Journal of Mathematical Sciences, 161(2009), No.1, p.11-30.

ALGEBRAS WITH SKEW-SYMMETRIC IDENTITY OF DEGREE 3

A.S. DZHUMADIL'DAEV

Dedicated to 70th birthday of E.B. Vinberg
Abstract. Algebras with one of the following identities are considered:

$$
\begin{gathered}
{\left[\left[t_{1}, t_{2}\right], t_{3}\right]+\left[\left[t_{2}, t_{3}\right], t_{1}\right]+\left[\left[t_{3}, t_{1}\right], t_{2}\right]=0} \\
{\left[t_{1}, t_{2}\right] t_{3}+\left[t_{2}, t_{3}\right] t_{1}+\left[t_{3}, t_{1}\right] t_{2}=0,} \\
\left\{\left[t_{1}, t_{2}\right], t_{3}\right\}+\left\{\left[t_{2}, t_{3}\right], t_{1}\right\}+\left\{\left[t_{3}, t_{1}\right], t_{2}\right\}=0
\end{gathered}
$$

where $\left[t_{1}, t_{2}\right]=t_{1} t_{2}-t_{2} t_{1}$ and $\left\{t_{1}, t_{2}\right\}=t_{1} t_{2}+t_{2} t_{1}$. We prove that any algebra with a skew-symmetric identity of degree 3 is isomorphic or anti-isomorphic to one of such algebras or can be obtained as their q-commutator algebras.

1. Introduction

Denote by (A, \circ) an algebra with a vector space A over a field \mathbb{K} and a multiplication \circ. Let \circ_{q} be a new multiplication on A defined by

$$
a \circ_{q} b=a \circ b+q b \circ a \quad(q \text {-commutator }) .
$$

Notice that \circ_{-1} coincides with ordinary commutator

$$
[a, b]=a \circ b-b \circ a=a \circ_{-1} b
$$

and \circ_{1} coincides with anti-commutator

$$
\{a, b\}=a \circ b+b \circ a=a \circ_{1} b .
$$

Call the algebra $\left(A, \circ_{q}\right)$ as q-algebra of (A, \circ).
Let $\mathbb{K}\left\{t_{1}, \ldots, t_{k}\right\}$ be an algebra of non-commutative non-associative polynomials with variables $t_{1}, t_{2}, \ldots, t_{k}$. For any algebra (A, \circ) we can consider a homomorphism

$$
\mathbb{K}\left\{t_{1}, \ldots, t_{k}\right\} \rightarrow A,
$$

that corresponds to any $f \in \mathbb{K}\left\{t_{1}, \ldots, t_{k}\right\}$ an element $f\left(a_{1}, \ldots, a_{k}\right) \in$ A. This means that in $f\left(t_{1}, \ldots, t_{k}\right)$ we make substitutions $t_{1}:=$ $a_{1}, \ldots, t_{k}:=a_{k}$ by elements of A and calculate $f\left(a_{1}, \ldots, a_{k}\right)$ in terms of multiplication 0 .

A polynomial $f \in \mathbb{K}\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ is called identity on A, if

$$
f\left(a_{1}, \ldots, a_{k}\right)=0, \quad \forall a_{1}, a_{2}, \ldots, a_{k} \in A .
$$

In such cases we say that $f=0$ is an identity of A.
A polynomial $f \in \mathbb{K}\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ is called skew-symmetric if

$$
f\left(t_{\sigma(1)}, \ldots, t_{\sigma(k)}\right)=\operatorname{sign} \sigma f\left(t_{1}, \ldots, t_{k}\right),
$$

for any permutation $\sigma \in S y m_{k}$. An identity $f=0$ is skew-symmetric if f as a non-commutative non-associative polynomial is skew-symmetric.

Define polynomials with 2 variables

$$
\begin{aligned}
& \operatorname{lie}\left(t_{1}, t_{2}\right)=\left[t_{1}, t_{2}\right]=t_{1} t_{2}-t_{2} t_{1} \\
& \text { jor }\left(t_{1}, t_{2}\right)=\left\{t_{1}, t_{2}\right\}=t_{1} t_{2}+t_{2} t_{1}
\end{aligned}
$$

and polynomials with 3 variables

$$
\begin{gathered}
\operatorname{lia}\left(t_{1}, t_{2}, t_{3}\right)=\left[\left[t_{1}, t_{2}\right], t_{3}\right]+\left[\left[t_{2}, t_{3}\right], t_{1}\right]+\left[\left[t_{3}, t_{1}\right], t_{2}\right], \\
\text { alia }\left(t_{1}, t_{2}, t_{3}\right)=\left\{\left[t_{1}, t_{2}\right], t_{3}\right\}+\left\{\left[t_{2}, t_{3}\right], t_{1}\right\}+\left\{\left[t_{3}, t_{1}\right], t_{2}\right\}, \\
\text { lalia }\left(t_{1}, t_{2}, t_{3}\right)=\left[t_{1}, t_{2}\right] t_{3}+\left[t_{2}, t_{3}\right] t_{1}+\left[t_{3}, t_{1}\right] t_{2}, \\
\text { ralia }\left(t_{1}, t_{2}, t_{3}\right)=t_{1}\left[t_{2}, t_{3}\right]+t_{2}\left[t_{3}, t_{1}\right]+t_{3}\left[t_{1}, t_{2}\right], \\
\text { alia }^{(q)}\left(t_{1}, t_{2}, t_{3}\right)=\left[t_{1}, t_{2}\right] t_{3}+\left[t_{2}, t_{3}\right] t_{1}+\left[t_{3}, t_{1}\right] t_{2}+q\left(t_{1}\left[t_{2}, t_{3}\right]+t_{2}\left[t_{3}, t_{1}\right]+t_{3}\left[t_{1}, t_{2}\right]\right) .
\end{gathered}
$$

Introduce the following names for algebras with identities.

identity	name of algebras
jor $=0$	Anti-commutative
lia $=0$	Lie-admissible
alia $=0$	Anti-Lie-admissible or Alia
lalia $=0$	Left Anti-Lie-admissible or Left Alia
ralia $=0$	Right Anti-Lie-admissible or Right Alia
alia $^{(q)}=0$	q-Anti-Lie-admissible or q-Alia
lalia $=0$, ralia $=0$	Two-sided Alia

For anti-commutative algebra (A, \circ) a bilinear map $\psi: A \times A \rightarrow A$ is called commutative cocycle, if

$$
\begin{gathered}
\psi(a \circ b, c)+\psi(b \circ c, a)+\psi(c \circ a, b)=0, \\
\psi(a, b)=\psi(b, a),
\end{gathered}
$$

for any $a, b, c \in A$.
An algebra (A, \circ) is said anti-isomorphic to algebra (A, \star) if there exist one-to-one map $f: A \rightarrow A$, such that

$$
f(a \circ b)=f(b) \star f(a),
$$

for any $a, b \in A$.

The aim of our paper is to describe algebras with skew-symmetric identities of degree 3. We reduce the problem of studying algebras with skew-symmetric identities of degree 3 to the problem of studying q-Allia algebras for $q=0, \pm 1$, anti-commutative algebras and their commutative cocycles. We give standard constructions of 0 -Alia algebras and 1-Alia algebras. We give also examples of simple q-Alia algebras.

2. Space of skew-Symmetric and symmetric NON-ASSOCIATIVE POLYNOMIALS

Let \mathfrak{P}_{k} be a space of multilinear non-associative polynomials with k variables. Since the number of non-associative non-commutative bracketings on k letters is

$$
\left.c_{k}=\frac{1}{k}\binom{2 k-2}{k-1} \quad \text { (Catalan number }\right),
$$

it is clear that \mathfrak{P}_{k} is $\frac{(2 k-2)!}{(k-1)!}$-dimensional. Denote by \mathfrak{P}_{k}^{-}a subspace of \mathfrak{P}_{k} generated by skew-symmetric polynomials.

Let

$$
\pi^{-}: \mathfrak{P}_{k} \rightarrow \mathfrak{P}_{k}^{-}
$$

be skew-symmetrization map,

$$
\pi^{-} f\left(t_{1}, \ldots, t_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S y m_{k}} \operatorname{sign} \sigma f\left(t_{\sigma(1)}, \ldots, t_{\sigma(k)}\right)
$$

Theorem 2.1. The space \mathfrak{P}_{k}^{-}is c_{k}-dimensional and polynomials of a form $\pi^{-} f_{i}$, form base, where $i=1,2, \ldots, c_{k}$, and f_{i} runs monomials corresponding to different types of bracketings.

Proof. Let g be a skew-symmetric polynomial. Present it as a sum $\sum_{i=1}^{c_{k}} g_{i}$, where g_{i} is a linear combination of monomials of i th bracketing type. Since skew-symmetrization map does not change bracketing type, we see that g_{i} is also skew-symmetric polynomial for any $i=1,2, \ldots, c_{k}$ and is uniquely defined by $g_{i}\left(t_{1}, \ldots, t_{k}\right)$. This means that polynomials $\pi^{-} f_{1}, \ldots, \pi^{-} f_{c_{k}}$ form base of \mathfrak{P}_{k}^{-}.
Corollary 2.2. \mathfrak{P}_{2}^{-}is 2 -dimensional and has a base \{lalia, ralia $\}$.
Remark. Theorem 2.1 is true also for symmetric polynomials. Let \mathfrak{P}_{k}^{+}be a subspace of \mathfrak{P}_{k} generated by symmetric polynomials

$$
f\left(t_{\sigma(1)}, \ldots, t_{\sigma(k)}\right)=f\left(t_{1}, \ldots, t_{k}\right) .
$$

and

$$
\pi^{+}: \mathfrak{P}_{k} \rightarrow \mathfrak{P}_{k}^{+}
$$

be a symmetrization map,

$$
\pi^{+} f\left(t_{1}, \ldots, t_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S y m_{k}} f\left(t_{\sigma(1)}, \ldots, t_{\sigma(k)}\right),
$$

Then $\operatorname{dim} \mathfrak{P}_{k}^{+}=c_{k}$ and polynomials of a form $\pi^{+} f_{i}$, form base, where $i=1,2, \ldots, c_{k}$, and f_{i} runs monomials corresponding to different types of bracketings.

