
Journal of Nonlinear Mathematical Physics Volume 15, Number 1 (2008), 87–103 Article

10-Commutators, 13-commutators and odd

derivations

Askar DZHUMADIL’DAEV

Kazakh-British Technical University, Tole bi, 59, Almaty, 050000, Kazakhstan

E-mail:askar56@hotmail.com

Received August 24, 2007; Accepted in Revised Form October 15, 2007

Abstract

The anti-symmetric sum sN (X1, . . . , XN) ofN ! compositions ofN vector fieldsX1, . . . ,

XN ∈ V ect(n) in all possible order is said to be a N -commutator if sN (X1, . . . , XN) ∈
V ect(n) for any X1, . . . , XN ∈ V ect(n) and does not vanish for some vector fields
X1, . . . , XN . We construct 10- and 13-commutators on V ect(3) and 10-commutator
on the space of divergence-free vector fields V ect0(3). We show that there are no
other N -commutators on V ect(3) except for 2-, 10- and 13-commutators, and no other
N -commutators on the Lie algebra of divergence-free vector fields V ect0(3) except for
2-, 10-commutators. These constructions are based on calculation of powers of odd
derivations.

1 Introduction

If D is any odd derivation of a superalgebra, then D2 is also a derivation. In our paper
we investigate whether DN might also be a derivation for N > 2. Super-derivations, in
particular, odd nilpotent derivations appear on many occasions in modern mathematics
and physics. They appear in BRST cohomology theory, in deformation theory and in
quantum groups. They appear also in the study of Lie commutators of vector fields.
The Jacobi identity can be formulated as the statement that certain odd derivations are
nilpotent. Lie commutators and identities on the space of vector fields play important role
in mathematical physics.

Let X1, . . . ,XN ∈ V ect(n) be vector fields on a smooth manifold M of dimension n.
Their N–commutator is, by definition, the expression

[X1, . . . ,XN ] := sN (X1, . . . ,XN ) :=
∑

σ∈SymN

sign(σ)Xσ(1) . . . Xσ(N).

Generally, the right hand side is a differential operator of order ≤ N . But for some
N = N(n) it might happen that sN induces an operation on the space of vector fields,
i.e.,

sN (X1, . . . ,XN ) ∈ V ect(n) for any X1, . . . ,XN ∈ V ect(n)

and sN(X1, . . . ,XN ) does not vanish for some vector fields X1, . . . ,XN . If this is the case
we say that the operation sN is an N -commutator. We exclude the trivial cases where
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sN (X1, . . . ,XN ) = 0 is an identity in the Lie algebra V ect(n), i.e., we only consider the
cases where sN (X1, . . . ,XN ) 6= 0 for some X1, . . . ,XN ∈ V ect(n).

A pair (n,N) is said to be critical, if [X1, . . . ,XN ] is always a vector field and if it
does not vanish for some X1, . . . ,XN . All pairs (n, 2) are critical. S. Lie discovered this
fact about two centuries ago. In [1], it was noticed that the pairs (n, n2 + 2n − 2) are
also critical. We thus get interesting and generally highly non–trivial new multilinear
operations on vector fields. One can expect that they will play essential role in (linear or
non-linear) mathematical physics just like usual commutators. A natural problem arises:
list all critical pairs. In [1], we have shown that for n = 2, the complete list consists only
of (2, 2) and (2, 6) = (n, n2 + 2n − 2).

Here we study the case n = 3 and show that, in addition to (3, 2) and (3, 13) =
(n, n2 + 2n − 2), there is exactly one more critical pair, namely, (3, 10). If we restrict
ourselves to divergence-free vector fields, we prove that the only critical pairs are (3, 2)
and (3, 10).

Proofs involve heavy calculations assisted by the packages Mathematica and Maple.
The paper version omits some technical details and ad hoc examples that can be found in
[3].

The general strategy of calculations is as follows. As in [1], we reduce our problem to
that of calculating powers of a certain universal odd superderivation D = Dn depending
only on n. The pair (n,N), where the powers are taken in the ring of superdifferential
operators, is critical if and only if DN

n is a non–zero superderivation.

To state our results precisely, we need some definitions and notation.

All vector spaces are considered over a field K of characteristic 0. Let (A, ◦) be a
super-algebra with grading (parity) A = A0 + A1, the parity map ω : A → {0, 1}, and
multiplication a ◦ b. A linear map D : A→ A is said to be an homogeneous q-derivation if

D : Ai → Ai+q, i = 0, 1,

D(a ◦ b) = D(a) ◦ b+ (−1)q ω(a)a ◦D(b) for all a, b ∈ A.

If q = 0, the derivation in question is called even, and if q = 1, it is called odd. For any
super-algebra, D2 is a derivation whenever D is odd. We let Der A denote the super-Lie
algebra of derivations of A.

