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ALGEBRAS WITH SKEW-SYMMETRIC IDENTITY OF
DEGREE 3

A.S. DZHUMADIL’DAEV

Dedicated to 70th birthday of E.B. Vinberg

Abstract. Algebras with one of the following identities are con-
sidered:

[[t1, t2], t3] + [[t2, t3], t1] + [[t3, t1], t2] = 0,

[t1, t2]t3 + [t2, t3]t1 + [t3, t1]t2 = 0,

{[t1, t2], t3}+ {[t2, t3], t1}+ {[t3, t1], t2} = 0,

where [t1, t2] = t1t2 − t2t1 and {t1, t2} = t1t2 + t2t1. We prove
that any algebra with a skew-symmetric identity of degree 3 is
isomorphic or anti-isomorphic to one of such algebras or can be
obtained as their q -commutator algebras.

1. Introduction

Denote by (A, ◦) an algebra with a vector space A over a field K
and a multiplication ◦. Let ◦q be a new multiplication on A defined
by

a ◦q b = a ◦ b+ q b ◦ a ( q -commutator).

Notice that ◦−1 coincides with ordinary commutator

[a, b] = a ◦ b− b ◦ a = a ◦−1 b

and ◦1 coincides with anti-commutator

{a, b} = a ◦ b+ b ◦ a = a ◦1 b.

Call the algebra (A, ◦q) as q -algebra of (A, ◦).
Let K{t1, . . . , tk} be an algebra of non-commutative non-associative

polynomials with variables t1, t2, . . . , tk . For any algebra (A, ◦) we
can consider a homomorphism

K{t1, . . . , tk} → A,

that corresponds to any f ∈ K{t1, . . . , tk} an element f(a1, . . . , ak) ∈
A . This means that in f(t1, . . . , tk) we make substitutions t1 :=
a1, . . . , tk := ak by elements of A and calculate f(a1, . . . , ak) in terms
of multiplication ◦.
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A polynomial f ∈ K{t1, t2, . . . , tk} is called identity on A, if

f(a1, . . . , ak) = 0, ∀a1, a2, . . . , ak ∈ A.
In such cases we say that f = 0 is an identity of A.

A polynomial f ∈ K{t1, t2, . . . , tk} is called skew-symmetric if

f(tσ(1), . . . , tσ(k)) = sign σ f(t1, . . . , tk),

for any permutation σ ∈ Symk. An identity f = 0 is skew-symmetric
if f as a non-commutative non-associative polynomial is skew-symmetric.

Define polynomials with 2 variables

lie(t1, t2) = [t1, t2] = t1t2 − t2t1,
jor(t1, t2) = {t1, t2} = t1t2 + t2t1

and polynomials with 3 variables

lia(t1, t2, t3) = [[t1, t2], t3] + [[t2, t3], t1] + [[t3, t1], t2],

alia(t1, t2, t3) = {[t1, t2], t3}+ {[t2, t3], t1}+ {[t3, t1], t2},
lalia(t1, t2, t3) = [t1, t2]t3 + [t2, t3]t1 + [t3, t1]t2,

ralia(t1, t2, t3) = t1[t2, t3] + t2[t3, t1] + t3[t1, t2],

alia(q)(t1, t2, t3) = [t1, t2]t3+[t2, t3]t1+[t3, t1]t2+q(t1[t2, t3]+t2[t3, t1]+t3[t1, t2]).

Introduce the following names for algebras with identities.

identity name of algebras
jor = 0 Anti-commutative
lia = 0 Lie-admissible
alia = 0 Anti-Lie-admissible or Alia
lalia = 0 Left Anti-Lie-admissible or Left Alia
ralia = 0 Right Anti-Lie-admissible or Right Alia
alia(q) = 0 q-Anti-Lie-admissible or q-Alia
lalia = 0, ralia = 0 Two-sided Alia

For anti-commutative algebra (A, ◦) a bilinear map ψ : A×A→ A
is called commutative cocycle, if

ψ(a ◦ b, c) + ψ(b ◦ c, a) + ψ(c ◦ a, b) = 0,

ψ(a, b) = ψ(b, a),

for any a, b, c ∈ A.
An algebra (A, ◦) is said anti-isomorphic to algebra (A, ?) if there

exist one-to-one map f : A→ A , such that

f(a ◦ b) = f(b) ? f(a),

for any a, b ∈ A.
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The aim of our paper is to describe algebras with skew-symmetric
identities of degree 3. We reduce the problem of studying algebras
with skew-symmetric identities of degree 3 to the problem of studying
q -Allia algebras for q = 0,±1 , anti-commutative algebras and their
commutative cocycles. We give standard constructions of 0 -Alia al-
gebras and 1 -Alia algebras. We give also examples of simple q -Alia
algebras.

2. Space of skew-symmetric and symmetric
non-associative polynomials

Let Pk be a space of multilinear non-associative polynomials with
k variables. Since the number of non-associative non-commutative
bracketings on k letters is

ck =
1

k

(
2k − 2

k − 1

)
(Catalan number),

it is clear that Pk is (2k−2)!
(k−1)! -dimensional. Denote by P−k a subspace

of Pk generated by skew-symmetric polynomials.
Let

π− : Pk → P−k ,

be skew-symmetrization map,

π−f(t1, . . . , tk) =
1

k!

∑
σ∈Symk

sign σ f(tσ(1), . . . , tσ(k)).

Theorem 2.1. The space P−k is ck -dimensional and polynomials of a
form π−fi, form base, where i = 1, 2, . . . , ck, and fi runs monomials
corresponding to different types of bracketings.

Proof. Let g be a skew-symmetric polynomial. Present it as a
sum

∑ck
i=1 gi, where gi is a linear combination of monomials of i -

th bracketing type. Since skew-symmetrization map does not change
bracketing type, we see that gi is also skew-symmetric polynomial for
any i = 1, 2, . . . , ck and is uniquely defined by gi(t1, . . . , tk). This
means that polynomials π−f1, . . . , π

−fck form base of P−k .

Corollary 2.2. P−2 is 2 -dimensional and has a base {lalia, ralia}.

Remark. Theorem 2.1 is true also for symmetric polynomials. Let
P+
k be a subspace of Pk generated by symmetric polynomials

f(tσ(1), . . . , tσ(k)) = f(t1, . . . , tk).

and
π+ : Pk → P+

k
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be a symmetrization map,

π+f(t1, . . . , tk) =
1

k!

∑
σ∈Symk

f(tσ(1), . . . , tσ(k)),

Then dimP+
k = ck and polynomials of a form π+fi, form base, where

i = 1, 2, . . . , ck, and fi runs monomials corresponding to different
types of bracketings.