3. q-Alia algebras constructed by 0 -Alia algebras

Denote by $\mathfrak{L} i a, \mathfrak{A l i a}{ }^{(0)}, \mathfrak{A l i a}{ }^{(1)}$ and $\mathfrak{A l i a}{ }^{(\infty)}$ categories of Lieadmissible, 0 -Alia, 1-Alia and two-sided Alia algebras. Notice that

$$
\mathfrak{L} i a=\mathfrak{A}\left(\mathfrak{i a} \mathfrak{a}^{(-1)}\right.
$$

and

$$
\mathfrak{L} i a \cap \mathfrak{A} l i a^{(0)}=\mathfrak{L} i a \cap \mathfrak{A} l i a^{(1)}=\mathfrak{A} l i a^{(0)} \cap \mathfrak{A} l i a^{(1)}=\mathfrak{A} l i a^{(\infty)} .
$$

Theorem 3.1. Let $q \in \mathbb{K}$, such that $q^{2} \neq 1$. Then any algebra of a form $A^{(-q)}$, where A is 0 -Alia, satisfies the identity alia ${ }^{(q)}=0$. Inversely, any q-Alia algebra is isomorphic to an algebra $A^{(-q)}$ for some 0-Alia algebra A. In other words, categories of q-Alia algebras \mathfrak{A} lia ${ }^{(q)}$ and 0 -Alia algebras $\mathfrak{A}^{(0)}$ are equivalent if $q^{2} \neq 1$.

If $q^{2}=1$ this statement is not true. There exist algebras with identity alia ${ }^{(q)}=0$, that can not be obtained from 0 -Alia algebras in a form $A^{(q)}$.

Proof. Let $q^{2} \neq 1$. Prove that $A^{(q)}$ is 0 -Alia if A is q-Alia. Prove also that $\left(A^{(q)}\right)^{(-q)}$ is once again q-Alia and, moreover, it is isomorphic to A.

Denote by $[a, b]^{(-q)}$ a commutator of the multiplication \circ_{-q}. Then

$$
[a, b]^{(-q)}=a \circ_{-q} b-b \circ_{-q} a=(1+q)(a \circ b-b \circ a)=(1+q)[a, b] .
$$

Calculate $\operatorname{lalia}(a, b, c)$ and $\operatorname{ralia}(a, b, c)$ in terms of multiplication 0_{-q}. We have

$$
\begin{gathered}
\operatorname{lalia}(a, b, c)=[a, b]^{(-q)} \circ_{-q} c+[b, c]^{(-q)} \circ_{-q} a+[c, a]^{(-q)} \circ_{-q} b \\
=(1+q)([a, b] \circ c+[b, c] \circ a+[c, a] \circ b)-(1+q) q(c \circ[a, b]+a \circ[b, c]+b \circ[c, a]) \\
=(1+q) \text { lalia }(a, b, c)-(1+q) q \operatorname{ralia}(a, b, c) .
\end{gathered}
$$

Similarly,

$$
\begin{gathered}
\operatorname{ralia}(a, b, c)=c \circ_{-q}[a, b]^{(-q)}+a \circ_{-q}[b, c]^{(-q)}+b \circ_{-q}[c, a]^{(-q)} \\
=(1+q)(c \circ[a, b]+a \circ[b, c]+b \circ[c, a])-(1+q) q([a, b] \circ c+[b, c] \circ a+[c, a] \circ b) \\
=(1+q) \operatorname{ralia}(a, b, c)-(1+q) q \operatorname{lalia}(a, b, c) .
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\operatorname{alia}^{(q)}(a, b, c)=\operatorname{lalia}(a, b, c)+q \operatorname{ralia}(a, b, c) \\
=(1+q)\left(1-q^{2}\right) \operatorname{lalia}(a, b, c) .
\end{gathered}
$$

This means that $A^{(-q)}$ is q-Alia if A is 0 -Alia.
Suppose now (A, \star) is q-Alia. Endow A by a new multiplication

$$
a \circ b=\left(1-q^{2}\right)^{-1}(a \star b+q b \star a) .
$$

We see that

$$
a \circ_{-q} b=a \circ b-q b \circ a=a \star b .
$$

Therefore, $\left(A, \circ_{-q}\right)$ is isomorphic to (A, \star). Check that (A, \circ) is $0-$ Alia. Let $[a, b]^{\star}=a \star b-b \star a$. We have

$$
\begin{gathered}
{[a, b]=\left(1-q^{2}\right)^{-1}(a \star b+q b \star a-b \star a-q a \star b)} \\
=\left(1-q^{2}\right)^{-1}(1-q)[a, b]^{\star} .
\end{gathered}
$$

Thus,

$$
\begin{gathered}
\text { lalia }(a, b, c) \\
=\left(1-q^{2}\right)^{-1}(1-q)\left([a, b]^{\star} \circ c+[b, c]^{\star} \circ a+[c, a]^{\star} \circ b\right) \\
=\left(1-q^{2}\right)^{-1}(1-q)\left([a, b]^{\star} \star c+[b, c]^{\star} \star a+[c, a]^{\star} \star b+q c \star[a, b]^{\star}+q a \star[b, c]^{\star}+q b \star[c, a]^{\star}\right. \\
=\left(1-q^{2}\right)^{-1}(1-q) \text { alia }^{(q)}(a, b, c)
\end{gathered}
$$

Therefore (A, \circ) is 0 -Alia if (A, \star) is q-Alia and $\left(A \circ_{-q}\right)$ is isomorphic to (A, \star).

Now consider the case $q^{2}=1$. Notice that any 0 -Alia algebra under q-commutator satisfies identity of degree 2 if $q^{2}=1$. Namely, any algebra obtained from 0 -Alia algebra A in a form $A^{(q)}$ for $q^{2}=1$ should be anti-commutative (in case $q=-1$) or commutative (in case $q=1$). So, algebras with identities alia ${ }^{(q)}=0, q^{2}=1$, without identities of degree 2 gives us counter-examples.

In the case $q=-1$ as a such counter-example one gets free leftsymmetric algebras, i.e.,algebras with identity

$$
(a, b, c)=(b, a, c)
$$

In the case $q=1$ as a counter-example one takes the algebra $(\mathbb{K}[x], \star)$, where

$$
a \star b=\partial(\partial(a) b) .
$$

It is 1-Alia and has no any identity of degree 2 .
Thus categories $\mathfrak{A l i a}{ }^{(q)}$ and $\mathfrak{A} l i a$ are not equivalent if $q^{2}=1$.

4. Commutative cocycles

To describe two-sided Alia algebras and 1-Alia algebras we need a new notion. Let $A=(A, \circ)$ be an algebra and M be a vector space. Call a bilinear map $\psi: A \times A \rightarrow M$ commutative cocycle with coefficients in M, if

$$
\begin{gather*}
\psi(a, b)=\psi(b, a), \tag{1}\\
\psi(a \circ b, c)+\psi(b \circ c, a)+\psi(c \circ a, b)=0
\end{gather*}
$$

for any $a, b, c \in A$.
If A is a Lie algebra and the condition is changed to anti-commutative condition, then we will obtain well known notion of 2 -cocyclicity of ψ.

If $M=\mathbb{K}$ is the main field, then call commutative 2-cocycle as a commutative central extension. In our paper we mainly consider the case $M=A$ and in such cases we call ψ shortly as a commutative cocycle.

Let $Z_{\text {com }}^{2}(A, M)$ be a space of commutative cocycles with coefficients in M. Then

$$
Z_{\text {com }}^{2}(A, M) \cong Z_{\text {com }}^{2}(A, \mathbb{K}) \otimes M .
$$

For any two-sided Alia algebra $A=(A, \star)$ one can correspond Lie algebra $L=A^{(-1)}=\left(A, \star_{-1}\right)$ We establish that all two-sided Alia algebras with given Lie part L can be characterized by $Z_{\text {com }}^{2}(L, A)$. Similar situation appears also for 1 -Alia algebras. In this case L is just anti-commutative algebra, not necessary Lie.

Let $A=(A, \circ)$ be anti-commutative algebra with commutative cocycle ψ. Let $\left(A, \circ_{\psi}\right)$ be an algebra with vector space A and multiplication \circ_{ψ} given by

$$
a \circ_{\psi} b=a \circ b+\psi(a, b)
$$

Theorem 4.1. (char $\mathbb{K} \neq 2$) If $A=(A, \circ)$ is anti-commutative algebra and ψ is commutative cocycle, then algebra $\left(A, \circ_{\psi}\right)$ is 1-Alia. Inversely, any 1-Alia algebra $A=(A, \star)$ such that $A^{(-1)} \cong(A, \circ)$ is isomorphic to algebra of a form $\left(A, \circ_{\psi}\right)$ for some cocycle ψ of the anti-commutative algebra (A, \circ).

Any two-sided Alia algebra is Lie-admissible. If $A=(A, \circ)$ is a Lie algebra and ψ is its commutative cocycle, then the algebra $\left(A, \circ_{\psi}\right)$ is two-sided Alia. Inversely, any two-sided Alia algebra $A=(A, \star)$, such that $A^{(-1)} \cong L$ is isomorphic to algebra of the form $\left(A, \circ_{\psi}\right)$ for some commutative cocycle ψ of the Lie algebra L.

