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ENGEL THEOREM FOR NOVIKOV ALGEBRAS

A. S. Dzhumadil’daev and K. M. Tulenbaev
S. Demirel University, Almaty, Kazakhstan

We prove that, if A is left-nil Novikov algebra, then A2 is nilpotent.
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Let A = �A� �� be an algebra, with A a vector space over a field K of
characteristic p ≥ 0 and A× A → A� �a� b� �→ a � b, a multiplication. An algebra
A is called Novikov (Balinskii and Novikov, 1985; Gelfand and Dorfman, 1979;
Osborn, 1992), if

a1 � �a2 � a3�− �a1 � a2� � a3 = a1 � �a3 � a2�− �a1 � a3� � a2�

a1 � �a2 � a3� = a2 � �a1 � a3��

for any a1� a2� a3 ∈ A.

Example. �K�x�� ��, where �a � b��x� = (
�
�x
a�x�

)
b�x�, is Novikov.

Denote by Ak a subspace of A generated by products of any k elements of A
in any type of bracketings. Then

A = A1 ⊇ A2 ⊇ · · · ⊇ Ak ⊇ A�k+1� ⊇ · · · �

and

Ak � As ⊆ Ak+s� k� s ≥ 1�

In particular,

Ak � A ⊆ Ak+1 ⊆ Ak�

A � Ak ⊆ Ak+1 ⊆ Ak�
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884 DZHUMADIL’DAEV AND TULENBAEV

Therefore, for any algebra A and k, a subspace Ak forms an ideal in A� In particular,
A2 is an ideal generated by products a � b� where a� b ∈ A�

An algebra A is called nilpotent if An = 0 for some n. Minimal n with a such
property is called index of nilpotency.

Let A�k be a subspace of A generated by right-normed products a1 �
�a2 � · · · �ak−2 � �ak−1 � ak�� · · · �� Then

A = A�1 ⊇ A2 = A�2 ⊇ A�3 ⊇ · · · ⊇ A�k ⊇ A��k+1� ⊇ · · · �

Call A left-nilpotent if A�n = 0 for some n.
For a ∈ A set

a�n = a � �a � �· · · �a � a���︸ ︷︷ ︸
n times

�

Call A left-nill if a�n = 0�∀a ∈ A� for some n�
Zelmanov has proven that, if A is left-nilpotent finite-dimensional Novikov

algebra over a field of characteristic zero, then A2 is nilpotent (Zelmanov, 1987).
In our article we establish the following result.

Theorem 1. Let A be Novikov algebra over a field of characteristic p such that
a�n = 0, for any a ∈ A. Suppose that p = 0 or p > n� Then A2 is nilpotent with index of
nilpotency no more than n�

Let la � A → A be a left multiplication operator

la�b� = a � b�

If A is a finite-dimensional Lie algebra, then by the Engel theorem, A is nilpotent if
la is nil for any a ∈ A. The following analog of Engel theorem for Novikov algebras
takes place.

Corollary 2. Let A be Novikov algebra such that lna = 0 for any a ∈ A� If p = 0 or
p > n+ 1� then A2 is nilpotent and nilpotency index is no more than n+ 1�

Proof. If lna = 0� then lna�a� = a��n+1� = 0� It remains to use Theorem 1.

Corollary 3. Let p = 0 and A be finite-dimensional Novikov algebra with base
	a1� � � � � am
� If lai is nill for all i = 1� � � � � m� then A2 is nilpotent.

Proof. Since lalb = lbla� for any a� b ∈ A� the conditions lsa = 0� lqb = 0 imply that
l
s+q
a+b = 0� Therefore, la is nil for any a ∈ A� Thus by Corollary 2 A2 is nilpotent.