3. q -Alia algebras constructed by 0 -Alia algebras

Denote by Lia , Alia(0) , Alia(1) and Alia(∞) categories of Lie-
admissible, 0 -Alia, 1 -Alia and two-sided Alia algebras. Notice that

Lia = Alia(−1)

and

Lia ∩ Alia(0) = Lia ∩ Alia(1) = Alia(0) ∩ Alia(1) = Alia(∞).

Theorem 3.1. Let q ∈ K , such that q2 6= 1. Then any algebra of
a form A(−q) , where A is 0 -Alia, satisfies the identity alia(q) = 0.
Inversely, any q -Alia algebra is isomorphic to an algebra A(−q) for
some 0 -Alia algebra A . In other words, categories of q -Alia algebras
Alia(q) and 0 -Alia algebras A(0) are equivalent if q2 6= 1.

If q2 = 1 this statement is not true. There exist algebras with iden-
tity alia(q) = 0, that can not be obtained from 0 -Alia algebras in a
form A(q).

Proof. Let q2 6= 1. Prove that A(q) is 0 -Alia if A is q -Alia. Prove
also that (A(q))(−q) is once again q -Alia and, moreover, it is isomorphic
to A.

Denote by [a, b](−q) a commutator of the multiplication ◦−q . Then

[a, b](−q) = a ◦−q b− b ◦−q a = (1 + q)(a ◦ b− b ◦ a) = (1 + q)[a, b].

Calculate lalia(a, b, c) and ralia(a, b, c) in terms of multiplication
◦−q . We have

lalia(a, b, c) = [a, b](−q) ◦−q c+ [b, c](−q) ◦−q a+ [c, a](−q) ◦−q b
= (1+q)([a, b]◦c+[b, c]◦a+[c, a]◦b)−(1+q)q(c◦[a, b]+a◦[b, c]+b◦[c, a])

= (1 + q) lalia(a, b, c)− (1 + q)q ralia(a, b, c).

Similarly,

ralia(a, b, c) = c ◦−q [a, b](−q) + a ◦−q [b, c](−q) + b ◦−q [c, a](−q)

= (1+q)(c◦[a, b]+a◦[b, c]+b◦[c, a])−(1+q)q([a, b]◦c+[b, c]◦a+[c, a]◦b)
= (1 + q)ralia(a, b, c)− (1 + q)q lalia(a, b, c).
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Therefore,

alia(q)(a, b, c) = lalia(a, b, c) + q ralia(a, b, c)

= (1 + q)(1− q2)lalia(a, b, c).

This means that A(−q) is q -Alia if A is 0 -Alia.
Suppose now (A, ?) is q -Alia. Endow A by a new multiplication

a ◦ b = (1− q2)−1(a ? b+ q b ? a).

We see that

a ◦−q b = a ◦ b− q b ◦ a = a ? b.

Therefore, (A, ◦−q) is isomorphic to (A, ?). Check that (A, ◦) is 0 -
Alia. Let [a, b]? = a ? b− b ? a . We have

[a, b] = (1− q2)−1(a ? b+ q b ? a− b ? a− q a ? b)

= (1− q2)−1(1− q)[a, b]?.
Thus,

lalia(a, b, c)

= (1− q2)−1(1− q)([a, b]? ◦ c+ [b, c]? ◦ a+ [c, a]? ◦ b)

= (1−q2)−1(1−q)([a, b]??c+[b, c]??a+[c, a]??b+q c?[a, b]?+q a?[b, c]?+q b?[c, a]?

= (1− q2)−1(1− q) alia(q)(a, b, c)
Therefore (A, ◦) is 0 -Alia if (A, ?) is q -Alia and (A◦−q) is isomorphic
to (A, ?) .

Now consider the case q2 = 1 . Notice that any 0 -Alia algebra
under q -commutator satisfies identity of degree 2 if q2 = 1. Namely,
any algebra obtained from 0 -Alia algebra A in a form A(q) for q2 = 1
should be anti-commutative (in case q = −1 ) or commutative (in case
q = 1 ). So, algebras with identities alia(q) = 0, q2 = 1, without
identities of degree 2 gives us counter-examples.

In the case q = −1 as a such counter-example one gets free left-
symmetric algebras, i.e.,algebras with identity

(a, b, c) = (b, a, c).

In the case q = 1 as a counter-example one takes the algebra
(K[x], ?), where

a ? b = ∂(∂(a)b).

It is 1 -Alia and has no any identity of degree 2.
Thus categories Alia(q) and Alia are not equivalent if q2 = 1.
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4. Commutative cocycles

To describe two-sided Alia algebras and 1 -Alia algebras we need
a new notion. Let A = (A, ◦) be an algebra and M be a vector
space. Call a bilinear map ψ : A× A→ M commutative cocycle with
coefficients in M, if

(1) ψ(a, b) = ψ(b, a),

(2) ψ(a ◦ b, c) + ψ(b ◦ c, a) + ψ(c ◦ a, b) = 0

for any a, b, c ∈ A.
If A is a Lie algebra and the condition is changed to anti-commutative

condition, then we will obtain well known notion of 2 -cocyclicity of ψ .
If M = K is the main field, then call commutative 2-cocycle as a

commutative central extension. In our paper we mainly consider the
case M = A and in such cases we call ψ shortly as a commutative
cocycle.

Let Z2
com(A,M) be a space of commutative cocycles with coefficients

in M. Then

Z2
com(A,M) ∼= Z2

com(A,K)⊗M.

For any two-sided Alia algebra A = (A, ?) one can correspond Lie
algebra L = A(−1) = (A, ?−1) We establish that all two-sided Alia
algebras with given Lie part L can be characterized by Z2

com(L,A).
Similar situation appears also for 1 -Alia algebras. In this case L is
just anti-commutative algebra, not necessary Lie.

Let A = (A, ◦) be anti-commutative algebra with commutative co-
cycle ψ . Let (A, ◦ψ) be an algebra with vector space A and multipli-
cation ◦ψ given by

a ◦ψ b = a ◦ b+ ψ(a, b)

Theorem 4.1. (charK 6= 2) If A = (A, ◦) is anti-commutative al-
gebra and ψ is commutative cocycle, then algebra (A, ◦ψ) is 1 -Alia.
Inversely, any 1 -Alia algebra A = (A, ?) such that A(−1) ∼= (A, ◦)
is isomorphic to algebra of a form (A, ◦ψ) for some cocycle ψ of the
anti-commutative algebra (A, ◦).