Proof. Let $A=(A, \circ)$ be anti-commutative algebra with multiplication \circ and ψ be commutative bilinear map

$$
\psi(a, b)=\psi(b, a), \quad \forall a, b \in A
$$

Let $\star=o_{\psi}$ be multiplication of the algebra $\left(A, o_{\psi}\right)$. Let

$$
\begin{aligned}
& {[a, b]^{\star}=a \star b-b \star a,} \\
& \{a, b\}^{\star}=a \star b+b \star a
\end{aligned}
$$

be Lie and Jordan commutators for the multiplication \star. Then

$$
[a, b]^{\star}=a \star b-b \star a=2(a \circ b-b \circ a)=4(a \circ b),
$$

and

$$
\begin{aligned}
& {[a, b]^{\star} \star c=4((a \circ b) \circ c+\psi(a \circ b, c)),} \\
& c \star[a, b]^{\star}=4(c \circ(a \circ b)+\psi(c, a \circ b)) .
\end{aligned}
$$

Therefore,

$$
\left\{[a, b]^{\star}, c\right\}^{\star}=8 \psi(a \circ b, c)
$$

and

$$
\begin{gathered}
\left\{[a, b]^{\star}, c\right\}^{\star}+\left\{[b, c]^{\star}, a\right\}^{\star}+\left\{[c, a]^{\star}, b\right\}^{\star}= \\
8(\psi(a \circ b, c)+\psi(b \circ c, a)+\psi(c \circ a, b)) .
\end{gathered}
$$

Thus, the algebra $\left(A, \circ_{\psi}\right)$ is 1 -Alia if and only if ψ is commutative cocycle of the algebra (A, \circ).

Let now $A=(A, \star)$ be 1-Alia. Let $L=(A, \circ)$ be an algebra with a vector space A and a multiplication

$$
a \circ b=(a \star b-b \star a) / 2 .
$$

Let $\psi: A \times A \rightarrow A$ be a commutative bilinear map given by

$$
\psi(a, b)=(a \star b+b \star a) / 2 .
$$

Then the multiplication \circ as a commutator of the multiplication \star is anti-commutative. Further,

$$
\begin{gathered}
\psi(a \circ b, c)+\psi(b \circ c, a)+\psi(c \circ a, b) \\
=(\{a \circ b, c\}+\{b \circ c, a\}+\{c \circ a, b\}) / 2 \\
=\left(\left\{[a, b]^{\star}, c\right\}^{\star}+\left\{[b, c]^{\star}, a\right\}^{\star}+\left\{[c, a]^{\star}, b\right\}^{\star}\right) / 4 \\
=\operatorname{alia}^{(1), \star}(a, b, c) / 4=0
\end{gathered}
$$

This means that ψ is commutative cocycle for anti-commutative algebra L. Notice that

$$
a \star b=a \circ b+\psi(a, b)
$$

So, $(A, \star) \cong\left(A, \circ_{\psi}\right)$.

Now suppose that $A=(A, \star)$ is two-sided Alia. Then as we have noticed above

$$
a \star b=a \circ b+\psi(a, b),
$$

where

$$
a \circ b=[a, b]^{\star} / 2, \quad \psi(a, b)=\{a, b\}^{\star} .
$$

We know that A is -1 -Alia. This means that

$$
\left[[a, b]^{\star}, c\right]^{\star}+\left[[b, c]^{\star}, a\right]^{\star}+\left[[c, a]^{\star}, b\right]^{\star}=0 .
$$

In other words, (A, \circ) is Lie algebra. We also know that A is 1 -Alia. This condition is equivalent to the commutative cocyclicity condition of ψ. Thus, A is isomorphic to the algebra $\left(A, \circ_{\psi}\right)$, where \circ is Lie multiplication on A.

Inversely, let (A, \circ) be Lie algebra and ψ be commutative cocycle. Then the algebra (A, \star), where $\star=o_{\psi}$, has the following properties,

$$
\begin{gathered}
\operatorname{lalia}^{\star}(a, b, c)=[a, b]^{\star} \star c+[b, c]^{\star} \star a+[c, a]^{\star} \star b \\
=2\left([a, b]^{\circ} \star c+[b, c]^{\circ} \star a+[c, a]^{\circ} \star b\right) \\
=2\left([a, b]^{\circ} \circ c+[b, c]^{\circ} \circ a+[c, a]^{\circ} \circ b+\psi(a \circ b, c)+\psi(b \circ c, a)+\psi(c \circ a, b)\right) \\
=0,
\end{gathered}
$$

and similarly,

$$
\begin{gathered}
\operatorname{ralia}^{\star}(a, b, c)=a \star[b, c]^{\star}+b \star[c, a]^{\star}+c \star[a, b]^{\star} \\
=2\left(a \circ[b, c]^{\circ}+b \circ[c, a]^{\circ}+c \circ[a, b]^{\circ}+\psi(a \circ b, c)+\psi(b \circ c, a)+\psi(c \circ a, b)\right) \\
=0 .
\end{gathered}
$$

In other words, $\left(A, \circ_{\psi}\right)$ is two-sided Alia.

5. Algebras with skew-symmetric identity of degree 3

Theorem 5.1. Any algebra with a skew-symmetric identity of degree 3 over a field \mathbb{K} of characteristic $p \neq 2$ is isomorphic to one of the following algebras:

- Lie-admissible algebra
- left Alia algebra (or 0-Alia algebra)
- right Alia algebra
- 1 -Alia algebra
- algebra of a form $A^{(q)}$ for some 0 -Alia algebra A and $q \in \mathbb{K}$, such that $q^{2} \neq 0,1$.

Characterization of two-sided Alia algebras and 1-Alia algebras in terms of anti-commutative algebras and their commutative cocycles is given in Theorem 4.1. Let (A, \circ) be q-Alia algebra. Then an opposite algebra $\left(A, \circ_{o p}\right)$ with multiplication $a \circ_{o p} b=b \circ a$, is $1 / q$-Alia if $q \neq 0$. If $q=0$ then 0 -Alia algebra is left-Alia and its opposite algebra is right-Alia.

Proof of Theorem 5.1. By Corollary 2.2 a space of skew-symmetric polynomials of degree 3 is 2 -dimensional and is generated by the leftAlia and right-Alia polynomials lalia and ralia. Therefore any skewsymmetric non-commutative non-associative polynomial of degree 3 has a form $f=f^{\alpha, \beta}=\alpha$ lalia $+\beta$ ralia, where $\alpha, \beta \in \mathbb{K}$. For example,

$$
\begin{gathered}
l i a=f^{1,-1} \\
\text { alia }^{(q)}=\text { lalia }+ \text { qralia. } .
\end{gathered}
$$

In other words, any non-commutative non-associative skew-symmetric polynomial up to scalar is equal to alia $^{(q)}$ for some $q \in \mathbb{K}$ or equal to ralt. It remains to use Theorems 3.1.

6. 0-Alia algebras

6.1. General constructions of 0 -Alia algebras.

Proposition 6.1. Let (A, \cdot) be right-commutative algebra,

$$
(a \cdot b) \cdot c=(a \cdot c) \cdot b, \quad \forall a, b, c \in A
$$

Then (A, \cdot) is $0-A l i a$.

Proof.

$$
\begin{gathered}
{[a, b] \cdot c+[b, c] \cdot c+[c, a] \cdot b} \\
=(a \cdot b) \cdot c-(b \cdot a) \cdot c+(b \cdot c) \cdot a-(c \cdot b) \cdot a+(c \cdot a) \cdot b-(a \cdot c) \cdot b \\
=(a \cdot b) \cdot c-(a \cdot c) \cdot b+(b \cdot c) \cdot a-(b \cdot a) \cdot c+(c \cdot a) \cdot b-(c \cdot b) \cdot a \\
=0 .
\end{gathered}
$$

Theorem 6.2. Let (U, \cdot) be an associative commutative algebra and $f, g: U \rightarrow U$ be linear maps. Define on U a multiplication \circ by

$$
a \circ b=a \cdot f(b)+g(a \cdot b) .
$$

Then (U, \circ) is 0 -Alia.
Denote obtained algebra as $\mathcal{A}_{0}(U, \cdot, f, g)$. For a 0 -Alia algebra A say that it is special if A is isomorphic to a subalgebra of some algebra of a form $\mathcal{A}_{0}(U, \cdot, f, g)$, where (U, \cdot) is associative commutative algebra and $f, g: U \rightarrow U$ are linear maps. Otherwise say that A is exceptional.

Proof. We have

$$
\begin{gathered}
{[a, b] \circ c} \\
=(a \cdot f(b)) \cdot f(c)-(b \cdot f(a)) \cdot f(c)+g((a \cdot f(b)) \cdot c-(b \cdot f(a)) \cdot c) .
\end{gathered}
$$

Therefore by commutativity and associativity properties of the multiplication •,

$$
\begin{gathered}
{[a, b] \circ c+[b, c] \circ a+[c, a] \circ b} \\
=(a \cdot f(b)) \cdot f(c)-(b \cdot f(a)) \cdot f(c)+(b \cdot f(c)) \cdot f(a)-(c \cdot f(b)) \cdot f(a)+(c \cdot f(a)) \cdot f(b)-(a \cdot f(c)) \cdot f(b) \\
+g((a \cdot f(b)) \cdot c-(b \cdot f(a)) \cdot c+(b \cdot f(c)) \cdot a-(c \cdot f(b)) \cdot a+(c \cdot f(a)) \cdot b-(a \cdot f(c)) \cdot b) \\
\quad=0 .
\end{gathered}
$$

6.2. Killing form and two-sided Alia algebras in characteristic

 3 . Let (A, \circ) be any algebra over a field of characteristic 3 with multiplication \circ and commutator $[a, b]=a \circ b-b \circ a$. A commutative bilinear map $A \times A \rightarrow M$ is called invariant if$$
\psi([a, b], c)=\psi(a,[b, c]),
$$

for any $a, b, c \in A$.
Theorem 6.3. Let A be any algebra over a field of characteristic $p=3$. Then any commutative invariant form $\psi: A \times A \rightarrow M$ is a commutative cocycle.

Proof. We have

$$
\begin{aligned}
\psi([a, b], c) & =\psi(a,[b, c]), \\
\psi([b, c], a) & =\psi(a,[b, c]) \\
\psi([c, a], b)=-\psi([a, c], b]) & =-\psi(a,[c, b])=\psi(a,[b, c]) .
\end{aligned}
$$

Thus,

$$
\psi([a, b], c)+\psi([b, c], a)+\psi([c, a], b)=3 \psi(a,[b, c])=0
$$

for any $a, b, c \in A$. Proof is completed.
Recall that, for any semi-simple Lie algebra a Killing form

$$
(a, b)=\operatorname{tr} a d a a d b
$$

is invariant and non-degenerate. Let $A=(A, \circ)$ be Lie algebra and $\tilde{A}=A+\mathbb{K}$ be commutative central extension defined by a commutative cocycle $\psi \in Z_{\text {com }}^{2}(A, \mathbb{K})$. The multiplication on \tilde{A} is defined by

$$
a \star b=a \circ b+\psi(a, b) .
$$

Then (\tilde{A}, \star) is two-sided Alia. So,
Corollary 6.4. Any semi-simple Lie algebra in characteristic 3 with a nontrivial invariant form has nontrivial structures of two-sided Alia algebras.