Define a super-Lagrangian algebra Ln to be a super-commutative associative super-
algebra generated by the odd elements (ηi, α), where η1, . . . , ηn are just symbols, and α =
(α1, . . . , αn) ∈ Zn

+, where Z+ denotes the set of non-negative integers. For i = 1, . . . , n,
let ∂i : Ln → Ln be the even derivation of Ln defined on generators by

∂i(ηj , α) = (ηj , α+ εi),

where εi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn
+ with the 1 occupying the ith slot. Set

ηi := (ηi, 0) and ∂α(ηi) = (ηi, α).

Notice that the even part (Ln)0 is generated by elements of the form ∂α(1)
(ηi1) · · · ∂

α(k)
(ηik)

with k even, while the odd part (Ln)1 is generated by such elements with k odd.
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Let Ak be a product of generators of the form ∂αηi such that |α| :=
n
∑

i=1
αi = k+ 1. We

say that Ak has length lk (designated also as l(Ak)), if Ak is a product of lk generators,

Ak = ∂α(1)
ηi1 · · · ∂

α(lk)
ηilk

, where α(1), . . . , α(lk) ∈ Zn
+.

We say that a monomial u = A−1A0 · · ·As has type l−1l0 · · · ls, if l(Ai) = li and i =
−1, . . . , s.

The expression

D =
∑

i

ηi∂i where D(ξ) =
∑

i

ηi∂i(ξ) for any ξ ∈ Ln,

is an odd derivation of Ln.

Let U be an associative commutative algebra with derivations d1, . . . , dn. Extend the
action of ∂i to Ln ⊗ U by setting

∂i(ξ ⊗ u) = ∂(ξ) ⊗ u+ ξ ⊗ di(u).

We consider U as a super-algebra with the zero odd part, and make Ln ⊗U into a super-
algebra under the natural parity:

(Ln ⊗ U)0 = (Ln)0 ⊗ U, (Ln ⊗ U)1 = (Ln)1 ⊗ U.

In particular, for the polynomial algebra U = K[x1, . . . , xn] with partial derivatives ∂
∂xi

(denoted for simplicity by ∂i), we obtain an odd derivation D of the super-algebra Ln ⊗

K[x1, . . . , xn]. Recall that the divergence of D =
∑

i

ηi is Div D = −
3
∑

i=1
∂iηi.

The main results of this paper are the following theorems.

Theorem 1. Let D =
3
∑

i=1
ηi∂i ∈ DerL3. Then

D10 ∈ DerL3 ⊗K[x1, x2, x3],

D13 ∈ DerL3 ⊗K[x1, x2, x3], Di 6= 0 for i ≤ 13,

D13 = (Div D)D12, D14 = 0.

If DN ∈ DerL3 ⊗K[x1, x2, x3], then N = 2, 10, 13.

Theorem 2. Let DivD = 0. Then

D10 ∈ DerL3 ⊗K[x1, x2, x3],

Div D10 = 0, Di 6= 0, i ≤ 10, D11 = 0.

If DN ∈ DerL3 ⊗K[x1, x2, x3] and Div D = 0, then N = 2 or 10.
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Let ∂deg denote the differential order, i.e., the order of the differential operator. For
n = 2, 3, the differential order of Dk is as follows:

n = 2
k 1 2 3 4 5 6 7

∂deg Dk 1 1 2 2 2 1 −∞

n = 3
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

∂deg Dk 1 1 2 2 3 3 3 3 3 1 2 2 1 −∞

If D ∈ Der0Ln, i.e., Div D = 0, then the growth of differential orders of Dk is given by:

n = 2
k 1 2 3 4 5 6 7

∂deg Dk 1 1 2 2 1 −∞ −∞

n = 2
k 1 2 3 4 5 6 7 8 9 10 11

∂deg Dk 1 1 2 2 3 3 3 3 3 1 −∞

Observe a dramatic drop of ∂deg Dk for (n, k) = (3, 10) from 3 to 1. This means that D10

is a derivation. In fact, our calculations give more information about D10 and D13.

Let Y be a differential monomial of a form ∂αηj , where α = (α1, . . . , αn) ∈ Zn
+ and

∂α =
n
∏

i=1
∂αi

i . We say that Y is of weight |α| − 1, where |α| =
n
∑

i=1
αi.

The differential polynomial super-algebra Ln (for details, see §2) has a basis consist-
ing of differential monomials of a form X = X−1X0X1 · · ·Xk, where Xs is a product
of differential monomials of weight s. For a basis element X, we say that X has type

(l−1, l0, l1, . . . , lk) if Xs is a product of ls elements of weight s for any s = −1, 0, 1, . . . , k.
For example, η1η2η3∂1η1∂1η2∂

2
1∂3η3 has type (3, 2, 0, 1).