Any two-sided Alia algebra is Lie-admissible. If A = (A, ◦) is a Lie
algebra and ψ is its commutative cocycle, then the algebra (A, ◦ψ) is
two-sided Alia. Inversely, any two-sided Alia algebra A = (A, ?) , such
that A(−1) ∼= L is isomorphic to algebra of the form (A, ◦ψ) for some
commutative cocycle ψ of the Lie algebra L.
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Proof. Let A = (A, ◦) be anti-commutative algebra with multipli-
cation ◦ and ψ be commutative bilinear map

ψ(a, b) = ψ(b, a), ∀a, b ∈ A
Let ? = ◦ψ be multiplication of the algebra (A, ◦ψ). Let

[a, b]? = a ? b− b ? a,

{a, b}? = a ? b+ b ? a

be Lie and Jordan commutators for the multiplication ?. Then

[a, b]? = a ? b− b ? a = 2(a ◦ b− b ◦ a) = 4(a ◦ b),
and

[a, b]? ? c = 4((a ◦ b) ◦ c+ ψ(a ◦ b, c)),
c ? [a, b]? = 4(c ◦ (a ◦ b) + ψ(c, a ◦ b)).

Therefore,

{[a, b]?, c}? = 8ψ(a ◦ b, c)
and

{[a, b]?, c}? + {[b, c]?, a}? + {[c, a]?, b}? =

8(ψ(a ◦ b, c) + ψ(b ◦ c, a) + ψ(c ◦ a, b)).
Thus, the algebra (A, ◦ψ) is 1 -Alia if and only if ψ is commutative
cocycle of the algebra (A, ◦) .

Let now A = (A, ?) be 1 -Alia. Let L = (A, ◦) be an algebra with
a vector space A and a multiplication

a ◦ b = (a ? b− b ? a)/2.

Let ψ : A× A→ A be a commutative bilinear map given by

ψ(a, b) = (a ? b+ b ? a)/2.

Then the multiplication ◦ as a commutator of the multiplication ? is
anti-commutative. Further,

ψ(a ◦ b, c) + ψ(b ◦ c, a) + ψ(c ◦ a, b)

= ({a ◦ b, c}+ {b ◦ c, a}+ {c ◦ a, b})/2
= ({[a, b]?, c}? + {[b, c]?, a}? + {[c, a]?, b}?)/4

= alia(1),?(a, b, c)/4 = 0

This means that ψ is commutative cocycle for anti-commutative alge-
bra L. Notice that

a ? b = a ◦ b+ ψ(a, b)

So, (A, ?) ∼= (A, ◦ψ).
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Now suppose that A = (A, ?) is two-sided Alia. Then as we have
noticed above

a ? b = a ◦ b+ ψ(a, b),

where

a ◦ b = [a, b]?/2, ψ(a, b) = {a, b}?.
We know that A is −1 -Alia. This means that

[[a, b]?, c]? + [[b, c]?, a]? + [[c, a]?, b]? = 0.

In other words, (A, ◦) is Lie algebra. We also know that A is 1 -Alia.
This condition is equivalent to the commutative cocyclicity condition
of ψ . Thus, A is isomorphic to the algebra (A, ◦ψ) , where ◦ is Lie
multiplication on A .

Inversely, let (A, ◦) be Lie algebra and ψ be commutative cocycle.
Then the algebra (A, ?) , where ? = ◦ψ , has the following properties,

lalia?(a, b, c) = [a, b]? ? c+ [b, c]? ? a+ [c, a]? ? b

= 2([a, b]◦ ? c+ [b, c]◦ ? a+ [c, a]◦ ? b)

= 2([a, b]◦ ◦ c+ [b, c]◦ ◦a+ [c, a]◦ ◦ b+ψ(a◦ b, c) +ψ(b◦ c, a) +ψ(c◦a, b))

= 0,

and similarly,

ralia?(a, b, c) = a ? [b, c]? + b ? [c, a]? + c ? [a, b]?

= 2(a◦ [b, c]◦+ b◦ [c, a]◦+ c◦ [a, b]◦+ψ(a◦ b, c) +ψ(b◦ c, a) +ψ(c◦a, b))

= 0.

In other words, (A, ◦ψ) is two-sided Alia.

5. Algebras with skew-symmetric identity of degree 3

Theorem 5.1. Any algebra with a skew-symmetric identity of degree
3 over a field K of characteristic p 6= 2 is isomorphic to one of the
following algebras:

• Lie-admissible algebra
• left Alia algebra (or 0 -Alia algebra)
• right Alia algebra
• 1 -Alia algebra
• algebra of a form A(q) for some 0 -Alia algebra A and q ∈ K ,

such that q2 6= 0, 1.
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Characterization of two-sided Alia algebras and 1 -Alia algebras in
terms of anti-commutative algebras and their commutative cocycles is
given in Theorem 4.1. Let (A, ◦) be q -Alia algebra. Then an opposite
algebra (A, ◦op) with multiplication a◦opb = b◦a, is 1/q -Alia if q 6= 0.
If q = 0 then 0 -Alia algebra is left-Alia and its opposite algebra is
right-Alia.

Proof of Theorem 5.1. By Corollary 2.2 a space of skew-symmetric
polynomials of degree 3 is 2 -dimensional and is generated by the left-
Alia and right-Alia polynomials lalia and ralia . Therefore any skew-
symmetric non-commutative non-associative polynomial of degree 3 has
a form f = fα,β = α lalia+ β ralia, where α, β ∈ K. For example,

lia = f 1,−1

alia(q) = lalia+ q ralia.

In other words, any non-commutative non-associative skew-symmetric
polynomial up to scalar is equal to alia(q) for some q ∈ K or equal to
ralt. It remains to use Theorems 3.1.

6. 0 -Alia algebras

6.1. General constructions of 0 -Alia algebras.

Proposition 6.1. Let (A, ·) be right-commutative algebra,

(a · b) · c = (a · c) · b, ∀a, b, c ∈ A.
Then (A, ·) is 0 -Alia.

Proof.
[a, b] · c+ [b, c] · c+ [c, a] · b

= (a · b) · c− (b · a) · c+ (b · c) · a− (c · b) · a+ (c · a) · b− (a · c) · b
= (a · b) · c− (a · c) · b+ (b · c) · a− (b · a) · c+ (c · a) · b− (c · b) · a

= 0.

Theorem 6.2. Let (U, ·) be an associative commutative algebra and
f, g : U → U be linear maps. Define on U a multiplication ◦ by

a ◦ b = a · f(b) + g(a · b).
Then (U, ◦) is 0 -Alia.