6.3. Simple two-sided Alia algebra with Lie part $s l_{2}$.

Theorem 6.5. Let $L=<e_{-1}, e_{0}, e_{1} \mid\left[e_{-1}, e_{1}\right]=e_{0},\left[e_{-1}, e_{1}\right]=e_{0},\left[e_{0}, e_{1}\right]=$ $e_{1}>$ be 3-dimensional simple Lie algebra. Then $Z_{\text {com }}^{2}(L, \mathbb{K})$ is 5 dimensional and is generated by commutative cocycles $\eta_{i}, i=1, \ldots, 5$ defined by

$$
\begin{gathered}
\eta_{1}\left(e_{-1}, e_{-1}\right)=1, \quad \eta_{2}\left(e_{-1}, e_{0}\right)=\eta_{2}\left(e_{0}, e_{-1}\right)=1, \\
\eta_{3}\left(e_{-1}, e_{1}\right)=1, \quad \eta_{3}\left(e_{0}, e_{0}\right)=2, \quad \eta_{3}\left(e_{1}, e_{-1}\right)=1, \\
\eta_{4}\left(e_{0}, e_{1}\right)=\eta_{4}\left(e_{1}, e_{0}\right)=1, \quad \eta_{5}\left(e_{1}, e_{1}\right)=1
\end{gathered}
$$

(non-written components are 0).
Proof. There is only one nontrivial cocyclicity condition $d \psi\left(e_{-1}, e_{0}, e_{1}\right)=$ 0. More exactly,

$$
2 \psi\left(e_{-1}, e_{1}\right)=\psi\left(e_{0},\left[e_{-1}, e_{1}\right]\right)=\psi\left(e_{0}, e_{0}\right)
$$

Other statements are evident.
Another formulation of Theorem 6.5.
Theorem 6.6. Let $\left(s l_{2}, \star\right)$ be an algebra with multiplication table

$$
\begin{aligned}
& \qquad e_{-1} \star e_{-1}=\alpha_{1,1} e_{-1}+\alpha_{1,2} e_{0}+\alpha_{1,3} e_{1}, \\
& e_{-1} \star e_{0}=e_{-1}+\alpha_{2,1} e_{-1}+\alpha_{2,2} e_{0}+\alpha_{2,3} e_{1}, \quad e_{0} \star e_{-1}=-e_{-1}+\alpha_{2,1} e_{-1}+\alpha_{2,2} e_{0}+\alpha_{2,3} e_{1}, \\
& e_{-1} \star e_{1}=e_{0}+\alpha_{3,1} e_{-1}+\alpha_{3,2} e_{0}+\alpha_{3,3} e_{1}, \quad e_{1} \star e_{-1}=-e_{0}+\alpha_{3,1} e_{-1}+\alpha_{3,2} e_{0}+\alpha_{3,3} e_{1}, \\
& \qquad e_{0} \star e_{0}=2\left(\alpha_{3,1} e_{-1}+\alpha_{3,2} e_{0}+\alpha_{3,3} e_{1}\right), \\
& e_{0 \star e_{1}}=e_{1}+\alpha_{4,1} e_{0}+\alpha_{4,2} e_{0}+\alpha_{4,3} e_{1}, \quad e_{1} \star e_{0}=-e_{1}+\alpha_{4,1} e_{-1}+\alpha_{4,2} e_{0}+\alpha_{4,3} e_{1}, \\
& \qquad e_{1} \star e_{1}=\alpha_{5,1} e_{-1}+\alpha_{5,2} e_{0}+\alpha_{5,3} e_{1}, \\
& \text { where } \alpha_{i, j} \in \mathbb{K}, \quad i=1,2,3,4,5, j=1,2,3 \text {. Then (sl2,*) is two-sided } \\
& \text { Alia algebra. It is simple for any } 5 \times 3 \text {-matrix }\left(\alpha_{i, j}\right) \text {. Any two-sided } \\
& \text { Alia algebra connected with sl is isomorphic to a such algebra for } \\
& \text { some } 5 \times 3 \text {-matrix }\left(\alpha_{i, j}\right) \text {. }
\end{aligned}
$$

Proof. Follows from Theorems 6.5 and 4.1.
Remark. If $p \neq 2,3$, then the algebra $\left(s l_{2}, \star\right)$ gives us a unique nontrivial example of two-sided algebras connected with classical simple Lie algebras [4].
6.4. Simple two-sided Alia algebras with Lie part W_{1}. Let $L=$ W_{1} be one-sided or two-sided Witt algebra of rank 1 over a field \mathbb{K} of characteristic 0 . Recall that, one-sided Witt algebra of rank 1 is generated by vectors $e_{i}, i \in \mathbb{Z}$ such that $i \geq-1$, and two-sided Witt algebra of rank 1 is generated by elements $e_{i}, i \in \mathbb{Z}$. In both cases the multiplication is given by

$$
\left[e_{i}, e_{j}\right]=(j-i) e_{i+j} .
$$

Theorem 6.7. Let L be one-sided or two-sided Witt algebra of rank 1. Then $Z_{\text {com }}^{2}(L, \mathbb{K})$ is infinite-dimensional and is generated by commutative cocycles $\eta_{i}, i \in \mathbb{Z}$, defined by

$$
\eta_{i}(u, v)=\text { coefficient of } u v \text { at } x^{i+2} .
$$

Here $i \geq-2$ if L is one-sided Witt algebra.
Proof. Let $\psi \in Z_{\text {com }}^{2}(L, \mathbb{K})$ be commutative cocycle. Notice that $Z_{\text {com }}^{2}(L, \mathbb{K})$ is a direct sum of homogeneous subspaces,

$$
\begin{gathered}
Z_{\text {com }}^{2}(L, \mathbb{K})=\oplus_{s} Z_{\text {com }, s}^{2}(L, \mathbb{K}), \\
Z_{\text {com }, s}^{2}(L, \mathbb{K})=<\psi \in Z_{\text {com }}^{2}(L, \mathbb{K}) \mid \psi\left(e_{i}, e_{j}\right)=0, i+j \neq s>
\end{gathered}
$$

We can assume that ψ is a homogeneous.
Commutative cocyclicity conditions on $e_{0}, e_{i}, e_{j}, i+j=s$, gives us the following relations

$$
\begin{gathered}
\psi\left(\left[e_{0}, e_{i}\right], e_{j}\right)+\psi\left(\left[e_{i}, e_{j}\right], e_{0}\right)+\psi\left(\left[e_{j}, e_{0}\right], e_{i}\right)=0 \Rightarrow \\
i \psi\left(e_{i}, e_{j}\right)+(j-i) \psi\left(e_{i+j}, e_{0}\right)-j \psi\left(e_{j}, e_{i}\right)=0 \Rightarrow \\
(j-i) \psi\left(e_{0}, e_{i+j}\right)=(j-i) \psi\left(e_{i}, e_{j}\right) .
\end{gathered}
$$

Thus, if $i \neq j$,

$$
\psi\left(e_{i}, e_{j}\right)=\psi\left(e_{0}, e_{i+j}\right) .
$$

Therefore,

$$
\psi=\psi\left(e_{0}, e_{s}\right) \eta_{s-2}
$$

The proof is finished.
Another formulation of Theorem6.7
Theorem 6.8. Let f be an endomorphism of polynomial space $U=$ $\mathbb{K}[x]$ or Laurent polynomial space $U=\mathbb{K}\left[x, x^{-1}\right]$. Then the algebra $\left(U, \star_{f}\right)$, where

$$
a \star_{f} b=\partial(a) b-a \partial(b)+f(a b),
$$

is two-sided Alia algebra and simple. Any two-sided Alia algebra connected with (one-sided or two-sided) Witt algebra of rank 1 is isomorphic to $\left(U, \star_{f}\right)$ for some endomorphism $f \in E n d U$.

Proof. Follows from Theorems 6.7 and 4.1.
6.5. Simple 0 -Alia algebras defined by symmetric matrix. Let $\lambda=\left(\lambda_{i, j}\right)$ be a symmetric matrix. Endow space of polynomials $U=$ $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, by a multiplication

$$
a \star b=\sum_{i, j} \lambda_{i, j}\left(\partial_{i}(a) \partial_{j}(b)+\frac{1}{2} \partial_{i} \partial_{j}(a) b\right) .
$$

In other words,

$$
a \star b=\sum_{i<j} \lambda_{i, j}\left(\partial_{i}(a) \partial_{j}(b)+\partial_{j}(a) \partial_{i}(b)+\partial_{i} \partial_{j}(a) b\right)+\sum_{i} \lambda_{i, i}\left(\partial_{i}(a) \partial_{i}(b)+\frac{1}{2} \partial_{i}^{2}(a) b\right)
$$

Let $a \cdot b$ be a usual multiplication of polynomials and

$$
\begin{aligned}
f(a) & =-\frac{1}{2} \sum_{i, j} \lambda_{i, j} \partial_{i} \partial_{j}(a), \\
g(a) & =\frac{1}{2} \sum_{i, j} \lambda_{i, j} \partial_{i} \partial_{j}(b)
\end{aligned}
$$

Then

$$
a \star b=a \cdot f(b)+g(a \cdot b)
$$

So, (U, \star) is a standard algebra $\mathcal{A}(U, \cdot, f, g)$. Hence by Theorem 7.1 (U, \star) is 0-Alia.
Theorem 6.9. The 0 -Alia algebra (U, \star) is simple if and only if the matrix $\left(\lambda_{i, j}\right)$ is non-degenerate.

