

## Communications in Algebra

## Engel Theorem for Novikov Algebras

A. S. Dzhumadil'daev \& K. M. Tulenbaev

To cite this article: A. S. Dzhumadil'daev \& K. M. Tulenbaev (2006) Engel Theorem for Novikov Algebras, Communications in Algebra, 34:3, 883-888, DOI: 10.1080/00927870500441742

To link to this article: http://dx.doi.org/10.1080/00927870500441742


Published online: 03 Sep 2006.


Submit your article to this journal ©

Article views: 42


View related articles

# ENGEL THEOREM FOR NOVIKOV ALGEBRAS 

A. S. Dzhumadil'daev and K. M. Tulenbaev

S. Demirel University, Almaty, Kazakhstan

We prove that, if A is left-nil Novikov algebra, then $A^{2}$ is nilpotent.

Key Words: Engel theorem; Nilpotency; Novikov algebra.

Mathematics Subject Classification: 17C; 17B.

Let $A=(A, \circ)$ be an algebra, with $A$ a vector space over a field $K$ of characteristic $p \geq 0$ and $A \times A \rightarrow A,(a, b) \mapsto a \circ b$, a multiplication. An algebra $A$ is called Novikov (Balinskii and Novikov, 1985; Gelfand and Dorfman, 1979; Osborn, 1992), if

$$
\begin{aligned}
a_{1} \circ\left(a_{2} \circ a_{3}\right)-\left(a_{1} \circ a_{2}\right) \circ a_{3} & =a_{1} \circ\left(a_{3} \circ a_{2}\right)-\left(a_{1} \circ a_{3}\right) \circ a_{2}, \\
a_{1} \circ\left(a_{2} \circ a_{3}\right) & =a_{2} \circ\left(a_{1} \circ a_{3}\right),
\end{aligned}
$$

for any $a_{1}, a_{2}, a_{3} \in A$.
Example. $(K[x], \circ)$, where $(a \circ b)(x)=\left(\frac{\partial}{\partial x} a(x)\right) b(x)$, is Novikov.
Denote by $A^{k}$ a subspace of $A$ generated by products of any $k$ elements of $A$ in any type of bracketings. Then

$$
A=A^{1} \supseteq A^{2} \supseteq \cdots \supseteq A^{k} \supseteq A^{(k+1)} \supseteq \cdots,
$$

and

$$
A^{k} \circ A^{s} \subseteq A^{k+s}, \quad k, s \geq 1
$$

In particular,

$$
\begin{aligned}
& A^{k} \circ A \subseteq A^{k+1} \subseteq A^{k} \\
& A \circ A^{k} \subseteq A^{k+1} \subseteq A^{k}
\end{aligned}
$$

Received November 1, 2004; Revised December 2, 2004. Communicated by E. Zelmanov.
Address correspondence to A. S. Dzhumadil'daev, Institute of Mathematics, Pushkin St. 125, Almaty 480091, Kazakhstan; Fax: 007-327-2-913740; E-mail: askar@math.kz

Therefore, for any algebra $A$ and $k$, a subspace $A^{k}$ forms an ideal in $A$. In particular, $A^{2}$ is an ideal generated by products $a \circ b$, where $a, b \in A$.

An algebra $A$ is called nilpotent if $A^{n}=0$ for some $n$. Minimal $n$ with a such property is called index of nilpotency.

Let $A^{k}$ be a subspace of $A$ generated by right-normed products $a_{1}$ 。 $\left(a_{2} \circ \cdots\left(a_{k-2} \circ\left(a_{k-1} \circ a_{k}\right)\right) \cdots\right)$. Then

$$
A=A^{1} \supseteq A^{2}=A^{2} \supseteq A^{.3} \supseteq \cdots \supseteq A^{k} \supseteq A^{\cdot(k+1)} \supseteq \cdots
$$

Call A left-nilpotent if $A^{n}=0$ for some $n$.
For $a \in A$ set

$$
a^{n}=\underbrace{a \circ(a \circ(\cdots(a \circ a)))}_{n \text { times }} .
$$

Call A left-nill if $a^{n}=0, \forall a \in A$, for some $n$.
Zelmanov has proven that, if $A$ is left-nilpotent finite-dimensional Novikov algebra over a field of characteristic zero, then $A^{2}$ is nilpotent (Zelmanov, 1987). In our article we establish the following result.

Theorem 1. Let $A$ be Novikov algebra over a field of characteristic $p$ such that $a^{-n}=0$, for any $a \in A$. Suppose that $p=0$ or $p>n$. Then $A^{2}$ is nilpotent with index of nilpotency no more than $n$.

Let $l_{a}: A \rightarrow A$ be a left multiplication operator

$$
l_{a}(b)=a \circ b
$$

If $A$ is a finite-dimensional Lie algebra, then by the Engel theorem, $A$ is nilpotent if $l_{a}$ is nil for any $a \in A$. The following analog of Engel theorem for Novikov algebras takes place.