Denote obtained algebra as A0(U, ·, f, g). For a 0 -Alia algebra A
say that it is special if A is isomorphic to a subalgebra of some alge-
bra of a form A0(U, ·, f, g) , where (U, ·) is associative commutative
algebra and f, g : U → U are linear maps. Otherwise say that A is
exceptional.
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Proof. We have
[a, b] ◦ c

= (a · f(b)) · f(c)− (b · f(a)) · f(c) + g((a · f(b)) · c− (b · f(a)) · c).
Therefore by commutativity and associativity properties of the multi-
plication · ,

[a, b] ◦ c+ [b, c] ◦ a+ [c, a] ◦ b
= (a·f(b))·f(c)−(b·f(a))·f(c)+(b·f(c))·f(a)−(c·f(b))·f(a)+(c·f(a))·f(b)−(a·f(c))·f(b)

+g ((a · f(b)) · c− (b · f(a)) · c+ (b · f(c)) · a− (c · f(b)) · a+ (c · f(a)) · b− (a · f(c)) · b)
= 0.

6.2. Killing form and two-sided Alia algebras in characteristic
3 . Let (A, ◦) be any algebra over a field of characteristic 3 with mul-
tiplication ◦ and commutator [a, b] = a ◦ b − b ◦ a. A commutative
bilinear map A× A→M is called invariant if

ψ([a, b], c) = ψ(a, [b, c]),

for any a, b, c ∈ A.

Theorem 6.3. Let A be any algebra over a field of characteristic
p = 3. Then any commutative invariant form ψ : A × A → M is a
commutative cocycle.

Proof. We have

ψ([a, b], c) = ψ(a, [b, c]),

ψ([b, c], a) = ψ(a, [b, c]),

ψ([c, a], b) = −ψ([a, c], b]) = −ψ(a, [c, b]) = ψ(a, [b, c]).

Thus,

ψ([a, b], c) + ψ([b, c], a) + ψ([c, a], b) = 3ψ(a, [b, c]) = 0,

for any a, b, c ∈ A. Proof is completed.
Recall that, for any semi-simple Lie algebra a Killing form

(a, b) = tr ad a ad b

is invariant and non-degenerate. Let A = (A, ◦) be Lie algebra and
Ã = A+K be commutative central extension defined by a commutative
cocycle ψ ∈ Z2

com(A,K). The multiplication on Ã is defined by

a ? b = a ◦ b+ ψ(a, b).

Then (Ã, ?) is two-sided Alia. So,

Corollary 6.4. Any semi-simple Lie algebra in characteristic 3 with
a nontrivial invariant form has nontrivial structures of two-sided Alia
algebras.
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6.3. Simple two-sided Alia algebra with Lie part sl2 .

Theorem 6.5. Let L =< e−1, e0, e1|[e−1, e1] = e0, [e−1, e1] = e0, [e0, e1] =
e1 > be 3 -dimensional simple Lie algebra. Then Z2

com(L,K) is 5 -
dimensional and is generated by commutative cocycles ηi, i = 1, . . . , 5
defined by

η1(e−1, e−1) = 1, η2(e−1, e0) = η2(e0, e−1) = 1,

η3(e−1, e1) = 1, η3(e0, e0) = 2, η3(e1, e−1) = 1,

η4(e0, e1) = η4(e1, e0) = 1, η5(e1, e1) = 1

(non-written components are 0 ).

Proof. There is only one nontrivial cocyclicity condition dψ(e−1, e0, e1) =
0. More exactly,

2ψ(e−1, e1) = ψ(e0, [e−1, e1]) = ψ(e0, e0).

Other statements are evident.
Another formulation of Theorem 6.5.

Theorem 6.6. Let (sl2, ?) be an algebra with multiplication table

e−1 ? e−1 = α1,1e−1 + α1,2e0 + α1,3e1,

e−1?e0 = e−1+α2,1e−1+α2,2e0+α2,3e1, e0?e−1 = −e−1+α2,1e−1+α2,2e0+α2,3e1,

e−1?e1 = e0+α3,1e−1+α3,2e0+α3,3e1, e1?e−1 = −e0+α3,1e−1+α3,2e0+α3,3e1,

e0 ? e0 = 2(α3,1e−1 + α3,2e0 + α3,3e1),

e0?e1 = e1+α4,1e0+α4,2e0+α4,3e1, e1?e0 = −e1+α4,1e−1+α4,2e0+α4,3e1,

e1 ? e1 = α5,1e−1 + α5,2e0 + α5,3e1,

where αi,j ∈ K, i = 1, 2, 3, 4, 5, j = 1, 2, 3. Then (sl2, ?) is two-sided
Alia algebra. It is simple for any 5 × 3 -matrix (αi,j). Any two-sided
Alia algebra connected with sl2 is isomorphic to a such algebra for
some 5× 3 -matrix (αi,j).

Proof. Follows from Theorems 6.5 and 4.1.
Remark. If p 6= 2, 3, then the algebra (sl2, ?) gives us a unique

nontrivial example of two-sided algebras connected with classical sim-
ple Lie algebras [4] .
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6.4. Simple two-sided Alia algebras with Lie part W1 . Let L =
W1 be one-sided or two-sided Witt algebra of rank 1 over a field K
of characteristic 0. Recall that, one-sided Witt algebra of rank 1 is
generated by vectors ei, i ∈ Z such that i ≥ −1 , and two-sided Witt
algebra of rank 1 is generated by elements ei, i ∈ Z. In both cases the
multiplication is given by

[ei, ej] = (j − i)ei+j.

Theorem 6.7. Let L be one-sided or two-sided Witt algebra of rank
1. Then Z2

com(L,K) is infinite-dimensional and is generated by com-
mutative cocycles ηi, i ∈ Z, defined by

ηi(u, v) = coefficient of uv at xi+2 .

Here i ≥ −2 if L is one-sided Witt algebra.

Proof. Let ψ ∈ Z2
com(L,K) be commutative cocycle. Notice that

Z2
com(L,K) is a direct sum of homogeneous subspaces,

Z2
com(L,K) = ⊕sZ2

com,s(L,K),

Z2
com,s(L,K) =< ψ ∈ Z2

com(L,K)|ψ(ei, ej) = 0, i+ j 6= s > .

We can assume that ψ is a homogeneous.
Commutative cocyclicity conditions on e0, ei, ej, i + j = s, gives us

the following relations

ψ([e0, ei], ej) + ψ([ei, ej], e0) + ψ([ej, e0], ei) = 0⇒
i ψ(ei, ej) + (j − i)ψ(ei+j, e0)− j ψ(ej, ei) = 0⇒

(j − i)ψ(e0, ei+j) = (j − i)ψ(ei, ej).

Thus, if i 6= j,
ψ(ei, ej) = ψ(e0, ei+j).

Therefore,
ψ = ψ(e0, es)ηs−2.

The proof is finished.
Another formulation of Theorem6.7

Theorem 6.8. Let f be an endomorphism of polynomial space U =
K[x] or Laurent polynomial space U = K[x, x−1]. Then the algebra
(U, ?f ) , where

a ?f b = ∂(a)b− a∂(b) + f(ab),

is two-sided Alia algebra and simple. Any two-sided Alia algebra con-
nected with (one-sided or two-sided) Witt algebra of rank 1 is isomor-
phic to (U, ?f ) for some endomorphism f ∈ EndU.