For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$, set

$$
|\alpha|=\sum_{i=1}^{n} \alpha_{i}
$$

Endow (U, \star) by grading. If

$$
\begin{aligned}
\left|x^{\alpha}\right| & =|\alpha|-2, \quad \alpha \in \mathbb{Z}_{+}^{n} \\
U_{k} & =<x^{\alpha}| | \alpha \mid=k+2>
\end{aligned}
$$

then

$$
\begin{gathered}
U=\oplus_{k \geq-2} U_{k} \\
U_{k} \star U_{s} \subseteq U_{k+s}
\end{gathered}
$$

For example,

$$
\begin{gathered}
U_{-2}=<1> \\
U_{-1}=<x_{i} \mid i=1, \ldots, n> \\
U_{0}=<x_{i} x_{j} \mid i, j=1, \ldots, n>.
\end{gathered}
$$

Notice that

$$
\begin{gathered}
u \star 1=\sum_{i<j} \lambda_{i, j} \partial_{i} \partial_{j}(u)+\frac{1}{2} \sum_{i} \lambda_{i, i} \partial_{i}^{2}(u), \quad \forall u \in U, \\
1 \star u=0, \quad \forall u \in U, \\
x_{i} \star x_{j}=x_{j} \star x_{i}=\lambda_{i, j} 1, \\
x_{i} \star u=\sum_{j} \lambda_{i, j} \partial_{j}(u), \\
u \star x_{i}=\frac{1}{2} \lambda_{i, i} x_{i} \partial_{i}^{2}(u)+\sum_{j \neq i} \lambda_{i, j} x_{i} \partial_{i} \partial_{j}(u)+\sum_{j} \lambda_{i, j} \partial_{j}(u) .
\end{gathered}
$$

In particular,

$$
\left[u, x_{i}\right]=u \star x_{i}-x_{i} \star u=\frac{1}{2} \lambda_{i, i} x_{i} \partial_{i}^{2}(u)+\sum_{j \neq i} \lambda_{i, j} x_{i} \partial_{i} \partial_{j}(u) .
$$

The following Lemma states that the algebra (U, \star) is transitive.
Lemma 6.10. If $x_{i} \star u=0, u \star x_{i}=0, u \star 1=0$, then $u \in U_{-2}=<1>$.
Proof. From the condition $u \star 1=0$ it follows that

$$
u=\theta_{0} 1+\sum_{i} \theta_{i} x_{i}+\sum_{i \leq j} \theta_{i, j} x_{i} x_{j},
$$

for some $\theta_{0}, \theta_{i}, \theta_{i, j}=\theta_{j, i} \in \mathbb{K}, i \leq j$, with property

$$
\sum_{i \leq j} \lambda_{i, j} \theta_{i, j}=0
$$

Further, for any $i=1, \ldots, n$,

$$
\begin{aligned}
& x_{i} \star u=0 \Rightarrow \sum_{j} \lambda_{i, j} \partial_{j}(u)=0 \Rightarrow \sum_{j} \lambda_{i, j} \theta_{j}+\sum_{j} \lambda_{i, j}\left(\sum_{i^{\prime}<j} \theta_{i^{\prime}, j} x_{i^{\prime}}+\sum_{j^{\prime}>j} \theta_{j, j^{\prime}} x_{j^{\prime}}+2 \theta_{j, j} x_{j}\right)=0 \\
& \left.\Rightarrow \sum_{s} \lambda_{i, s} \theta_{s}+\sum_{s} \lambda_{i, s} \sum_{j<s} \theta_{j, s} x_{j}+\sum_{s} \lambda_{i, s} \sum_{j>s} \theta_{s, j} x_{j}+2 \sum_{j} \lambda_{i, j} \theta_{j, j} x_{j}\right)=0 \\
& \Rightarrow \sum_{s} \lambda_{i, s} \theta_{s}+\sum_{j} \sum_{j<s} \lambda_{i, s} \theta_{j, s} x_{j}+\sum_{j} \sum_{j>s} \lambda_{i, s} \theta_{s, j} x_{j}+2 \sum_{j} \lambda_{i, j} \theta_{j, j} x_{j}=0 \\
& \Rightarrow \sum_{j} \lambda_{i, j} \theta_{j}=0, \\
& 2 \lambda_{i, j} \theta_{j, j}+\sum_{j<s} \lambda_{i, s} \theta_{j, s}+\sum_{j>s} \lambda_{i, s} \theta_{s, j}=0, \quad \forall j=1, \ldots, n . \\
& \Rightarrow \sum_{j} \lambda_{i, j} \theta_{j}=0,
\end{aligned}
$$

$$
\sum_{s=1}^{j-1} \lambda_{i, s} \theta_{s, j}+2 \lambda_{i, j} \theta_{j, j}+\sum_{s=j+1}^{n} \lambda_{i, s} \theta_{j, s}=0, \quad \forall j=1, \ldots, n
$$

In other words,

$$
\begin{aligned}
& \lambda T=0 \\
& \lambda \theta=0
\end{aligned}
$$

where λ is $n \times n$-matrix $\left(\lambda_{i, j}\right), T$ is a column with coordinates $\left(\theta_{1}, \ldots, \theta_{n}\right)$, and θ is a matrix of a form

$$
\theta=\left(\begin{array}{ccccc}
2 \theta_{1,1} & \theta_{1,2} & \theta_{1,3} & \cdots & \theta_{1, n} \\
\theta_{1,2} & 2 \theta_{2,2} & \theta_{2,3} & \cdots & \theta_{2, n} \\
\theta_{1,3} & \theta_{2,3} & 2 \theta_{3,3} & \cdots & \theta_{3, n} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
\theta_{1, n} & \theta_{2, n} & \theta_{3, n} & \cdots & 2 \theta_{n, n}
\end{array}\right)
$$

Since, $\operatorname{det}\left(\lambda_{i, j}\right) \neq 0$, this means that $T=0, \theta=0$. Lemma is proved.
Lemma 6.11. Suppose that $\lambda_{i_{0}, j_{0}} \neq 0$, for some $1 \leq i_{0}, j_{0} \leq n$. Then for any $v \in U$, there exists $u \in U$, such that

$$
v=\sum_{i, j} \lambda_{i, j} \partial_{i} \partial_{j}(u) .
$$

Proof. Endow \mathbb{Z}_{+}^{n} by lexicographical ordering. For $\alpha, \beta \in \mathbb{Z}_{+}^{n}$ say that $\alpha<\beta$, in the following situations:

- $|\alpha|<|\beta|$ or
- $|\alpha|=|\beta|$ and $\alpha_{1}=\beta_{1}, \ldots, \alpha_{k-1}=\beta_{k-1}, \alpha_{k}<\beta_{k}$ for some $k \leq n$.
Suppose that $\lambda_{i_{0}, j_{0}} \neq 0, i_{0} \leq j_{0}$, and $\left(i_{0}, j_{0}\right)$ is maximal with such property. In other words, $\lambda_{i, j}=0, i \leq j$, if $i>i_{0}$ or $i=i_{0}, j>j_{0}$.

Show that

$$
x^{\alpha} \in<\sum_{i<j} \lambda_{i, j} \partial_{i} \partial_{j}(u) \mid u \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]>
$$

for any $\alpha \in \mathbb{Z}_{+}^{n}$. Use induction by $s=|\alpha|$ and in any fixed s use induction by ordered set of α 's with $|\alpha|=s$.

If $s=0$, then $\alpha=(0, \ldots, 0)$ and

$$
\begin{gathered}
1=\sum_{i<j} \lambda_{i, j} \partial_{i} \partial_{j}\left(\lambda_{i_{0}, j_{0}}^{-1} x_{i_{0}} x_{j_{0}}\right), \text { if } i_{0}<j_{0}, \\
1=\sum_{i<j} \lambda_{i, j} \partial_{i} \partial_{j}\left(\left(2 \lambda_{i_{0}, i_{0}}\right)^{-1} x_{i_{0}}^{2}\right), \text { if } i_{0}<j_{0}, .
\end{gathered}
$$

Therefore base of induction is established.

Suppose that for $s-1$ our statement is true. Suppose that for any $\beta \in \mathbb{Z}_{+}^{n}$, such that $|\beta|=s$ and $\beta<\alpha$ this statement is also true. Set

$$
\begin{gathered}
u=x_{i_{0}}^{\alpha_{i_{0}}+1} x_{j_{0}}^{\alpha_{j_{0}}+1} \prod_{i \neq i_{0}, j_{0}} x_{i}^{\alpha_{i}}, \text { if } i_{0}<j_{0} \\
u=x_{i_{0}}^{\alpha_{i_{0}+2}} \prod_{i \neq i_{0}} x_{i}^{\alpha_{i}}, \text { if } i_{0}=j_{0}
\end{gathered}
$$

Then

$$
\sum_{i \leq j} \lambda_{i, j} \partial_{i} \partial_{j}(u)=\lambda_{i_{0}, j_{0}}\left(\alpha_{i_{0}}+1\right)\left(\alpha_{j_{0}}+1\right) x^{\alpha}+u^{\prime},
$$

if $i_{0}<j_{0}$ or

$$
\sum_{i \leq j} \lambda_{i, j} \partial_{i} \partial_{j}(u)=\lambda_{i_{0}, i_{0}}\left(\alpha_{i_{0}}+2\right)\left(\alpha_{i_{0}}+1\right) x^{\alpha}+u^{\prime \prime}
$$

if $i_{0}=j_{0}$. Here $u^{\prime}, u^{\prime \prime}$ are linear combination of monomials of a form x^{β} with $\beta<\alpha$. So, by inductive suggestion

$$
x^{\alpha} \in<\sum_{i<j} \lambda_{i, j} \partial_{i} \partial_{j}(u) \mid u \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]>
$$

Lemma is proved.
Proof of Theorem 6.9. Suppose that $\operatorname{det}\left(\lambda_{i, j}\right)=0$. Then there exists some $\eta_{i} \in K, i=1, \ldots, n$, such that

$$
\begin{equation*}
\sum_{j=1}^{n} \lambda_{i, j} \eta_{j}=0, \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

Set

$$
X=\sum_{i=1}^{n} \eta_{i} x_{i} .
$$

Let J be subspace of A, that consists of elements of a form $X u, u \in$ $U=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, where $X u$ denotes usual multiplication of polynomials. Prove that J is ideal of U.