Corollary 2. Let $A$ be Novikov algebra such that $l_{a}^{n}=0$ for any $a \in A$. If $p=0$ or $p>n+1$, then $A^{2}$ is nilpotent and nilpotency index is no more than $n+1$.

Proof. If $l_{a}^{n}=0$, then $l_{a}^{n}(a)=a^{(n+1)}=0$. It remains to use Theorem 1.
Corollary 3. Let $p=0$ and $A$ be finite-dimensional Novikov algebra with base $\left\{a_{1}, \ldots, a_{m}\right\}$. If $l_{a_{i}}$ is nill for all $i=1, \ldots, m$, then $A^{2}$ is nilpotent.

Proof. Since $l_{a} l_{b}=l_{b} l_{a}$, for any $a, b \in A$, the conditions $l_{a}^{s}=0, l_{b}^{q}=0$ imply that $l_{a+b}^{s+q}=0$. Therefore, $l_{a}$ is nil for any $a \in A$. Thus by Corollary $2 A^{2}$ is nilpotent.

Remark 1. Zelmanov's example of two-dimensional algebra with base $\{a, b\}$ and multiplication table $a \circ a=b, a \circ b=b, b \circ a=b, b \circ b=0$ (Zelmanov, 1987) shows that in Corollaries 2 and 3, one cannot change nilpotency of $A^{2}$ to nilpotency of $A$.

Remark 2. Let $p=0$ or $p \geq n$. From Lemma 6 it follows that $l_{a_{1}} \ldots l_{a_{n}}=0$ for any $a_{1}, \ldots, a_{n} \in A$, if $a^{n}=0$, for any $a \in A$. So, for Novikov Algebra $A$ the following conditions are equivalent:
(i) $A$ is left-nill;
(ii) The subalgebra of End $A$ generated by left-multiplication operators $l_{a}$ is nilpotent;
(iii) $A$ is left-nilpotent.

Remark 3. It seems that in Theorem 1 instead of $\left(A^{2}\right)^{n}=0$ one can write $\left(A^{2}\right)^{n-1}=0$, and this estimate cannot be improved if $n>2$. We have checked it for $n=3$, 4 . For the case $n=3$, see Lemma 8 . The case $n=4$ needs tedious calculations and we omit them.

Lemma 4. Let $A$ be a right-symmetric algebra. For any $k$ a subspace $A^{k}$ forms an ideal in $A$.

Proof. It is evident that

$$
A \circ A^{. k} \subseteq A^{\cdot(k+1)} .
$$

Let us prove

$$
A^{k} \circ A \subseteq A^{k}
$$

We use induction on $k$ to establish that

$$
\left(a_{1} \circ\left(a_{2} \circ \cdots\left(a_{k-1} \circ a_{k}\right) \cdots\right)\right) \circ b \in A^{k},
$$

for any $a_{1}, \ldots, a_{k}, b \in A$.
For $k=1$ our statement is evident:

$$
a \circ b \in A^{2} \subseteq A
$$

Suppose that for $k-1$ our statement is true. Then by right-symmetric identity

$$
\begin{aligned}
a_{1} \circ\left(a_{2} \circ \cdots\left(a_{k-1} \circ a_{k}\right) \cdots\right) \circ b= & a_{1} \circ\left(\left(a_{2} \circ \cdots\left(a_{k-1} \circ a_{k}\right) \cdots\right) \circ b\right) \\
& +\left(a_{1} \circ b\right) \circ\left(a_{2} \circ \cdots\left(a_{k-1} \circ a_{k}\right) \cdots\right) \\
& -a_{1} \circ\left(b \circ\left(a_{2} \circ \cdots\left(a_{k-1} \circ a_{k}\right) \cdots\right)\right) .
\end{aligned}
$$

By inductive suggestion

$$
\left(a_{2} \circ \cdots\left(a_{k-1} \circ a_{k}\right) \cdots\right) \circ b \in A^{(k-1)} .
$$

Since $a_{1} \circ b \in A$, it is clear that

$$
\left(a_{1} \circ b\right) \circ\left(a_{2} \circ\left(\cdots\left(a_{k-1} \circ a_{k}\right) \cdots\right)\right) \in A^{\cdot k} .
$$

Similarly,

$$
a_{1} \circ\left(b \circ\left(a_{2} \circ \cdots\left(a_{k-1} \circ a_{k}\right) \cdots\right)\right) \in A^{(k+1)} \subseteq A^{k} .
$$

So,

$$
\left(a_{1} \circ\left(a_{2} \circ \cdots\left(a_{k-1} \circ a_{k}\right) \cdots\right)\right) \circ b \in A^{. k} .
$$

Lemma 5. Let A be Novikov algebra. Then

$$
\left(A^{2}\right)^{k} \subseteq A^{(k+1)}
$$

Proof. We need to prove that product of any $k$ elements $c_{1}, \ldots, c_{k} \in A^{2}$ in any type of bracketings can be presented as a linear combination of elements of the form $a_{1} \circ\left(a_{2} \circ\left(\cdots\left(a_{k} \circ a_{k+1}\right) \cdots\right)\right)$.