Proof. Follows from Theorems 6.7 and 4.1.
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6.5. Simple 0 -Alia algebras defined by symmetric matrix. Let
λ = (λi,j) be a symmetric matrix. Endow space of polynomials U =
K[x1, . . . , xn], by a multiplication

a ? b =
∑
i,j

λi,j(∂i(a)∂j(b) +
1

2
∂i∂j(a)b).

In other words,

a?b =
∑
i<j

λi,j(∂i(a)∂j(b)+∂j(a)∂i(b)+∂i∂j(a)b)+
∑
i

λi,i(∂i(a)∂i(b)+
1

2
∂2i (a)b)

Let a · b be a usual multiplication of polynomials and

f(a) = −1

2

∑
i,j

λi,j∂i∂j(a),

g(a) =
1

2

∑
i,j

λi,j∂i∂j(b).

Then

a ? b = a · f(b) + g(a · b).
So, (U, ?) is a standard algebra A(U, ·, f, g). Hence by Theorem 7.1
(U, ?) is 0 -Alia.

Theorem 6.9. The 0 -Alia algebra (U, ?) is simple if and only if the
matrix (λi,j) is non-degenerate.

For α = (α1, . . . , αn) ∈ Zn, set

|α| =
n∑
i=1

αi.

Endow (U, ?) by grading. If

|xα| = |α| − 2, α ∈ Zn+,

Uk =< xα| |α| = k + 2 >,

then

U = ⊕k≥−2Uk,
Uk ? Us ⊆ Uk+s.

For example,

U−2 =< 1 >,

U−1 =< xi|i = 1, . . . , n >,

U0 =< xixj|i, j = 1, . . . , n > .
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Notice that

u ? 1 =
∑
i<j

λi,j∂i∂j(u) +
1

2

∑
i

λi,i∂
2
i (u), ∀u ∈ U,

1 ? u = 0, ∀u ∈ U,
xi ? xj = xj ? xi = λi,j1,

xi ? u =
∑
j

λi,j∂j(u),

u ? xi =
1

2
λi,ixi∂

2
i (u) +

∑
j 6=i

λi,jxi∂i∂j(u) +
∑
j

λi,j∂j(u).

In particular,

[u, xi] = u ? xi − xi ? u =
1

2
λi,ixi∂

2
i (u) +

∑
j 6=i

λi,jxi∂i∂j(u).

The following Lemma states that the algebra (U, ?) is transitive.

Lemma 6.10. If xi?u = 0, u?xi = 0, u?1 = 0, then u ∈ U−2 =< 1 > .

Proof. From the condition u ? 1 = 0 it follows that

u = θ01 +
∑
i

θixi +
∑
i≤j

θi,jxixj,

for some θ0, θi, θi,j = θj,i ∈ K, i ≤ j, with property∑
i≤j

λi,jθi,j = 0.

Further, for any i = 1, . . . , n,

xi?u = 0⇒
∑
j

λi,j∂j(u) = 0⇒
∑
j

λi,jθj+
∑
j

λi,j(
∑
i′<j

θi′,jxi′+
∑
j′>j

θj,j′xj′+2θj,jxj) = 0

⇒
∑
s

λi,sθs+
∑
s

λi,s
∑
j<s

θj,sxj+
∑
s

λi,s
∑
j>s

θs,jxj+2
∑
j

λi,jθj,jxj) = 0

⇒
∑
s

λi,sθs +
∑
j

∑
j<s

λi,sθj,sxj +
∑
j

∑
j>s

λi,sθs,jxj + 2
∑
j

λi,jθj,jxj = 0

⇒
∑
j

λi,jθj = 0,

2λi,jθj,j +
∑
j<s

λi,sθj,s +
∑
j>s

λi,sθs,j = 0, ∀j = 1, . . . , n.

⇒
∑
j

λi,jθj = 0,
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j−1∑
s=1

λi,sθs,j + 2λi,jθj,j +
n∑

s=j+1

λi,sθj,s = 0, ∀j = 1, . . . , n.

In other words,

λT = 0,

λθ = 0,

where λ is n × n -matrix (λi,j) , T is a column with coordinates
(θ1, . . . , θn), and θ is a matrix of a form

θ =


2θ1,1 θ1,2 θ1,3 · · · θ1,n
θ1,2 2θ2,2 θ2,3 · · · θ2,n
θ1,3 θ2,3 2θ3,3 · · · θ3,n

...
...

... · · · ...
θ1,n θ2,n θ3,n · · · 2θn,n


Since, det (λi,j) 6= 0, this means that T = 0, θ = 0. Lemma is proved.

Lemma 6.11. Suppose that λi0,j0 6= 0, for some 1 ≤ i0, j0 ≤ n. Then
for any v ∈ U, there exists u ∈ U, such that

v =
∑
i,j

λi,j∂i∂j(u).

Proof. Endow Zn+ by lexicographical ordering. For α, β ∈ Zn+ say
that α < β, in the following situations:

• |α| < |β| or
• |α| = |β| and α1 = β1, . . . , αk−1 = βk−1, αk < βk for some
k ≤ n.

Suppose that λi0,j0 6= 0, i0 ≤ j0, and (i0, j0) is maximal with such
property. In other words, λi,j = 0, i ≤ j, if i > i0 or i = i0, j > j0.

Show that

xα ∈<
∑
i<j

λi,j∂i∂j(u)|u ∈ K[x1, . . . , xn] >

for any α ∈ Zn+. Use induction by s = |α| and in any fixed s use
induction by ordered set of α ’s with |α| = s.

If s = 0, then α = (0, . . . , 0) and

1 =
∑
i<j

λi,j∂i∂j(λ
−1
i0,j0

xi0xj0), if i0 < j0,

1 =
∑
i<j

λi,j∂i∂j((2λi0,i0)
−1x2i0), if i0 < j0, .

Therefore base of induction is established.
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Suppose that for s− 1 our statement is true. Suppose that for any
β ∈ Zn+, such that |β| = s and β < α this statement is also true. Set

u = x
αi0

+1

i0
x
αj0

+1

j0

∏
i 6=i0,j0

xαi
i , if i0 < j0

u = x
αi0

+2

i0

∏
i 6=i0

xαi
i , if i0 = j0 .

Then ∑
i≤j

λi,j∂i∂j(u) = λi0,j0(αi0 + 1)(αj0 + 1)xα + u′,

if i0 < j0 or∑
i≤j

λi,j∂i∂j(u) = λi0,i0(αi0 + 2)(αi0 + 1)xα + u′′,

if i0 = j0. Here u′, u′′ are linear combination of monomials of a form
xβ with β < α. So, by inductive suggestion

xα ∈<
∑
i<j

λi,j∂i∂j(u)|u ∈ K[x1, . . . , xn] > .