In [1] was established that D13 is a linear combination of basis elements of type 382.
In other words, D13 is a linear combination, with integer coefficients, of monomials of the
form A−1A0A1∂i, where A−1 = η1η2η3 is a product of 3 generators of the form ηi, A0 is a
product of 8 generators of the form ∂iηj, and A1 is a product of 2 generators of the form
∂i∂jηs. We prove that D10 is a linear combination of basis elements of types 271, 352, and
3601.

In terms of vector fields (first order partial differential operators), these results mean
the following: For any 10 vector fields X1, . . . ,X10 on a 3-dimensional manifold, the anti-
symmetric sum of their 10-compositions Xσ(1) · · ·Xσ(10) over all permutations σ ∈ Sym10

is again a vector field. Similarly, for any 13 vector fields X1, . . . ,X13 ∈ V ect(3), the anti-
symmetric sum of the compositions Xσ(1) · · ·Xσ(13) over all permutations σ ∈ Sym13 is
also a vector field.

So, V ect(3) has three well-defined tensor operations: the Lie commutator (in our terms,
2-commutator), the 10-commutator, and the 13-commutator. In particular, s13 is uniquely
defined by 2-jets of vector fields, and s10 is uniquely defined by 3-jets of vector fields. For
exact relation between odd derivations and N -commutators, see Theorem 3.
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2 Differential polynomial super-algebra Ln

We consider Zn
+ and Zn

+ × {1, . . . , n} as linearly ordered, where α < β if

either |α| < |β| or (|α| = |β| and α1 = β1, . . . , αs−1 = βs−1, αs > βs for some s = 1, · · · , n).

Let (α, i) < (β, j) if either i < j or (i = j and α < β).
Let Ln be a super-commutative associative algebra over a field K which is generated

by odd elements eα,i, where α ∈ Zn
+, i ∈ I. Then, for any α, β, γ ∈ Zn

+ and i, j, s ∈ I, we
have

eα,ieβ,j = −eβ,jeα,i, eα,i(eβ,jeγ,s) = (eα,ieβ,j)eγ,s.

The elements eα,ieβ,j · · · eγ,s with (α, i) < (β, j) < · · · < (γ, s) form a basis for Ln. We
fix this basis and call these elements the base elements of Ln. The number of indexes
i, j, · · · , s in a basis element e is called the length of e and denoted by l(e).

Each basis element of Ln can be represented as e = e[−1]e[0]e[1] · · · e[r], where e[s] is a
product of ordered generators of the form eα,i with |α| = s+1. We call e[s] the s-component

of e; its length l(e[s]) is denoted by ls(e) and called the s-length of e. Thus,

l(e) =
∑

i≥−1

li(e).

Let ∂i = ∂
∂i

, where i ∈ I, be partial derivatives of U = K[x1, . . . , xn]. We extend these
maps to maps of Ln by setting

∂ieβ,j = eα+εi,j.

It is easy to see that ∂i satisfies the Leibniz rule

∂i(eβ,jeγ,s) = (∂ieβ,j)eγ,s + eβ,j(∂ieγ,s) for all β, γ ∈ Zn
+.

So, we have constructed the commuting even derivations ∂1, . . . , ∂n ∈ Der(Ln ⊗ U), and

eα,i = ∂αe0,i for any α ∈ Zn
+, i ∈ I.

Here 0 = (0, . . . , 0) ∈ Zn
+.

The space Ln has three gradings. The first one, Zn-grading, is defined by

||eα,i|| = α− εi

and is extended by multiplicativity to the other basis elements,

||eα,ieβ,j · · · eγ,s|| = α− εi + β − εj + · · · + γ − εs.

The second grading is induced by Zn-grading. It is the Z-grading defined on a basis
element e = eα,ieβ,j · · · eγ,s by the formula

|e| = −l(e) + |α| + |β| + · · · + |γ|.

The third grading is given by the length. We let l(ξ) = s, if ξ is a nontrivial linear
combination of homogeneous base elements of length s. The length defines a parity on Ln.
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We say that
wt(e) = |α| + · · · + |β| − l(e)

is the weight of e. We let L
[l]
n be the linear span of the basis elements u with l(u) = l, and

let L
[l,w]
n be the linear span of the base elements u with l(e) = l and wt(e) = w.

Example.

L
[1]
n = Span 〈eα,i | α ∈ Zn, and i = 1, . . . , n〉 ,

L
[n]
n = Span 〈e0,1 · · · e0,n〉 , L

[1,−1]
n = Span 〈e0,i〉 .