We use induction on $k$. If $k=1$, our statement is trivial.
Recall that there are $\frac{1}{k}\binom{2 k-2}{k-1}$ types of bracketings in $k$ elements. For example, if $k=4$, we have 5 bracketing types:

$$
\begin{gathered}
\left(\left(a_{1} \circ a_{1}\right) \circ a_{3}\right) \circ a_{4}, \quad\left(a_{1} \circ a_{2}\right) \circ\left(a_{3} \circ a_{4}\right), \quad\left(a_{1} \circ\left(a_{2} \circ a_{3}\right)\right) \circ a_{4}, \\
a_{1} \circ\left(\left(a_{2} \circ a_{3}\right) \circ a_{4}\right), \quad a_{1} \circ\left(a_{2} \circ\left(a_{3} \circ a_{4}\right)\right) .
\end{gathered}
$$

Let $x$ be some bracketing type in $k$ elements. Denote by $x\left(a_{1}, \ldots, a_{k}\right)$ an element obtained by elements $a_{1}, \ldots, a_{k}$ applying the bracketing $x$. It is known that any element $x\left(a_{1}, \ldots, a_{k}\right)$ can be presented as a product

$$
x\left(a_{1}, \ldots, a_{k}\right)=y\left(a_{1}, \ldots, a_{s}\right) \circ z\left(a_{s+1}, \ldots, a_{n+m}\right)
$$

for some bracketing types $y$ and $z$ in $s$ and $m$ elements, where $k=s+m, s>0$, $m>0$.

Suppose that for $k-1 \geq 1$ our statement is established. As we mentioned above, any product of $k$ elements $c_{1}, \ldots, c_{k}$ in any type of bracketings (denoted as $C$ ) can be presented as a product of some elements $C_{1}$ and $C_{2}$. Here $C_{1}$ is obtained by elements $c_{1}, \ldots, c_{s}$ applying some bracketing type in $s$ elements and $C_{2}$ is obtained by elements $c_{s+1}, \ldots, c_{s+m}$, applying some bracketing type in $m$ elements, where $k=s+m$. By inductive suggestion $C_{1} \in A^{(s+1)}$ and $C_{2} \in A^{(m+1)}$.

So, $C$ is a linear combination of elements of a form $Y \circ Z$, where

$$
\begin{aligned}
& Y=\left(a_{1} \circ\left(\cdots\left(a_{s} \circ a_{s+1}\right) \cdots\right)\right), \quad a_{1}, \ldots, a_{s+1} \in A, \\
& Z=\left(b_{1} \circ\left(\cdots\left(b_{m} \circ b_{m+1}\right) \cdots\right)\right), \quad b_{1}, \ldots, b_{m+1} \in A .
\end{aligned}
$$

By left-commutative identity

$$
Y \circ Z=b_{1} \circ\left(\cdots\left(b_{m} \circ\left(Y \circ b_{m+1}\right)\right) \cdots\right)
$$

By Lemma 4

$$
Y \circ b_{m+1} \in A^{(s+1)} .
$$

Thus,

$$
Y \circ Z \in A^{(s+m+1)}=A^{(k+1)} .
$$

So, our statement is true for $k$. Lemma is proven completely.
Let

$$
S_{k}\left(a_{1}, \ldots, a_{k}\right)=\sum_{\sigma \in S y m_{k}} a_{\sigma(1)} \circ\left(\cdots \circ\left(a_{\sigma(k-2)} \circ\left(a_{\sigma(k-1)} \circ a_{\sigma(k)}\right)\right) \cdots\right) .
$$

Lemma 6. Let A be Novikov algebra over a field of characteristic $p>k$. Then for any $a_{1}, \ldots, a_{k+1} \in A$, the following relation takes place:
$a_{1} \circ\left(\cdots \circ\left(a_{k} \circ a_{k+1}\right) \cdots\right)=\frac{1}{k!} S_{k+1}\left(a_{1}, \ldots, a_{k}, a_{k+1}\right)-\frac{1}{(k-1)!} a_{k+1} \circ S_{k}\left(a_{1}, \ldots, a_{k}\right)$.
Proof. By left-commutative identity