Lemma is proved.
Proof of Theorem 6.9. Suppose that det (λi,j) = 0. Then there

exists some ηi ∈ K, i = 1, . . . , n, such that

(3)
n∑
j=1

λi,jηj = 0, i = 1, . . . , n.

Set

X =
n∑
i=1

ηixi.

Let J be subspace of A, that consists of elements of a form Xu, u ∈
U = K[x1, . . . , xn], where Xu denotes usual multiplication of polyno-
mials. Prove that J is ideal of U.

We have
(Xu) ? a =

∑
i,j

λi,j(∂i(Xu)∂j(a) +
1

2
∂i∂j(Xu)a)

=
∑
i,j

λi,j{∂i(X)u∂j(a) +X∂i(u)∂j(a)

+
1

2
∂i(X)∂j(u)a+

1

2
∂j(X)∂i(u)a+

1

2
X∂i∂j(u)a}
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= X ′ +X1 +X2,

where
X ′ =∑

i,j

λi,j{∂i(X)u∂j(a) +
1

2
∂i(X)∂j(u)a+

1

2
∂j(X)∂i(u)a},

X1 = X(
∑
i,j

λi,j∂i(u)∂j(a)) ∈ J,

X2 = X(
∑
i,j

1

2
∂i∂j(u)a) ∈ J.

By (3)
X ′ =

∑
j

(
n∑
i=1

λi,jηi)u∂j(a) +
1

2

∑
j

(
n∑
i=1

λi,jηi)∂j(u)a+
1

2

∑
i

(
n∑
j=1

λi,jηj)∂i(u)a

= 0.

Hence,
(Xu) ? a = X1 +X2 ∈ J,

for any a, u ∈ U. Similarly,

a ? (Xu) =∑
i,j

λi,j(∂i(a)∂j(Xu) + ∂j(a)∂i(Xu) +
1

2
∂i∂j(a)Xu)

= X ′′ +X5 +X6 +X7,

where
X ′′ =

∑
i,j

λi,j(∂i(a)∂j(X)u+ ∂j(a)∂i(X)u)

X5 = X(
∑
i,j

λi,j(∂i(a)∂j(u)) ∈ J,

X6 = X(
∑
i,j

λi,j∂j(a)∂i(u)) ∈ J,

X7 = X(
∑
i,j

1

2
∂i∂j(a)u) ∈ J.

By (3),
X ′′ =∑

i

(

n1∑
j=1

λi,jηj)∂i(a)u
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+
∑
j

(

n1∑
i=1

λi,jηi)∂j(a)u)

= 0.

Therefore,

a ? (Xu) = X5 +X6 +X7 ∈ J,
for any a, u ∈ U.

So, we have proved that J =< Xu : u ∈ U > is ideal of (U, ?). It
remains to note that it is non-trivial ideal. It is evident: 1 6∈ J.

Now suppose that det (λi,j) 6= 0. Prove that (U, ?) is simple.
Suppose that it is not true: I is some non-trivial ideal of (U, ?).

Take some 0 6= R ∈ I. Suppose that R =
∑

α∈Zn
+
µαx

α, for µα ∈ K,
where xα =

∏
i x

αi
i , α = (α1, . . . , αn). Assume that µα = 0, for any α,

such that |α| > k, but µβ 6= 0, for some β ∈ Zn+ with |β| = k. Call
k = deg R degree of R. Take R ∈ I with minimal deg R.

Since

deg R ? 1 < deg R, deg R ? xi < deg R, deg xi ? R < deg R,

if R ? 1, xi ? R,R ? xi 6= 0, by Lemma 6.10 we obtain that

deg R = 0.

In other words, R ∈ I. So,

1 ∈ U,
if det λ 6= 0.

Then

1 ∈ I ⇒ u ? 1 =
1

2

∑
i,j

λi,j∂i∂j(u) ∈ J,

for any u ∈ U. By Lemma 6.11, I = U. This means that (U, ?), is
simple, if det (λi,j) 6= 0.

6.6. Simple exceptional 0 -Alia algebra. All 0 -Alia algebras con-
structed above are special. In other words they can be constructed in
a form A0(U, ·, f, g) for some associative commutative algebra (U, ·)
and endomorphisms f, g. In [3] is proved that the following algebra
will be exceptional.

Theorem 6.12. The algebra (K[x], ?) with multiplication

a ? b = ∂3(a)b+ 4∂2(a)∂(b) + 5∂(a)∂2(b) + 2a ∂3(b),

is 0 -Alia and simple.
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Proof. Let U = K[x]. Direct calculations show that (U, ?) is 0 -
Alia.

Let ei = xi+3. Then

ei ? ej = (4 + i+ j)(5 + i+ j)(9 + i+ 2j)ei+j.

So, A is graded:

A = ⊕i≥−3Ai, Ai =< xi+3 >,

Ai ? Aj ⊆ Ai+j.

Lemma 6.13. If e−1 ? u = 0, then u ∈ A−3.

Proof. Let

u =
∑
j≤j0

λjej, λj0 6= 0.

Suppose that e−1 ? u = 0 . We have to prove that j0 = −3. Since
(A, ?) is graded,

e−1 ? u = 0⇒ λj0ei ? ej0−1 = 0

⇒ (3 + j0)(4 + j0)(8 + 2j0)ej0−1 = 0⇒ j0 = −3.

Lemma 6.14. For any u ∈ A there exists v such that u = e−1 ? v.

Proof. Let j ≥ −3. Then

(4 + j)(5 + j)(10 + 2j) 6= 0.

Therefore, we can take the element

v = ej+1/((4 + j)(5 + j)(10 + 2j)) ∈ A.

Then,

ej = e−1 ? v.

This means that any element of A can be presented in a form e−1 ? v.
Proof of Theorem 6.12. Prove that 0 -Alia algebra (K[x], ?) is

simple. Let J be some nontrivial ideal of (K[x], ?) and 0 6= X =∑
i≤i1 λie(i) ∈ J with λi1 6= 0. Call i1 = deg X degree of X and take

such X with minimal degree. By Lemma 6.13

deg X = −3.

In other words,

1 ∈ J.
So, by Lemma 6.14 J = K[x].
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7. 1-Alia algebras

7.1. Standard construction of 1 -Alia algebras.

Theorem 7.1. Let (U, ·) be associative commutative algebra and f, g :
U → U be linear maps. Define on U a multiplication ◦ by

a ◦ b = a · f(b)− b · f(a) + g(a · b).
Then (U, ◦) is 1 -Alia.