Proposition 1. Ln = ⊕
l≥1,w≥−n

L
[l,w]
n is an associative, super-commutative graded super-

algebra:

L
[l,w]
n L

l1,w1]
n ⊆ L

[l+l1,w+w1]
n for any u, v,w ∈ Ln.

Note that any basis element u ∈ Ln can be represented in the form u−1u0 · · · ur, where
us for s = −1, 0, . . . , r are basis elements and where the us are products of generators of
weight s. We say that a basis element u ∈ Ln has type (l−1, l0, . . . , lr), if u is a product of
ls generators of weight s for s = −1, 0, . . . , r.

Lemma 1. Every basis element u ∈ Ln satisfies the following conditions:

∑

i≥−1
li(u) = l(u),

∑

i≥−1
i li(u) = wt(u), li(u) ≤ n

(

n+i
i+1

)

, where i ≥ −1.

Proof. The first two relations are reformulations of the grading property of Ln (Propo-
sition 1). As for the last two relations, they follow from the fact that

|{α ∈ Zn
+ | |α| = i+ 1}| =

(

n+ i

i+ 1

)

.

Example. The odd basis element u = η1∂
2
1η2∂1∂2η2 is of type (1, 0, 2), l(u) = 3,

wt(u) = 1.
Let Diffn be the algebra of differential operators on Ln. It has a basis that consists of

differential operators of the form u∂α, where α ∈ Zn
+ and u is a base element of Ln. We

endow Diffn with the multiplication · given by the rule

u∂α · v∂β =
∑

γ

(

α

γ

)

u∂γv∂α+β−γ , where

(

β

γ

)

=
n

∏

i=1

(

βi + γi

γi

)

.

The multiplication · corresponds to the composition of differential operators.
We also endow Diffn with two more multiplications, ◦ and •. They are defined by the

following rules:

u∂α ◦ v∂β =
∑

γ 6=0

(

α
γ

)

u∂γv∂α+β−γ , u∂α • v∂β = uv∂α+β .

We see that
X · Y = X ◦ Y +X • Y for all X,Y ∈ Diffn.



10-commutators, 13-commutators and odd derivations 93

Given a basis element X = u∂α ∈ Diffn, we define its length l(X), weight wt(X),
parity q(X), and differential order ∂deg(X) by setting

l(X) = l(u), wt(X) = wt(u) + |α|, q(X) = l(u), ∂deg(X) = |α|.

Denote the space Diff
[1]
n of first order differential operators by Wn. Let further

Diff
[d]
n = 〈X | ∂deg(X) = d〉 , Diff

[l,w]
n = 〈X | l(X) = l, wt(X) = w〉 ,

Diff
[l,w,d]
n = 〈X | l(X) = l, wt(X) = w, ∂deg(X) = d〉 .

For a differential operator X =
∑

α∈Z
n
+

vα∂
α ∈ Diffn, define its differential order deg(X)

as the maximal |α| for which vα 6= 0.

Proposition 2. The space of differential operators under the above multiplications has

the following properties:

The algebra (Diffn, ·) is an associative super-algebra. This algebra is graded,

Diffn = ⊕
l>0,w≥−n

Diff
[l,w]
n , Diff

[l,w]
n ·Diff

[l1,w1]
n ⊆ Diff

[l+l1,w+w1]
n .

The algebra (Wn, ◦) is super-left-symmetric, i.e.,

(X,Y,Z) = (−1)q(X)q(Y )(Y,X,Z) for any first order differential operators X,Y,Z,

where (X,Y,Z) = X ◦ (Y ◦ Z) − (X ◦ Y ) ◦ Z is the associator. Moreover, the super-left-

symmetric rule is true for any X,Y ∈ Diff
[1]
n , Z ∈ Diffn. This algebra is graded,

Wn = ⊕
l>0, w≥−n

W
[l,w]
n , W

[l,w]
n ◦W

[l1,w1]
n ⊆W

[l+l1,w+w1]
n .

The algebra (Diffn, •) is associative and super-commutative; it is graded by length,

weight and differential order,

Diffn = ⊕
l>0, w≥−n, d≥0

Diff
[l,w,d]
n , Diff

[l,w,d]
n •Diff

[l1,w1,d1]
n ⊆ Diff

[l+l1,w+w1,d+d1]
n .

Any first order differential operator acts under the multiplication ◦ as a derivation on

(Diffn, •).

Proof. Notice that the natural action of Wn on Ln coincides with the left-symmetric
product:

X(η) = X ◦ η for any X ∈Wn, η ∈ Ln.

Therefore, we have the following relation between the composition and left-symmetric
multiplications:

(X · Y )(η) 6= (X ◦ Y )(η),

but

(X · Y )(η) = X ◦ (Y (η)) for any X,Y ∈ Diffn and η ∈ Ln.
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Moreover, the composition of first order differential operators can be expressed in terms
of the left-symmetric multiplication,

(X · Y )(η) = X ◦ (Y ◦ η) for any X,Y ∈Wn, η ∈ Ln.