We have

$$
\begin{gathered}
(X u) \star a= \\
\sum_{i, j} \lambda_{i, j}\left(\partial_{i}(X u) \partial_{j}(a)+\frac{1}{2} \partial_{i} \partial_{j}(X u) a\right) \\
=\sum_{i, j} \lambda_{i, j}\left\{\partial_{i}(X) u \partial_{j}(a)+X \partial_{i}(u) \partial_{j}(a)\right. \\
\left.+\frac{1}{2} \partial_{i}(X) \partial_{j}(u) a+\frac{1}{2} \partial_{j}(X) \partial_{i}(u) a+\frac{1}{2} X \partial_{i} \partial_{j}(u) a\right\}
\end{gathered}
$$

$$
=X^{\prime}+X_{1}+X_{2},
$$

where

$$
\begin{gathered}
X^{\prime}= \\
\sum_{i, j} \lambda_{i, j}\left\{\partial_{i}(X) u \partial_{j}(a)+\frac{1}{2} \partial_{i}(X) \partial_{j}(u) a+\frac{1}{2} \partial_{j}(X) \partial_{i}(u) a\right\}, \\
X_{1}=X\left(\sum_{i, j} \lambda_{i, j} \partial_{i}(u) \partial_{j}(a)\right) \in J, \\
X_{2}=X\left(\sum_{i, j} \frac{1}{2} \partial_{i} \partial_{j}(u) a\right) \in J .
\end{gathered}
$$

By (3)

$$
X^{\prime}=
$$

$\sum_{j}\left(\sum_{i=1}^{n} \lambda_{i, j} \eta_{i}\right) u \partial_{j}(a)+\frac{1}{2} \sum_{j}\left(\sum_{i=1}^{n} \lambda_{i, j} \eta_{i}\right) \partial_{j}(u) a+\frac{1}{2} \sum_{i}\left(\sum_{j=1}^{n} \lambda_{i, j} \eta_{j}\right) \partial_{i}(u) a$

$$
=0 .
$$

Hence,

$$
(X u) \star a=X_{1}+X_{2} \in J,
$$

for any $a, u \in U$. Similarly,

$$
\begin{gathered}
a \star(X u)= \\
\sum_{i, j} \lambda_{i, j}\left(\partial_{i}(a) \partial_{j}(X u)+\partial_{j}(a) \partial_{i}(X u)+\frac{1}{2} \partial_{i} \partial_{j}(a) X u\right) \\
=X^{\prime \prime}+X_{5}+X_{6}+X_{7}
\end{gathered}
$$

where

$$
\begin{gathered}
X^{\prime \prime}=\sum_{i, j} \lambda_{i, j}\left(\partial_{i}(a) \partial_{j}(X) u+\partial_{j}(a) \partial_{i}(X) u\right) \\
X_{5}=X\left(\sum_{i, j} \lambda_{i, j}\left(\partial_{i}(a) \partial_{j}(u)\right) \in J,\right. \\
X_{6}=X\left(\sum_{i, j} \lambda_{i, j} \partial_{j}(a) \partial_{i}(u)\right) \in J, \\
X_{7}=X\left(\sum_{i, j} \frac{1}{2} \partial_{i} \partial_{j}(a) u\right) \in J .
\end{gathered}
$$

By (3),

$$
\begin{gathered}
X^{\prime \prime}= \\
\sum_{i}\left(\sum_{j=1}^{n_{1}} \lambda_{i, j} \eta_{j}\right) \partial_{i}(a) u
\end{gathered}
$$

$$
\begin{gathered}
\left.+\sum_{j}\left(\sum_{i=1}^{n_{1}} \lambda_{i, j} \eta_{i}\right) \partial_{j}(a) u\right) \\
=0
\end{gathered}
$$

Therefore,

$$
a \star(X u)=X_{5}+X_{6}+X_{7} \in J
$$

for any $a, u \in U$.
So, we have proved that $J=<X u: u \in U>$ is ideal of (U, \star). It remains to note that it is non-trivial ideal. It is evident: $1 \notin J$.

Now suppose that $\operatorname{det}\left(\lambda_{i, j}\right) \neq 0$. Prove that (U, \star) is simple.
Suppose that it is not true: I is some non-trivial ideal of (U, \star). Take some $0 \neq R \in I$. Suppose that $R=\sum_{\alpha \in \mathbf{Z}_{+}^{n}} \mu_{\alpha} x^{\alpha}$, for $\mu_{\alpha} \in \mathbb{K}$, where $x^{\alpha}=\prod_{i} x_{i}^{\alpha_{i}}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Assume that $\mu_{\alpha}=0$, for any α, such that $|\alpha|>k$, but $\mu_{\beta} \neq 0$, for some $\beta \in \mathbb{Z}_{+}^{n}$ with $|\beta|=k$. Call $k=\operatorname{deg} R$ degree of R. Take $R \in I$ with minimal $\operatorname{deg} R$.

Since

$$
\operatorname{deg} R \star 1<\operatorname{deg} R, \quad \operatorname{deg} R \star x_{i}<\operatorname{deg} R, \quad \operatorname{deg} x_{i} \star R<\operatorname{deg} R
$$

if $R \star 1, x_{i} \star R, R \star x_{i} \neq 0$, by Lemma 6.10 we obtain that

$$
\operatorname{deg} R=0
$$

In other words, $R \in I$. So,

$$
1 \in U
$$

if $\operatorname{det} \lambda \neq 0$.
Then

$$
1 \in I \Rightarrow u \star 1=\frac{1}{2} \sum_{i, j} \lambda_{i, j} \partial_{i} \partial_{j}(u) \in J
$$

for any $u \in U$. By Lemma 6.11, $I=U$. This means that (U, \star), is simple, if $\operatorname{det}\left(\lambda_{i, j}\right) \neq 0$.
6.6. Simple exceptional 0 -Alia algebra. All 0 -Alia algebras constructed above are special. In other words they can be constructed in a form $\mathcal{A}_{0}(U, \cdot, f, g)$ for some associative commutative algebra (U, \cdot) and endomorphisms f, g. In [3] is proved that the following algebra will be exceptional.

Theorem 6.12. The algebra $(\mathbb{K}[x], \star)$ with multiplication

$$
a \star b=\partial^{3}(a) b+4 \partial^{2}(a) \partial(b)+5 \partial(a) \partial^{2}(b)+2 a \partial^{3}(b)
$$

is 0 -Alia and simple.

Proof. Let $U=\mathbb{K}[x]$. Direct calculations show that (U, \star) is 0 Alia.

Let $e_{i}=x^{i+3}$. Then

$$
e_{i} \star e_{j}=(4+i+j)(5+i+j)(9+i+2 j) e_{i+j}
$$

So, A is graded:

$$
\begin{gathered}
A=\oplus_{i \geq-3} A_{i}, \quad A_{i}=<x^{i+3}> \\
A_{i} \star A_{j} \subseteq A_{i+j}
\end{gathered}
$$

Lemma 6.13. If $e_{-1} \star u=0$, then $u \in A_{-3}$.
Proof. Let

$$
u=\sum_{j \leq j_{0}} \lambda_{j} e_{j}, \quad \lambda_{j_{0}} \neq 0
$$

Suppose that $e_{-1} \star u=0$. We have to prove that $j_{0}=-3$. Since (A, \star) is graded,

$$
\begin{gathered}
e_{-1} \star u=0 \Rightarrow \lambda_{j_{0}} e_{i} \star e_{j_{0}-1}=0 \\
\Rightarrow\left(3+j_{0}\right)\left(4+j_{0}\right)\left(8+2 j_{0}\right) e_{j_{0}-1}=0 \Rightarrow j_{0}=-3
\end{gathered}
$$

Lemma 6.14. For any $u \in A$ there exists v such that $u=e_{-1} \star v$.
Proof. Let $j \geq-3$. Then

$$
(4+j)(5+j)(10+2 j) \neq 0
$$

Therefore, we can take the element

$$
v=e_{j+1} /((4+j)(5+j)(10+2 j)) \in A
$$

Then,

$$
e_{j}=e_{-1} \star v
$$

This means that any element of A can be presented in a form $e_{-1} \star v$.
Proof of Theorem 6.12. Prove that 0 -Alia algebra $(\mathbb{K}[x], \star)$ is simple. Let J be some nontrivial ideal of $(\mathbb{K}[x], \star)$ and $0 \neq X=$ $\sum_{i \leq i_{1}} \lambda_{i} e_{(i)} \in J$ with $\lambda_{i_{1}} \neq 0$. Call $i_{1}=\operatorname{deg} X$ degree of X and take such X with minimal degree. By Lemma 6.13

$$
\operatorname{deg} X=-3
$$

In other words,

$$
1 \in J
$$

So, by Lemma 6.14 $J=\mathbb{K}[x]$.
7. 1-Alia algebras

7.1. Standard construction of 1-Alia algebras.

Theorem 7.1. Let (U, \cdot) be associative commutative algebra and f, g : $U \rightarrow U$ be linear maps. Define on U a multiplication \circ by

$$
a \circ b=a \cdot f(b)-b \cdot f(a)+g(a \cdot b) .
$$

Then (U, \circ) is 1-Alia.
Denote obtained algebra as $\mathcal{A}_{1}(U, \cdot, f, g)$.
Proof. Follows by Theorem 9.1.
Corollary 7.2. Define a multiplication on $U=\mathbb{K}[x]$ by

$$
a \star b=-a \partial^{m}(b)+\partial^{m}(a) b+\partial^{m}(a b) .
$$

Then (U, \star) is 1 -Alia for any $m \geq 1$.
7.2. Identities for 1 -Alia algebra. Let U be differential associative commutative algebra with derivation ∂. Endow U by multiplication