Remark 1. Zelmanov’s example of two-dimensional algebra with base 	a� b

and multiplication table a � a = b� a � b = b� b � a = b� b � b = 0 (Zelmanov, 1987)
shows that in Corollaries 2 and 3, one cannot change nilpotency of A2 to
nilpotency of A.
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ENGEL THEOREM FOR NOVIKOV ALGEBRAS 885

Remark 2. Let p = 0 or p ≥ n. From Lemma 6 it follows that la1 � � � lan = 0 for any
a1� � � � � an ∈ A, if a�n = 0, for any a ∈ A. So, for Novikov Algebra A the following
conditions are equivalent:

(i) A is left-nill;
(ii) The subalgebra of EndA generated by left-multiplication operators la is

nilpotent;
(iii) A is left-nilpotent.

Remark 3. It seems that in Theorem 1 instead of �A2�n = 0 one can write
�A2�n−1 = 0, and this estimate cannot be improved if n > 2� We have checked it for
n = 3� 4� For the case n = 3, see Lemma 8. The case n = 4 needs tedious calculations
and we omit them.

Lemma 4. Let A be a right-symmetric algebra. For any k a subspace A�k forms an
ideal in A�

Proof. It is evident that

A � A�k ⊆ A��k+1��

Let us prove

A�k � A ⊆ A�k�

We use induction on k to establish that

�a1 � �a2 � · · · �ak−1 � ak� · · · �� � b ∈ A�k�

for any a1� � � � � ak� b ∈ A�
For k = 1 our statement is evident:

a � b ∈ A2 ⊆ A�

Suppose that for k− 1 our statement is true. Then by right-symmetric identity

a1 � �a2 � · · · �ak−1 � ak� · · · � � b = a1 �
(
�a2 � · · · �ak−1 � ak� · · · � � b�

+�a1 � b� � �a2 � · · · �ak−1 � ak� · · · �
−a1 � �b � �a2 � · · · �ak−1 � ak� · · · �

)
�

By inductive suggestion

�a2 � · · · �ak−1 � ak� · · · � � b ∈ A��k−1��

Since a1 � b ∈ A� it is clear that

�a1 � b� � �a2 � �· · · �ak−1 � ak� · · · �� ∈ A�k�
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886 DZHUMADIL’DAEV AND TULENBAEV

Similarly,

a1 � �b � �a2 � · · · �ak−1 � ak� · · · �� ∈ A��k+1� ⊆ A�k�

So,

�a1 � �a2 � · · · �ak−1 � ak� · · · �� � b ∈ A�k�

Lemma 5. Let A be Novikov algebra. Then

�A2�k ⊆ A��k+1��

Proof. We need to prove that product of any k elements c1� � � � � ck ∈ A2 in any
type of bracketings can be presented as a linear combination of elements of the form
a1 � �a2 � �· · · �ak � ak+1� · · · ���

We use induction on k� If k = 1, our statement is trivial.
Recall that there are 1

k
� 2k−2

k−1 � types of bracketings in k elements. For example,
if k = 4, we have 5 bracketing types:

��a1 � a1� � a3� � a4� �a1 � a2� � �a3 � a4�� �a1 � �a2 � a3�� � a4�

a1 � ��a2 � a3� � a4�� a1 � �a2 � �a3 � a4���

Let x be some bracketing type in k elements. Denote by x�a1� � � � � ak� an element
obtained by elements a1� � � � � ak applying the bracketing x� It is known that any
element x�a1� � � � � ak� can be presented as a product

x�a1� � � � � ak� = y�a1� � � � � as� � z�as+1� � � � � an+m��

for some bracketing types y and z in s and m elements, where k = s +m� s > 0,
m > 0�

Suppose that for k− 1 ≥ 1 our statement is established. As we mentioned
above, any product of k elements c1� � � � � ck in any type of bracketings (denoted
as C) can be presented as a product of some elements C1 and C2. Here C1 is
obtained by elements c1� � � � � cs applying some bracketing type in s elements and C2

is obtained by elements cs+1� � � � � cs+m� applying some bracketing type in m elements,
where k = s +m� By inductive suggestion C1 ∈ A��s+1� and C2 ∈ A��m+1��

So, C is a linear combination of elements of a form Y � Z� where
Y = �a1 � �· · · �as � as+1� · · · ��� a1� � � � � as+1 ∈ A�

Z = �b1 � �· · · �bm � bm+1� · · · ��� b1� � � � � bm+1 ∈ A�

By left-commutative identity

Y � Z = b1 � �· · · �bm � �Y � bm+1�� · · · ��
By Lemma 4

Y � bm+1 ∈ A��s+1��
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ENGEL THEOREM FOR NOVIKOV ALGEBRAS 887

Thus,

Y � Z ∈ A��s+m+1� = A��k+1��

So, our statement is true for k� Lemma is proven completely.
Let

Sk�a1� � � � � ak� =
∑

�∈Symk

a��1� � �· · · � �a��k−2� � �a��k−1� � a��k��� · · · ��

Lemma 6. Let A be Novikov algebra over a field of characteristic p > k� Then for
any a1� � � � � ak+1 ∈ A� the following relation takes place:

a1 � �· · · � �ak � ak+1� · · · � =
1
k!Sk+1�a1� � � � � ak� ak+1�−

1
�k− 1�!ak+1 � Sk�a1� � � � � ak��

Proof. By left-commutative identity

Sk+1�a1� � � � � ak+1�

= ∑
�∈Symk+1

sign � a��1� � �· · · � �a��k� � a��k+1���

=
k+1∑
i=1

∑
�∈Symk+1���i�=i

sign � a��1� � �· · · � �a��k� � a��k+1���

=
k+1∑
i=1

k! a1 � �· · · ai−1 � �ai+1 � �· · · � �ak+1 � ai����

= k! a1 � �· · · � �ak � ak+1��+
k∑

i=1

k! ak+1 � �a1 � �· · · ai−1 � �ai+1 � �· · · �ak � ai�����

= k! a1 � �· · · � �ak � ak+1��

+ k ak+1 �
( k∑

i=1

�k− 1�!a1 � �· · · ai−1 � �ai+1 � �· · · �ak � ai����

)

= k! a1 � �· · · � �ak � ak+1��+ k ak+1 � �Sk�a1� � � � � ak+1��

Lemma is proven.

Lemma 7. Let A be an algebra over a field of characteristic p = 0 or p ≥ k. Let Jk
be an ideal of algebra A generated by right-normed elements a�k� a ∈ A� Then Jk is
generated by elements of the form Sk�a1� � � � � ak�� where a1� � � � � ak ∈ A�

Proof. We have

Sk�a1� a2� � � � � ak� =
∑

�−1�k−r �ai1
+ ai2

+ · · · + air
��k�

D
ow

nl
oa

de
d 

by
 [

N
az

ar
ba

ye
v 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 2

0:
35

 2
8 

Ja
nu

ar
y 

20
16

 



888 DZHUMADIL’DAEV AND TULENBAEV

where the summation is over all nonempty subsets 	i1� i2� � � � � ir
 ⊆ 	1� 2� � � � � k
 and
all products are right-bracketed. So,

Sk�a1� � � � � ak� ∈ Jk�

Conversely, by left-symmetry identity

a�k = 1
�k− 1�!Sk�a� a� � � � � a��

Lemma 8. Suppose that A is Novikov algebra with the identity a�3 = 0 for any a ∈ A�
Then �A2�2 = 0.

Proof. Direct calculations show that

�a � b� � �c � d� = 1
4
�S3�a � b� c� d�− S3�a � c� b� d�+ S3�a � d� b� c�+ b � S3�a� c� d�

+ c � S3�a� b� d�− d � S3�a� b� c��−
1
12

S4�a� b� c� d��

By Lemma 7

S3�a� b� c� = 0 and S4�a� b� c� d� = 0

for any a� b� c� d ∈ A. Therefore, �a � b� � �c � d� = 0 for any a� b� c� d ∈ A� In other
words, �A2�2 = 0.

Proof of Theorem 1. By Lemmas 6 and 7,

A��n+1� = 0�

if a�n = 0� for any a ∈ A� Then by Lemma 5

�A2�n = 0�
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