Thus,

(X ◦ Y +X • Y )(η) = X ◦ (Y ◦ η); X ◦ (Y ◦ η) − (X ◦ Y )(η) = (X • Y )(η).

Since X ◦ Y ∈Wn, this means that

X ◦ (Y ◦ η) − (X ◦ Y ) ◦ η = (X • Y )(η) for any X,Y ∈Wn, η ∈ Ln. (1)

We see from these facts that

([X,Y ] · Z)(η) = (X · Y − (−1)q(X)q(Y )Y ·X)(Z(η)) =

(X ◦ Y +X • Y − (−1)q(X)q(Y )Y ◦X − (−1)q(X)q(Y )Y •X) ◦ (Z(η)) =

(X ◦ Y − (−1)q(X)q(Y )Y ◦X) ◦ (Z(η)).

On the other hand,

([X,Y ] · Z)(η) = (X · (Y · Z) − (−1)q(X)q(Y )Y · (X · Z))(η) =

X ◦ (Y · Z)(η) − (−1)q(X)q(Y )Y ◦ (X · Z)(η) =

X ◦ (Y ◦ Z(η)) − (−1)q(X)q(Y )Y ◦ (X ◦ Z(η)).

Hence,

(X ◦ Y − (−1)q(X)q(Y )Y ◦X) ◦ (Z(η)) = X ◦ (Y ◦ Z(η)) − (−1)q(X)q(Y )Y ◦ (X ◦ Z(η)).

In other words, for any X,Y ∈Wn, Z ∈ Diffn, we have

(X ◦ Y − (−1)q(X)q(Y )Y ◦X) ◦ Z = X ◦ (Y ◦ Z) − (−1)q(X)q(Y )Y ◦ (X ◦ Z).

The other statements of the proposition are evident. �

For a basis element X = u∂α ∈ Diffn, we say that X has type (l−1, l0, l1, . . . , lr; d) if u
has type (l−1, l0, . . . , lr) and |α| = d.

Example. Let X = η1η3∂1η1∂2η1∂2η2∂1∂2∂3η3∂1∂2. Then X is a basis element of
Diff3 of type (2, 3, 0, 1; 2), weight 2, and differential order 2.

Lemma 2. Any basis element X ∈ Diffn satisfies the following conditions:

∑

i≥−1
li(X) = l(X),

∑

i≥−1
i li(X) + deg(X) = wt(X), li(X) ≤ n

(

n+i
i+1

)

for any i ≥ −1.

Proof. Follows from Proposition 2 and Lemma 1. �

Let Diff
(l−1,l0,...,lr;d)
n be the subspace of Diffn generated by the basis elements of type

(l−1, l0, . . . , lr; d). Let

τ(l−1,l0,...,lr ;d) : Diffn → Diff
(l−1,l0,...,lr ;d)
n , τd : Diffn → Diff

[d]
n
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be the projection maps.
The polynomial space U = K[x1, . . . , xn] has natural gradings:

||xα|| = α, |xα| = |α|.

Its standard basis is {xα =
n
∏

i=1
xαi

i | α ∈ Zn
+}. The gradings on Ln and U induce gradings

on Ln ⊗ U. In the previous section, we defined the parity q on Ln ⊗ U . Set

ηi = e0,i, ∂αηi := eα,i.

Then
l(∂α1ηi1 · · · ∂

αkηik) = k.

We identify Ln with Ln ⊗ 1 and consider Ln as a subalgebra of Ln ⊗ U.

3 First order differential operators on Ln

Note Wn = Diff
[1]
n has two algebraic structures. The first one, a super-Lie algebra

structure with respect to the super-commutator is well known. Notice that

q(ξ∂i) = q(ξ) for every ξ ∈ Ln.

Recall that for any D ∈ Wn, the corresponding adjoint operator adD : Wn → Wn is a
derivation of Wn. Therefore, Wn can be interpreted as a super-Lie algebra of derivations
of Ln.

The second algebra structure on Wn is given by a left-symmetric multiplication. It is
less known. Define a product ◦ by setting

(ξ∂i) ◦ (η∂j) = ξ∂i(η)∂j .

For any D1,D2,D3 ∈ Wn, let (D1,D2,D3) be the associator. Then we have the left-
symmetric identity

(D1,D2,D3) = (−)q(D1)q(D2)(D2,D1,D3).

4 Leibniz binomial formula for the odd derivation

If D is any even derivation of some algebra A = (A, ◦), then

Dn(a ◦ b) =

n
∑

i=0

(

n

i

)

Di(a) ◦Dn−i(b) for any a, b ∈ A,.