$$
a \star_{u} b=u \partial(a) \partial^{2}(b) .
$$

Denote \star_{1} shortly as \star.
Theorem 7.3. Let

$$
\begin{gathered}
f_{1}=\text { alia }^{(1)}=\left\{\left[t_{1}, t_{2}\right], t_{3}\right\}+\left\{\left[t_{2}, t_{3}\right], t_{1}\right\}+\left\{\left[t_{3}, t_{1}\right], t_{2}\right\}, \\
f_{2}=\left[t_{1}, t_{2}\right] t_{3}-t_{1}\left(t_{2} t_{3}\right)+t_{2}\left(t_{1} t_{3}\right)+2\left(t_{1} t_{3}\right) t_{2}-2\left(t_{2} t_{3}\right) t_{1}, \\
f_{3}=\operatorname{ass}\left(t_{3} t_{1}, t_{4}, t_{2}\right)-\operatorname{ass}\left(t_{3} t_{2}, t_{4}, t_{1}\right)-\operatorname{ass}\left(t_{4} t_{1}, t_{3}, t_{2}\right)+\operatorname{ass}\left(t_{4} t_{2}, t_{3}, t_{1}\right), \\
f_{4}=\sum_{\sigma \in S y m_{3}} \operatorname{sign} \sigma\left(\left(t_{4} t_{\sigma(1)}\right) t_{\sigma(2)}\right) t_{\sigma(3)}, \\
f_{5}=2\left(\left(\left(t_{3} t_{1}\right) t_{2}\right) t_{4}\right) t_{5}-2\left(\left(\left(t_{3} t_{1}\right) t_{4}\right) t_{2}\right) t_{5}-\left(\left(\left(t_{3} t_{1}\right) t_{2}\right) t_{5}\right) t_{4}+\left(\left(\left(t_{3} t_{1}\right) t_{4}\right) t_{5}\right) t_{2} \\
-\left(\left(\left(t_{3} t_{2}\right) t_{1}\right) t_{4}\right) t_{5}+\left(\left(\left(t_{3} t_{2}\right) t_{1}\right) t_{5}\right) t_{4}+\left(\left(\left(t_{3} t_{2}\right) t_{4}\right) t_{5}\right) t_{1}-\left(\left(\left(t_{3} t_{2}\right) t_{5}\right) t_{1}\right) t_{4} \\
+\left(\left(\left(t_{3} t_{4}\right) t_{1}\right) t_{2}\right) t_{5}-\left(\left(\left(t_{3} t_{4}\right) t_{1}\right) t_{5}\right) t_{2}-\left(\left(\left(t_{3} t_{4}\right) t_{2}\right) t_{5}\right) t_{1}+\left(\left(\left(t_{3} t_{4}\right) t_{5}\right) t_{1}\right) t_{2} \\
+\left(\left(\left(t_{3} t_{5}\right) t_{1}\right) t_{2}\right) t_{4}-\left(\left(\left(t_{3} t_{5}\right) t_{1}\right) t_{4}\right) t_{2}
\end{gathered}
$$

be non-commutative non-associative polynomials. Then

- $f_{i}=0,1 \leq i \leq 5$, are identities for (U, \star)
- Identities $f_{2}=0, f_{3}=0, f_{4}=0, f_{5}=0$ are independent
- $f_{2}=0 \Rightarrow f_{1}=0$
- $f_{1}=0, f_{4}=0, f_{5}=0$ are identities for $\left(U, \star_{u}\right)$
- $f_{2}=0, f_{3}=0$ are identities of the algebra $\left(U, \star_{u}\right)$ iff $u=1$.

Here ass $\left(t_{1}, t_{2}, t_{3}\right)=\left(t_{1}, t_{2}, t_{3}\right)=t_{1}\left(t_{2} t_{3}\right)-\left(t_{1} t_{2}\right) t_{s}$ is an associator.

We omit proof of this result. It needs long calculations. Just note that the multiplication $(a, b) \mapsto \partial(a) \partial^{2}(b)$ is opposite to the multiplication $a * b=\partial^{2}(a) \partial(b)$. For the last multiplication Theorem 7.3 partially is proved above.

8. Simple 1 -Alia algebra ($\mathbb{K}[x]$, o) with multiplication

$$
a \circ b=\partial(\partial(a) b)
$$

Let

$$
a \circ b=\partial(\partial(a) b) .
$$

Note that

$$
2 \partial(\partial(a) b)=a \partial^{2}(b)-\partial^{2}(a) b+\partial^{2}(a b) .
$$

Therefore, (U, \circ) can be obtained by standard construction of 1-Alia algebras $\mathcal{A}_{1}(U, \cdot, f, g)$, if one sets

$$
f(a)=\partial^{2}(a) / 2, g(a)=\partial^{2}(a) / 2
$$

Any commutative or anti-commutative algebra is 1-Alia. It will be interesting to describe simple algebras with minimal identity alia $^{(q)}=$ 0 for $q=0, \pm 1$. Minimality condition exclude from the consideration standard examples of q-Alia algebras, like Lie algebras, (anti)commutative algebras, right-commutative algebras, left-symmetric algebras. One of such non-trivial examples of 1-Alia algebras gives us the algebra ($\mathbb{K}[x], \circ$).
Theorem 8.1. The algebra ($\mathbb{K}[x], \circ$) is simple.
Proof. Let

$$
e_{i}=x^{i+2}, \quad i \geq-2 .
$$

Then

$$
e_{i} \circ e_{j}=(i+2)(i+j+3) e_{i+j}, \quad-2 \leq i, j .
$$

For example,

$$
\begin{gathered}
e_{-2} \circ e_{j}=0, \\
e_{j} \circ e_{-2}=(j+2)(j+1) e_{j-2}, \\
e_{-1} \circ e_{j}=(j+2) e_{j-1}, \\
e_{j} \circ e_{-1}=(j+2)^{2} e_{j-1}, \\
e_{0} \circ e_{j}=2(j+3) e_{j}, \\
e_{j} \circ e_{0}=(j+3)(j+2) e_{j} .
\end{gathered}
$$

Suppose that non-trivial ideal J has element $X=\sum_{i \geq i_{0}} \lambda_{i} e_{i} \in J$, such that $\lambda_{i_{0}} \neq 0$ and i_{0} is minimal with this property,

$$
\sum_{j} \mu_{j} e_{j} \in J \Rightarrow \mu_{j}=0, \forall j<i_{0}
$$

Prove that $i_{0}=-2$. Suppose that it is not true.
If $i_{0} \geq 0$, then
$X \in J \Rightarrow X \circ e_{-2}=\sum_{i \geq i_{0}} \lambda_{i}(i+2)(i+1) e_{i-2} \in J, \quad \lambda_{i_{0}}\left(i_{0}+2\right)\left(i_{0}+1\right) \neq 0$.
This contradicts to minimality i_{0}. So, the case $i_{0} \geq 0$ is not possible.
Let $i_{0}=-1$. Then

$$
e_{-1} \circ X=\sum_{i \geq i_{0}} \mu_{i} e_{i-1} \in J
$$

where

$$
\mu_{i}=\lambda_{i}(i+2), \quad \mu_{-2}=\lambda_{-1} \neq 0 .
$$

This contradicts to minimality of i_{0}. We proved that the case $i_{0}=-1$ is also not possible.

So, we have proved that $i_{0}=-2$. We see that elements $X \circ e_{j}$ has a form $\sum_{i \geq j-2} \gamma_{i} e_{i}$ with $\gamma_{j-2} \neq 0$ if j runs elements $0,1,2, \ldots$ This means that $J=\mathbb{K}[x]$. So, $(\mathbb{K}[x], \circ)$ is simple, where $a \circ b=\partial(\partial(a) b)$.

Remark. A map $f: A \rightarrow A, \quad f: a \mapsto \partial(a)$, induces a homomorphism of algebras

$$
f:(A, *) \rightarrow(A, \circ),
$$

where

$$
a * b=\partial^{2}(a) \partial(b) .
$$

Check it:

$$
f(a * b)=\partial\left(\partial^{2}(a) \partial(b)\right)=\partial(a) \circ \partial(b)=f(a) \circ f(b) .
$$

So, we see that $(\mathbb{K}[x], *)$ is 1 -Alia and there exists exact sequence of 1-Alia algebras

$$
0 \rightarrow \mathbb{K} \rightarrow(\mathbb{K}[x], *) \rightarrow(\mathbb{K}[x], \circ) \rightarrow 0
$$

In other words, $(\mathbb{K}[x], *)$ is a central extension of $(\mathbb{K}[x], \circ)$.

9. Standard construction of q-Alia algebras

Theorem 9.1. Let $A=(A, \cdot)$ be associative commutative algebra with multiplication $a \cdot b$ and $f, g: A \rightarrow A$ linear maps. Define a multiplication $a \circ b$ by

$$
a \circ b=a \cdot f(b)-q b \cdot f(a)+g(a \cdot b) .
$$

Then (A, \circ) is q-Alia.
Proof. Easy calculations. If $q^{2} \neq 1$, it follows from Theorem 3.1.

9.1. Simple q-Alia algebras.

Theorem 9.2. Let $U=\mathbb{K}[x]$ and

$$
a \star b=a \partial^{m}(b)-q \partial^{m}(a) b+q \partial^{m}(a b) .
$$

Then (U, \star) are q-Alia and simple for $q^{2} \neq 1$.
Proof. Calculate q-commutator of the multiplication \star

$$
\begin{gathered}
a \star_{q} b \\
=a \star b+q b \star a \\
=a \partial^{m}(b)-q \partial^{m}(a) b+q \partial^{m}(a b)+q \partial^{m}(a) b-q^{2} a \partial^{m}(b)+q^{2} \partial^{m}(a b) \\
=\left(1-q^{2}\right) a \partial^{m}(b)+\left(q+q^{2}\right) \partial^{m}(a b)
\end{gathered}
$$

This multiplication is standard. In other words, for associative commutative algebra U with usual polynomial multiplication $a \cdot b=a b$ and linear maps

$$
\begin{array}{ll}
f: U \rightarrow U, & f(a)=\left(1-q^{2}\right) \partial^{m}(a), \\
g: U \rightarrow U, & g(a)=\left(q^{2}+q\right) \partial^{m}(a),
\end{array}
$$

the algebra $\left(U, \star_{q}\right)$ has a form $\mathcal{A}_{0}(U, \cdot, f, g)$. So, by Theorem $7.1\left(U, \star_{q}\right)$ is 0 -Alia. Then by Theorem 3.1 the algebra (U, \star) is q-Alia.