Denote obtained algebra as A1(U, ·, f, g).
Proof. Follows by Theorem 9.1.

Corollary 7.2. Define a multiplication on U = K[x] by

a ? b = −a∂m(b) + ∂m(a)b+ ∂m(ab).

Then (U, ?) is 1 -Alia for any m ≥ 1.

7.2. Identities for 1 -Alia algebra. Let U be differential associative
commutative algebra with derivation ∂. Endow U by multiplication

a ?u b = u ∂(a)∂2(b).

Denote ?1 shortly as ?.

Theorem 7.3. Let

f1 = alia(1) = {[t1, t2], t3}+ {[t2, t3], t1}+ {[t3, t1], t2},

f2 = [t1, t2]t3 − t1(t2t3) + t2(t1t3) + 2(t1t3)t2 − 2(t2t3)t1,

f3 = ass(t3t1, t4, t2)−ass(t3t2, t4, t1)−ass(t4t1, t3, t2) +ass(t4t2, t3, t1),

f4 =
∑

σ∈Sym3

sign σ ((t4tσ(1))tσ(2))tσ(3),

f5 = 2(((t3t1)t2)t4)t5−2(((t3t1)t4)t2)t5−(((t3t1)t2)t5)t4+(((t3t1)t4)t5)t2

−(((t3t2)t1)t4)t5 + (((t3t2)t1)t5)t4 + (((t3t2)t4)t5)t1 − (((t3t2)t5)t1)t4

+(((t3t4)t1)t2)t5 − (((t3t4)t1)t5)t2 − (((t3t4)t2)t5)t1 + (((t3t4)t5)t1)t2

+(((t3t5)t1)t2)t4 − (((t3t5)t1)t4)t2

be non-commutative non-associative polynomials. Then

• fi = 0, 1 ≤ i ≤ 5, are identities for (U, ?)
• Identities f2 = 0, f3 = 0, f4 = 0, f5 = 0 are independent
• f2 = 0⇒ f1 = 0
• f1 = 0, f4 = 0, f5 = 0 are identities for (U, ?u)
• f2 = 0, f3 = 0 are identities of the algebra (U, ?u) iff u = 1.

Here ass(t1, t2, t3) = (t1, t2, t3) = t1(t2t3)− (t1t2)ts is an associator.



ALGEBRAS WITH SKEW-SYMMETRIC IDENTITY OF DEGREE 3 21

We omit proof of this result. It needs long calculations. Just note
that the multiplication (a, b) 7→ ∂(a)∂2(b) is opposite to the multi-
plication a ∗ b = ∂2(a)∂(b). For the last multiplication Theorem 7.3
partially is proved above.

8. Simple 1 -Alia algebra (K[x], ◦) with multiplication
a ◦ b = ∂(∂(a)b)

Let
a ◦ b = ∂(∂(a)b).

Note that
2∂(∂(a)b) = a∂2(b)− ∂2(a)b+ ∂2(ab).

Therefore, (U, ◦) can be obtained by standard construction of 1 -Alia
algebras A1(U, ·, f, g), if one sets

f(a) = ∂2(a)/2, g(a) = ∂2(a)/2.

Any commutative or anti-commutative algebra is 1 -Alia. It will be
interesting to describe simple algebras with minimal identity alia(q) =
0 for q = 0,±1. Minimality condition exclude from the considera-
tion standard examples of q -Alia algebras, like Lie algebras, (anti)-
commutative algebras, right-commutative algebras, left-symmetric al-
gebras. One of such non-trivial examples of 1 -Alia algebras gives us
the algebra (K[x], ◦).

Theorem 8.1. The algebra (K[x], ◦) is simple.

Proof. Let
ei = xi+2, i ≥ −2.

Then
ei ◦ ej = (i+ 2)(i+ j + 3)ei+j, −2 ≤ i, j.

For example,
e−2 ◦ ej = 0,

ej ◦ e−2 = (j + 2)(j + 1)ej−2,

e−1 ◦ ej = (j + 2)ej−1,

ej ◦ e−1 = (j + 2)2ej−1,

e0 ◦ ej = 2(j + 3)ej,

ej ◦ e0 = (j + 3)(j + 2)ej.

Suppose that non-trivial ideal J has element X =
∑

i≥i0 λiei ∈ J,
such that λi0 6= 0 and i0 is minimal with this property,∑

j

µjej ∈ J ⇒ µj = 0,∀j < i0.
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Prove that i0 = −2. Suppose that it is not true.
If i0 ≥ 0, then

X ∈ J ⇒ X ◦e−2 =
∑
i≥i0

λi(i+2)(i+1)ei−2 ∈ J, λi0(i0+2)(i0+1) 6= 0.

This contradicts to minimality i0. So, the case i0 ≥ 0 is not possible.
Let i0 = −1. Then

e−1 ◦X =
∑
i≥i0

µiei−1 ∈ J,

where

µi = λi(i+ 2), µ−2 = λ−1 6= 0.

This contradicts to minimality of i0. We proved that the case i0 = −1
is also not possible.

So, we have proved that i0 = −2. We see that elements X ◦ ej has
a form

∑
i≥j−2 γiei with γj−2 6= 0 if j runs elements 0, 1, 2, . . . . This

means that J = K[x]. So, (K[x], ◦) is simple, where a ◦ b = ∂(∂(a)b).
Remark. A map f : A → A, f : a 7→ ∂(a), induces a homomor-

phism of algebras

f : (A, ∗)→ (A, ◦),
where

a ∗ b = ∂2(a)∂(b).

Check it:

f(a ∗ b) = ∂(∂2(a)∂(b)) = ∂(a) ◦ ∂(b) = f(a) ◦ f(b).

So, we see that (K[x], ∗) is 1 -Alia and there exists exact sequence of
1 -Alia algebras

0→ K→ (K[x], ∗)→ (K[x], ◦)→ 0.

In other words, (K[x], ∗) is a central extension of (K[x], ◦).

9. Standard construction of q -Alia algebras

Theorem 9.1. Let A = (A, ·) be associative commutative algebra with
multiplication a · b and f, g : A → A linear maps. Define a multipli-
cation a ◦ b by

a ◦ b = a · f(b)− q b · f(a) + g(a · b).

Then (A, ◦) is q -Alia.

Proof. Easy calculations. If q2 6= 1, it follows from Theorem 3.1.
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9.1. Simple q -Alia algebras.

Theorem 9.2. Let U = K[x] and

a ? b = a ∂m(b)− q ∂m(a)b+ q ∂m(ab).

Then (U, ?) are q -Alia and simple for q2 6= 1.