The first known to me published super analog of this formula in due to Leites [4], although
it should have been (and, no doubt, was) known earlier: For any odd derivation D, we
have for any a, b ∈ A:

D2n(a ◦ b) =
n
∑

i=0

(

n
i

)

D2i(a) ◦D2n−2i(b),

D2n+1(a ◦ b) =
n
∑

i=0

(

n
i

)

D2i+1(a) ◦D2n−2i(b)+

(−1)p(a)
n
∑

i=0

(

n
i

)

D2i(a) ◦D2n−2i+1(b).
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5 Calculation of D
n

Let η1, . . . , ηn be odd elements and

D =

n
∑

i=1

ηi∂i, F = D ◦D =

n
∑

i,j=1

ηi∂iηj∂j .

Notice that since D ∈ W
[1,0]
n , F is an even element of Wn and l−1(F ) = 1, l0(F ) = 1,

ls(F ) = 0, s > 0, it follows that Dk ∈ Diff
[k,0]
n .

Define the left-symmetric power D◦k by setting D◦1 = D and

D◦k = D ◦D◦(k−1) if k > 1.

Define the bullet power D•k and associative power D·k similarly. Since the multiplications
· and • are associative, in the last cases D•k and D·k have the conventional properties of
powers:

D•k •D•s = D•(k+s), D·k •D·s = D·(k+s).

These facts are no longer true for left-symmetric powers. For example,

D ◦ (D ◦D◦2) = (D ◦D) ◦D◦2,

but
D ◦ (D◦2 ◦D) 6= (D ◦D◦2) ◦D.

Lemma 3. D·2 = F.

Proof. It is straightforward that

D·2 = D ·D =

n
∑

i,j=1

ηi∂iηj∂j +

n
∑

i,j=1

ηiηj∂i∂j.

Since ηiηj = −ηjηi and ∂i∂j = ∂j∂i, we have
n
∑

i,j=1
ηiηj∂i∂j = 0. Thus,

D2 =

n
∑

i,j=1

ηi∂iηj∂j = D ◦D = F.

Lemma 4. D◦(2n) = F ◦n for any n = 1, 2, 3, · · ·

Proof follows by induction on n.

Lemma 5. F ◦ F •k = kF •(k−1) • F ◦2.

Proof. Since F ∈ Wn is an even derivation, every left-symmetric multiplication oper-
ator acts on (Diffn, •) as a super-derivation (Proposition 2) and we have

F ◦ (F • F ) = (F ◦ F ) • F + F • (F ◦ F ).

By commutativity of the bullet-multiplication, this means that

F ◦ F •2 = 2F • F ◦2.

An easy induction on k, based on such arguments, shows that our lemma is true for any
k.



10-commutators, 13-commutators and odd derivations 97

Lemma 6. D4 = F ◦2 + F •2.

Proof. By Lemma 3 and by associativity of ◦,

D4 = D2 ·D2 = F · F = F ◦ F + F • F.

Lemma 7. D6 = F ◦3 + 3F • F ◦2 + F •3.

Proof. By Lemma 3 and Lemma 6,

D6 = D2 ·D4 = D2 ◦D4 +D2 •D4 = F ◦ (F ◦2 + F •2) + F • (F ◦2 + F •2)

By Lemma 5, F ◦ F •2 = 2F • F ◦2, so

D6 = F ◦3 + 3F • F ◦2 + F •3.

Lemma 8. D8 = F ◦4 + 3F ◦2 • F ◦2 + 4F • F ◦3 + 6F ◦2 • F •2 + F •4.

Proof. By Lemma 5,
F ◦ F •3 = 3F ◦2 • F •2.

Therefore, by Lemma 3 and Lemma 7

D8 = D2 ·D6 = D2 ◦D6 +D2 •D6 =

F ◦ (F ◦3 + 3F • F ◦2 + F •3) + F • (F ◦3 + 3F • F ◦2 + F •3) =

F ◦4 + 3F ◦2 • F ◦2 + 3F • F ◦3 + 3F ◦2 • F •2 + F • F ◦3 + 3F •2 • F ◦2 + F •4 =

F ◦4 + 3F ◦2 • F ◦2 + 4F • F ◦3 + 6F ◦2 • F •2 + F •4.

Lemma 9.

D10 = F ◦5 + 5(F ◦2 • F ◦3 + F ◦ (F • F ◦3))+

5(2F ◦3 • F •2 + 3F • F ◦2 • F ◦2) + 4F ◦2 • F •3 + 6F ◦2 • F •3 + F •5.

Proof is straightforward.

Lemma 10. For every G ∈ Diffn, we have

F ◦ (

n
∏

r=1

ηr G) = 0.