Set

$$
e_{i}=x^{i+m} /(i+m)!, \quad i=-m,-m+1, \ldots
$$

Then

$$
e_{i} \star e_{j}=\left(\binom{i+j+m}{i+m}-q\binom{i+j+m}{j+m}+q\binom{i+j+2 m}{i+m}\right) e_{i+j} .
$$

So, (U, \star) is graded,

$$
\begin{gathered}
U=\oplus_{i \geq-m} U_{i}, \quad U_{i}=<e_{i}>, \\
U_{i} \star U_{j} \subseteq U_{i+j}
\end{gathered}
$$

Notice that

$$
\begin{gather*}
e_{-m} \star e_{j}=(q-1) e_{j-m}, \tag{4}\\
e_{i} \star e_{j}=q\binom{m}{-j} e_{-m}, \text { if }-m<i, j<0, i+j=-m . \tag{5}
\end{gather*}
$$

Let J is a non-trivial ideal of (U, \star). Take $X=\sum_{-m \leq i \leq i_{0}} \lambda_{i} e_{i} \in$ J, such that $\lambda_{i_{0}} \neq 0$ and i_{0} is minimal with such property. Since $Y=e_{-m} \star X \in J$ and i_{0} is minimal, by grading property $Y=0$. In particular, by (4),

$$
\lambda_{i_{0}}(q-1)=0
$$

and

$$
\lambda_{i_{0}}=0
$$

if $i_{0} \geq 0$. So, we can assume that $i_{0}<0$. Similar arguments that uses (5) shows that the case $i_{0}>-m$ is not possible. So, $i_{0}=-m$. In other words

$$
e_{-m} \in J
$$

Then by (4)

$$
e_{j}=(q-1)^{-1} e_{-m} \star e_{j+m} \in J
$$

This means that

$$
J=U
$$

Therefore, (U, \star) is simple.

10. Dual operads to Alia algebras

Theorem 10.1. Koszul dual algebras to left-Alia algebras is defined by identities

$$
\begin{gathered}
{\left[t_{1}, t_{2}\right] t_{3}=0} \\
\left(t_{1} t_{2}\right) t_{3}=\left(t_{1} t_{3}\right) t_{2} \\
t_{1}\left(t_{2} t_{3}\right)=0
\end{gathered}
$$

Left-Alia operads are not Koszul. Dimensions of multilinear parts of Koszul dual to Left-Alia algebras are $d_{1}=1, d_{2}=2, d_{3}=1, d_{4}=1, \ldots$.

Koszul dual to 1-Alia algebras is defined by identities

$$
\begin{gathered}
\left(t_{1} t_{2}\right) t_{3}=-t_{1}\left(t_{2} t_{3}\right), \\
\left(t_{1} t_{2}\right) t_{3}=\left(t_{2} t_{1}\right) t_{3}, \\
\left(t_{1} t_{2}\right) t_{3}=\left(t_{1} t_{3}\right) t_{2}
\end{gathered}
$$

Multilinear parts of degree n of free algebra with these identities has the following dimensions $d_{1}=1, d_{2}=2, d_{3}=1, d_{i}=0, i>3$.

Proof. According left-Alia identity in degree 3 there is only one non-trivial relation between 6 left-bracketed elements
(6) $(c \circ b) \circ a=(a \circ b) \circ c-(b \circ a) \circ c+(b \circ c) \circ a+(c \circ a) \circ b-(a \circ c) \circ b$
and no condition between 6 right-bracketed elements. Therefore we can take as a base elements of free left-Alia algebra of degree 3 all 12 elements except $(c \circ b) \circ a$.

We have
$[[a \otimes u, b \otimes v], c \otimes w]=$
$((a \cdot b) \cdot c) \otimes((u v) w)-((b \cdot a) \cdot c) \otimes((v u) w)-(c \cdot(a \cdot b)) \otimes(w(u v))+((c \cdot(b \cdot a)) \otimes(w(v u))$,
$[[b \otimes v, c \otimes w], a \otimes u]=$
$((b \cdot c) \cdot a) \otimes((v w) u)-((c \cdot b) \cdot a) \otimes((w v) u)-(a \cdot(b \cdot c)) \otimes(u(v w))+((a \cdot(c \cdot b)) \otimes(u(w v))=$
(according (6))

$$
\begin{aligned}
& ((b \cdot c) \cdot a) \otimes((v w) u)-(a \circ b) \circ c \otimes((w v) u)+(b \circ a) \circ c \otimes((w v) u)-(b \circ c) \circ a \otimes((w v) u) \\
& -(c \circ a) \circ b \otimes((w v) u)+(a \circ c) \circ b \otimes((w v) u)-(a \cdot(b \cdot c)) \otimes(u(v w))+((a \cdot(c \cdot b)) \otimes(u(w v)), \\
& \quad[[c \otimes w, a \otimes u], b \otimes v]= \\
& ((c \cdot a) \cdot b) \otimes((w u) v)-((a \cdot c) \cdot b) \otimes((u w) v)-(b \cdot(c \cdot a)) \otimes(v(w u))+((b \cdot(a \cdot c)) \otimes(v(u w)) .
\end{aligned}
$$

Thus,
$[[a \otimes u, b \otimes v], c \otimes w]+[[b \otimes v, c \otimes w], a \otimes u]+[[c \otimes w, a \otimes u], b \otimes v]=$

$$
\begin{gathered}
\quad((a \cdot b) \cdot c) \otimes\{(u v) w-(w v) u\}-((b \cdot a) \cdot c) \otimes\{(v u) w-((w v) u\} \\
+((b \cdot c) \cdot a) \otimes\{(v w) u-(w v) u\}-(c \circ a) \circ b \otimes\{(w v) u-(w u) v\} \\
+(a \circ c) \circ b \otimes\{(w v) u-(u w) v\}-(a \cdot(b \cdot c)) \otimes(u(v w)) \\
-(c \cdot(a \cdot b)) \otimes(w(u v))+((c \cdot(b \cdot a)) \otimes(w(v u))+((a \cdot(c \cdot b)) \otimes(u(w v)) \\
-(b \cdot(c \cdot a)) \otimes(v(w u))+((b \cdot(a \cdot c)) \otimes(v(u w)) .
\end{gathered}
$$

Therefore Koszul dual operad is generated by relations that follow from identities

$$
\begin{equation*}
\left(t_{1} t_{2}\right) t_{3}=\left(t_{2} t_{1}\right) t_{3}, \quad\left(t_{1} t_{2}\right) t_{3}=\left(t_{1} t_{3}\right) t_{2}, \quad t_{1}\left(t_{2} t_{3}\right)=0 \tag{7}
\end{equation*}
$$

It is easy to see that multilinear part of degree n of free algebra with identities (7) has the following base

$$
\begin{gathered}
n=1, \quad\left\{a_{1}\right\}, \\
n=2, \quad\left\{a_{1} a_{2}, a_{2} a_{1}\right\}, \\
n>2, \quad\left\{\left(\cdots\left(\left(a_{1} a_{2}\right) a_{3}\right) \cdots\right) a_{n}\right\} .
\end{gathered}
$$

Thus, dimensions of multilinear parts are $d_{2}=2, d_{i}=1, i \neq 2$.
We omit long calculations that shows that first four dimensions of multilinear parts of free left-Alia algebras are 1,2,11,100.

So, generating functions are

$$
\begin{gathered}
f_{\text {lalia }}(x)=-x+x^{2}-11 x^{3} / 6+25 x^{4} / 6+O\left(x^{5}\right) \\
f_{\text {dual }(\text { lalia })}(x)=-x+x^{2}-x^{3} / 6+x^{4} / 24+O\left(x^{5}\right)
\end{gathered}
$$

We see that

$$
f_{\text {lalia }}\left(f_{\text {dual }(\text { lalia })}(x)\right)=x-x^{4} / 24+O\left(x^{5}\right) \neq x .
$$

Therefore, necessary condition for Koszulity [1] for left-Alia algebras is not fulfilled.

The case of 1 -Alia algebras is considered in a similar ways.

Remark. We do not know whether 1-Alia algebras form Koszul operad. Generating functions look like

$$
\begin{gathered}
f_{1-\text { alia }}(x)=-x+x^{2}-11 x^{3} / 3!+100 x^{4} / 4!-1270 x^{5} / 5!+O\left(x^{6}\right) \\
f_{\text {dual }(1-\text { alia })}(x)=-x+x^{2}-x^{3} / 3!
\end{gathered}
$$

No contradiction for Koszulity condition until degree 5:

$$
f_{1-\text { alia }}\left(f_{\text {dual }(1-\text { alia })}(x)\right)=x+O\left(x^{6}\right) .
$$

References

[1] V.Ginsburg, M.M. Kapranov, Koszul duality for operads, Duke Math.J., 76(1994), 203-272.
[2] A.S. Dzhumadil'daev Novikov-Jordan algebras, Commun. Algebra,30(2002), No.11, p. 5207-5240.
[3] A.S. Dzhumadil'daev, K.M. Tulenbaev, Exceptional 0-Alia algebras, J.Math.Sciences (Springer), the same volume.
[4] A.S. Dzhumadil'daev, A. Bakirova, Simple two-sided Anti-Lie-Admissible algebras, J. Math. Sciences (Springer), the same volume.
[5] A.A. Balinskii, S.P. Novikov, Poisson bracket of hamiltonian type, Frobenius algebras and Lie algebras, Dokladu AN SSSR, 283(1985), No.5, 1036-1039.
[6] J.M. Osborn, Varieties of algebras, Adv. Math., 8(1972), 163-369.
[7] J.M. Osborn, Novikov algebras, Nova J. Algebra Geom., 1(1992), 1-14.
Kazakh-British Technical University, Tole bi 59, Almaty, 050000, Kazakhstan

E-mail address: askar56@homail.com