$$
\begin{aligned}
& S_{k+1}\left(a_{1}, \ldots, a_{k+1}\right) \\
& =\sum_{\sigma \in \operatorname{Sym}_{k+1}} \operatorname{sign} \sigma a_{\sigma(1)} \circ\left(\cdots \circ\left(a_{\sigma(k)} \circ a_{\sigma(k+1)}\right)\right) \\
& =\sum_{i=1}^{k+1} \sum_{\sigma \in \text { Sym }_{k+1}, \sigma(i)=i} \operatorname{sign} \sigma a_{\sigma(1)} \circ\left(\cdots \circ\left(a_{\sigma(k)} \circ a_{\sigma(k+1)}\right)\right) \\
& =\sum_{i=1}^{k+1} k!a_{1} \circ\left(\cdots a_{i-1} \circ\left(a_{i+1} \circ\left(\cdots \circ\left(a_{k+1} \circ a_{i}\right)\right)\right)\right) \\
& =k!a_{1} \circ\left(\cdots \circ\left(a_{k} \circ a_{k+1}\right)\right)+\sum_{i=1}^{k} k!a_{k+1} \circ\left(a_{1} \circ\left(\cdots a_{i-1} \circ\left(a_{i+1} \circ\left(\cdots\left(a_{k} \circ a_{i}\right)\right)\right)\right)\right) \\
& =k!a_{1} \circ\left(\cdots \circ\left(a_{k} \circ a_{k+1}\right)\right) \\
& \quad+k a_{k+1} \circ\left(\sum_{i=1}^{k}(k-1)!a_{1} \circ\left(\cdots a_{i-1} \circ\left(a_{i+1} \circ\left(\cdots\left(a_{k} \circ a_{i}\right)\right)\right)\right)\right) \\
& =k!a_{1} \circ\left(\cdots \circ\left(a_{k} \circ a_{k+1}\right)\right)+k a_{k+1} \circ\left(S_{k}\left(a_{1}, \ldots, a_{k+1}\right) .\right.
\end{aligned}
$$

Lemma is proven.
Lemma 7. Let $A$ be an algebra over a field of characteristic $p=0$ or $p \geq k$. Let $J_{k}$ be an ideal of algebra $A$ generated by right-normed elements $a^{k}, a \in A$. Then $J_{k}$ is generated by elements of the form $S_{k}\left(a_{1}, \ldots, a_{k}\right)$, where $a_{1}, \ldots, a_{k} \in A$.

Proof. We have

$$
S_{k}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\sum(-1)^{k-r}\left(a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{r}}\right)^{\cdot k},
$$

where the summation is over all nonempty subsets $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \subseteq\{1,2, \ldots, k\}$ and all products are right-bracketed. So,

$$
S_{k}\left(a_{1}, \ldots, a_{k}\right) \in J_{k} .
$$

Conversely, by left-symmetry identity

$$
a^{k}=\frac{1}{(k-1)!} S_{k}(a, a, \ldots, a)
$$

Lemma 8. Suppose that $A$ is Novikov algebra with the identity $a^{3}=0$ for any $a \in A$. Then $\left(A^{2}\right)^{2}=0$.

Proof. Direct calculations show that

$$
\begin{aligned}
(a \circ b) \circ(c \circ d)= & \frac{1}{4}\left(S_{3}(a \circ b, c, d)-S_{3}(a \circ c, b, d)+S_{3}(a \circ d, b, c)+b \circ S_{3}(a, c, d)\right. \\
& \left.+c \circ S_{3}(a, b, d)-d \circ S_{3}(a, b, c)\right)-\frac{1}{12} S_{4}(a, b, c, d)
\end{aligned}
$$

## By Lemma 7

$$
S_{3}(a, b, c)=0 \quad \text { and } \quad S_{4}(a, b, c, d)=0
$$

for any $a, b, c, d \in A$. Therefore, $(a \circ b) \circ(c \circ d)=0$ for any $a, b, c, d \in A$. In other words, $\left(A^{2}\right)^{2}=0$.

Proof of Theorem 1. By Lemmas 6 and 7,

$$
A^{\cdot(n+1)}=0,
$$

if $a^{n}=0$, for any $a \in A$. Then by Lemma 5

$$
\left(A^{2}\right)^{n}=0
$$

## REFERENCES

Balinskii, A. A., Novikov, S. P. (1985). Poisson bracket of hamiltonian type, Frobenius algebras and Lie algebras. Dokladu AN SSSR 283(5):1036-1039.
Gelfand, I. M., Dorfman, I. Ya. (1979). Hamiltonian operators and related algebraic structures. Funct. Anal. Prilozhen. 13(4):13-30. Engl. transl. Funct. Anal. Appl. 13:248-262.
Osborn, J. M. (1992). Novikov algebras. Nova J. Algebra Geom. 1:1-14.
Zelmanov, E. I. (1987). A class of local translation-invariant Lie algebras. Dokl. Akad. Nauk SSSR 292(6):1294-1297. Engl. transl. Soviet Math. Dokl, 35:216-218.

