}\right)=-1$. Therefore, $H^{2}(Q(1), K)$ is one-dimensional and is generated by a class of the cocycle ψ_{2}. The corresponding central extension is equivalent to the algebra $\tilde{A}=Q(1)+K$ with the following multiplication table:

$$
e_{1} \circ e_{1}=e_{2}, \quad e_{1} \circ e_{2}=\frac{\alpha}{2} e_{3}, \quad e_{2} \circ e_{1}=\alpha e_{3}, \quad e_{2} \circ e_{2}=0
$$

where $Q(1)=\left\langle e_{1}, e_{2}\right\rangle$ and one-dimensional center element is denoted by e_{3}. Note that in \tilde{A}, one can obtain the new basis $\left\{e_{1}, e_{2}, 1 / \sqrt{\alpha} e_{3}\right\}$ if $\alpha \neq 0$. Under this basis, we obtain the algebra $W(3)$. If $\alpha=0$, then we obtain the algebra $R(1,0,0,0)$.

A direct calculation shows that Theorem 1.7 is true also for cases $p=$ $2,3,5,7$.

Acknowledgement. The first author is grateful to the INTAS foundation for the support.

References

1. A. A. Agrachev and R. V. Gamkrelidze, Exponential representation of flows and chronological algebras. Mat. Sb. 35 (1979), 727-785.
2. \qquad , Chronological algebras and nonstationary vector fields. J. Sov. Math. 17 (1981), No. 1, 1650-1675.
3. A. Bloch, On generalized notion of Lie algebras. Dokl. Akad. Nauk SSSR 165 (1965), No. 3, 471-473.
4. Ya. S. Dubnov and V. K. Ivanov. On reducing the degree of affinor polynomials. Dokl. Akad. Nauk SSSR 41 (1943), 99-102.
5. A. Cayley, On the theory of analytical forms called trees. Phil. Mag. 13 (1857), 19-30; Mathematical Papers, Cambridge (1891), Vol. 3, pp. 242246.
6. V. A. Ginzburg and M. M. Kapranov, Koszul duality for operads. Duke Math. J. 76 (1994), 203-272.
7. G. Higman, On a conjecture of Nagata. Proc. Cambridge Phil. Soc. 52 (1956), 1-4.
8. M. Kawski and H. J. Sussmann, Noncommutative power series and formal Lie-algebraic techniques in nonlinear control theory. In: Systems and Linear algebra (D. Prätzel-Wolters, U. Helmke, and E. Zerz, Eds.), Teubner, Stuttgart (1997), pp. 111-128.
9. M. Kawski, Chronological algebras: combinatorics and control. Itogi Nauki VINITI 64 (1999), 144-178.
10. A. I. Kostrikin, Around Burnside. Nauka, Moscow (1986).
11. J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann. 296 (1993), 139-158.
12. J.-L. Loday, Cup-product for Leibniz cohomology and dual Leibniz algebras. Math. Scand. 77 (1995), No. 2, 189-196.
13. M. Nagata, On the nilpotency of nilalgebras. J. Math. Soc. Japan 4 (1952), 296-301.
14. B. A. Omirov, Classification of two-dimensional complex Zinbiel algebras. Uzbek. Mat. Zh. 2 (2002), 55-59.
15. C. Reutenauer, Free Lie algebras. Oxford Univ. Press (1993).
16. E. Rocha, On computation of the logarithm of the Chern-Fliess series for nonlinear systems. In: Nonlinear and Adaptive Control: NCN4 2001 (A. Zinober and D. Owens, Eds.), pp. 317-326.
17. M. Schützenberger, Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un probléme de mathématiques appliquées. In: Séminaire P. Dubreil, Algèbres et Théorie des Nombres, Faculté des Sciences de Paris (1958/59).
18. E. B. Vinberg, Convex homogeneous cones. Trans. Moscow Math. Soc. 12 (1963), 340-403.
(Received March 09 2004, received in revised form September 30 2004)

Authors' addresses:
A. S. Dzhumadil'daev

Kazakh-British University, Almaty, Kazakhstan
E-mail: askar@math.kz
K. M. Tulenbaev

Kazakh-British University, Almaty, Kazakhstan

[^0]: 2000 Mathematics Subject Classification. 17A32.
 Key words and phrases. Zinbiel algebras, chronological algebras, Leibniz algebras, Nagata-Higman theorem, nilpotency.