Proof. We have

ηi∂i(ηj)∂j(η1 · · · ηn) =

n
∑

s=1

ξs,

where
ξs = ηi∂iηjη1 · · · ηs−1∂j(ηs)ηs+1 · · · ηn.

If s 6= i, then

ξs = ±ηiηiξi,s, where ξi,s = ∂iηj∂jηs

∏

r 6=i,s

ηr.
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Since ηiηi = 0, this means that

ξs = 0 if s 6= i.

If s = i, then

ξs = ±ηi∂iηj∂jηi

∏

r 6=i

ηr = ∂iηj∂jηi(
∏

r

ηr).

We have
n

∑

i,j=1

∂iηj∂jηi = θ1 + θ2 + θ3,

where

θ1 =
∑

i<j

∂iηj∂jηi, θ2 =
∑

i

∂iηi∂iηi, θ3 =
∑

i>j

∂iηj∂jηi.

Since the elements ∂iηj and ∂jηi are odd, θ1 + θ3 = 0, θ2 = 0. Thus,

F ◦ (

n
∏

r=1

ηrG) = (

n
∑

i,j=1

∂iηj∂jηi)
∏

r

ηrG = 0.

Let

Diff [s]
n =< u∂α | u ∈ Ln, α ∈ Γn, |α| = s >

be the space of differential operators of order s, and let τs : Diffn → Diff
[s]
n be the

projection.

Lemma 11. If n = 3, D =
n
∑

i=1
ui∂i, and ui are odd, then

τ1D = F ◦5,

τ2D
10 = 5(F ◦2 • F ◦3 + F ◦ (F • F ◦3)),

τ3D
10 = 5(2F ◦3 • F •2 + 3F • F ◦2 • F ◦2),

τsD
10 = 0 for s > 3.

Proof. Follows from Lemma 9 and from the fact that F •s = 0 if s > n.

Conclusion. To find D10, we need to calculate F ◦s for s = 1, 2, 3 and F •2. Let us give
some examples of such calculations. Below we denote by ξ the product of monomials of
the form ∂α(ηi), where α 6= 0.

Example. Collect the terms of the form η1η2ξ∂
2
1 for second bullet-powers of F . We

have

F •2
η1η2;∂2

1
= −2η1η2∂1η1∂2η1∂

2
1 , F •2

η1η3;∂2
1

= −2η1η3∂1η1∂3η1∂
2
1 , F •2

η2η3;∂2
1

= −2η2η3∂2η1∂3η1∂
2
1 .

Example. Collect terms of the form η1ξ∂1 for the second left-symmetric power of F .
We get

F ◦2
η1;∂1

= η1(−2∂1η1∂2η1∂1η2 − 2∂1η1∂3η1∂1η3 + ∂2η1∂1η2∂2η2−

∂2η1∂3η2∂1η3 + ∂3η1∂1η2∂2η3 + ∂3η1∂1η3∂3η3)∂1.
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Example. Third left-symmetric powers of F . We have F ◦3 = F ◦ (F ◦ F ). Collect
terms of the form η1ξ∂1 for the third left-symmetric power. We see that

F ◦3
η1;∂1

= η1(2∂1η1∂2η1∂1η2∂3η2∂2η3 + 2∂1η1∂2η1∂2η2∂3η2∂1η3 − 6∂1η1∂2η1∂3η1∂1η2∂1η3

−2∂1η1∂2η1∂3η2∂1η3∂3η3 − 2∂1η1∂3η1∂1η2∂2η2∂2η3 − 2∂1η1∂3η1∂1η2∂2η3∂3η3

+2∂1η1∂3η1∂3η2∂1η3∂2η3 − 2∂2η1∂1η2∂2η2∂3η2∂2η3 + ∂2η1∂1η2∂3η2∂2η3∂3η3

−∂2η1∂2η2∂3η2∂1η3∂3η3 + 2∂2η1∂3η1∂1η2∂1η3∂3η3 − 2∂2η1∂3η1∂1η2∂2η2∂1η3+

∂3η1∂1η2∂2η2∂2η3∂3η3 − ∂3η1∂2η2∂3η2∂1η3∂2η3 − 2∂3η1∂3η2∂1η3∂2η3∂3η3)∂1.

We similarly establish that F ◦3
η2;∂1

has 8 terms, F ◦3
η3;∂1

has 8 terms, F ◦3
η1η2;∂1

has 76 terms,

F ◦3
η1η3;∂1

has 76 terms, and the element F ◦3
η2η3;∂1

has 71 terms.

Lemma 12. 1 ) F ◦2 • F ◦3 + F ◦ (F • F ◦3) = 0. 2 ) F ◦3 • F •2 = 0. 3 ) F • F ◦2 • F ◦2 = 0.