Proof. Calculate q -commutator of the multiplication ?

a ?q b

= a ? b+ q b ? a

= a∂m(b)− q ∂m(a)b+ q∂m(ab) + q ∂m(a)b− q2 a∂m(b) + q2∂m(ab)

= (1− q2)a∂m(b) + (q + q2)∂m(ab)

This multiplication is standard. In other words, for associative com-
mutative algebra U with usual polynomial multiplication a · b = ab
and linear maps

f : U → U, f(a) = (1− q2)∂m(a),

g : U → U, g(a) = (q2 + q)∂m(a),

the algebra (U, ?q) has a form A0(U, ·, f, g). So, by Theorem 7.1 (U, ?q)
is 0 -Alia. Then by Theorem 3.1 the algebra (U, ?) is q -Alia.

Set
ei = xi+m/(i+m)!, i = −m,−m+ 1, . . . .

Then

ei ? ej = (

(
i+ j +m

i+m

)
− q

(
i+ j +m

j +m

)
+ q

(
i+ j + 2m

i+m

)
)ei+j.

So, (U, ?) is graded,

U = ⊕i≥−mUi, Ui =< ei >,

Ui ? Uj ⊆ Ui+j.

Notice that

(4) e−m ? ej = (q − 1)ej−m,

(5) ei ? ej = q

(
m

−j

)
e−m, if −m < i, j < 0, i+ j = −m.

Let J is a non-trivial ideal of (U, ?). Take X =
∑
−m≤i≤i0 λiei ∈

J, such that λi0 6= 0 and i0 is minimal with such property. Since
Y = e−m ? X ∈ J and i0 is minimal, by grading property Y = 0. In
particular, by (4),

λi0(q − 1) = 0,

and
λi0 = 0
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if i0 ≥ 0. So, we can assume that i0 < 0. Similar arguments that uses
(5) shows that the case i0 > −m is not possible. So, i0 = −m. In
other words

e−m ∈ J.
Then by (4)

ej = (q − 1)−1e−m ? ej+m ∈ J.
This means that

J = U.

Therefore, (U, ?) is simple.

10. Dual operads to Alia algebras

Theorem 10.1. Koszul dual algebras to left-Alia algebras is defined by
identities

[t1, t2]t3 = 0,

(t1t2)t3 = (t1t3)t2,

t1(t2t3) = 0.

Left-Alia operads are not Koszul. Dimensions of multilinear parts of
Koszul dual to Left-Alia algebras are d1 = 1, d2 = 2, d3 = 1, d4 = 1, . . . .

Koszul dual to 1 -Alia algebras is defined by identities

(t1t2)t3 = −t1(t2t3),

(t1t2)t3 = (t2t1)t3,

(t1t2)t3 = (t1t3)t2.

Multilinear parts of degree n of free algebra with these identities has
the following dimensions d1 = 1, d2 = 2, d3 = 1, di = 0, i > 3.

Proof. According left-Alia identity in degree 3 there is only one
non-trivial relation between 6 left-bracketed elements

(6) (c◦ b)◦a = (a◦ b)◦ c− (b◦a)◦ c+ (b◦ c)◦a+ (c◦a)◦ b− (a◦ c)◦ b
and no condition between 6 right-bracketed elements. Therefore we
can take as a base elements of free left-Alia algebra of degree 3 all 12
elements except (c ◦ b) ◦ a.

We have
[[a⊗ u, b⊗ v], c⊗ w] =

((a·b)·c)⊗((uv)w)−((b·a)·c)⊗((vu)w)−(c·(a·b))⊗(w(uv))+((c·(b·a))⊗(w(vu)),

[[b⊗ v, c⊗ w], a⊗ u] =

((b·c)·a)⊗((vw)u)−((c·b)·a)⊗((wv)u)−(a·(b·c))⊗(u(vw))+((a·(c·b))⊗(u(wv)) =
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(according (6) )

((b·c)·a)⊗((vw)u)−(a◦b)◦c⊗((wv)u)+(b◦a)◦c⊗((wv)u)−(b◦c)◦a⊗((wv)u)

−(c◦a)◦b⊗((wv)u)+(a◦c)◦b⊗((wv)u)−(a·(b·c))⊗(u(vw))+((a·(c·b))⊗(u(wv)),

[[c⊗ w, a⊗ u], b⊗ v] =

((c·a)·b)⊗((wu)v)−((a·c)·b)⊗((uw)v)−(b·(c·a))⊗(v(wu))+((b·(a·c))⊗(v(uw)).

Thus,

[[a⊗ u, b⊗ v], c⊗ w] + [[b⊗ v, c⊗ w], a⊗ u] + [[c⊗ w, a⊗ u], b⊗ v] =

((a · b) · c)⊗ {(uv)w − (wv)u} − ((b · a) · c)⊗ {(vu)w − ((wv)u}

+((b · c) · a)⊗ {(vw)u− (wv)u} − (c ◦ a) ◦ b⊗ {(wv)u− (wu)v}
+(a ◦ c) ◦ b⊗ {(wv)u− (uw)v} − (a · (b · c))⊗ (u(vw))

−(c · (a · b))⊗ (w(uv)) + ((c · (b · a))⊗ (w(vu)) + ((a · (c · b))⊗ (u(wv))

−(b · (c · a))⊗ (v(wu)) + ((b · (a · c))⊗ (v(uw)).

Therefore Koszul dual operad is generated by relations that follow from
identities

(7) (t1t2)t3 = (t2t1)t3, (t1t2)t3 = (t1t3)t2, t1(t2t3) = 0

It is easy to see that multilinear part of degree n of free algebra with
identities (7) has the following base

n = 1, {a1},

n = 2, {a1a2, a2a1},
n > 2, {(· · · ((a1a2)a3) · · · )an}.

Thus, dimensions of multilinear parts are d2 = 2, di = 1, i 6= 2.
We omit long calculations that shows that first four dimensions of

multilinear parts of free left-Alia algebras are 1,2,11,100.
So, generating functions are

flalia(x) = −x+ x2 − 11x3/6 + 25x4/6 +O(x5),

fdual(lalia)(x) = −x+ x2 − x3/6 + x4/24 +O(x5).

We see that

flalia(fdual(lalia)(x)) = x− x4/24 +O(x5) 6= x.

Therefore, necessary condition for Koszulity [1] for left-Alia algebras is
not fulfilled.

The case of 1 -Alia algebras is considered in a similar ways.
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Remark. We do not know whether 1-Alia algebras form Koszul
operad. Generating functions look like

f1−alia(x) = −x+ x2 − 11x3/3! + 100x4/4!− 1270x5/5! +O(x6),

fdual(1−alia)(x) = −x+ x2 − x3/3!.

No contradiction for Koszulity condition until degree 5:

f1−alia(fdual(1−alia)(x)) = x+O(x6).
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