Proof of Theorem 1. By Lemmas 11 and 12, we have τ2(D
10) = 0 and τ3(D

10) = 0.
Therefore, D10 = τ1(D

10). Other statements of Theorem 1 and Theorem 2 can be proved
by similar calculations of left-symmetric and bullet powers of F.

6 N-commutators and super-derivations

In this section we explain how the escort forms [1] appear in calculating the powers of odd

derivations. Let I = {1, . . . , n} and let D =
n
∑

i=1
ηi∂i ∈ DerLn be an odd super-derivation.

For any α ∈ Zn
+, set x(α) = xα

α! and recall that ǫi = (0, . . . , 0, 1, 0, . . .) ∈ Zn
+ (the i-th

coordinate is 1). Set

Supp(sk) := {k-tuples {(α(1), i1), · · · , (α
(k), ik)} | i1, . . . , ik ∈ I and α(1), . . . , α(k) ∈ Zn

+,

such that
k
∑

p=1
α(p) − ǫip has the form −µ for some 0 6= µ ∈ Zn

+.}

Let

L =< x(α)∂i | α ∈ Zn
+, i = 1, . . . , n >

be Lie algebra of derivations of U = K[x1, . . . , xn] (Witt algebra) and

Ls =< x(α)∂i | |α| =

n
∑

i=1

αi = s+ 1 >

be homogeneous components. Then

L = ⊕
s≥−1

Ls, [Lp, Ls] ⊆ Lp+s.

Let ψ : ∧kL→ L be anti-symmetric multilinear graded form. This means that

ψ(X1, . . . ,Xk) ∈ L|X1|+···+|Xk|,
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for any homogeneous elements X1, . . . ,Xk. Then its escort form esc(ψ) is defined as a
multilinear anti-symmetric form

esc(f) : ∧kL→ L−1

such that

esc(ψ)(X1, . . . ,Xk) = ψ(X1, . . . ,Xk), if |X1| + · · · + |Xk| = −1,

esc(ψ)(X1, . . . ,Xk) = 0, if |X1| + · · · + |Xk| 6= −1.

In particular,

{(α(1), i1), . . . , (α
(k), ik)} 6∈ Supp(sk) ⇒ esc(sk)(x

(α(1))∂i1 , . . . , x
(α(k))∂ik) = 0.

The main result of this section is the following

Theorem 3.

Dk =
∑

(α(1),i1)<···<(α(k),ik)

∂α(1)
(ui1) · · · ∂

α(k)
(uik)esc(sk)(x

(α(1))∂i1 , . . . , x
(α(k))∂ik).

where the summation is taken over ordered pairs {(α, i1), (β, i2), . . . , (γ, ik)} ∈ Supp(sk).

Proof. Let U = K[x1, . . . , xn] and let the ∂i be partial derivatives. Let Grk be the
Grassmann super-algebra with generators ξ1, . . . , ξk. For U = K[x1, . . . , xn], set U =
U ⊗Grk. Extend each derivation ∂i ∈ Der U to a derivation of U by setting

∂i(v ⊗ ω) = ∂i(v) ⊗ ω.

We obtain a commuting system D = {∂1, . . . , ∂n} of even derivations of U . Thus, we can
consider the D-differential super-algebra U , its super-derivation algebra L =< f∂i | f ∈
U >, and its algebra of super-differential operators

Diff =< f∂α | α ∈ Zn
+, f ∈ U > .

We can endow Diff with the composition operation, left-symmetric multiplication, and
bullet multiplication. In particular, we can consider L to be a left-symmetric algebra as
well as a super-Lie algebra. Thus, L ∼= Wn ⊗ Grk, i.e., L is isomorphic to the current
algebra of Wn-valued functions on the 0|k-dimensional superspace.

We see that, for any f1, . . . , fn ∈ U , we can consider a homomorphism

Ln → U , ηi 7→ fi, where i = 1, . . . , n.

This homomorphism can be extended to a homomorphism of left-symmetric or Lie alge-
bras DerLn → L as well as to a homomorphism of associative (left-symmetric) algebras

Diffn → Diff . We can use this homomorphism in calculating F k for F =
n
∑

i=1
fi∂i ∈ L.

In other words, in the formula for Dk we can make substitutions ηi 7→ fi and calculate in
U the expressions obtained.
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We use this method for calculating the coefficients λ{(α,i1),(β,i2),...,(γ,ik);µ}, where

Dk =
∑

λ{(α,i1),(β,i2),...,(γ,ik);µ}∂
α(ui1)∂

β(ui2) · · · ∂
γ(uik)∂µ.

Since the number of ηi-indices is the same as the number of ∂i-indices, we take the sum-
mation here over α, β, . . . , γ, µ ∈ Zn

+ and i1, . . . , ik ∈ {1, . . . , n} such that

α+ β + · · · + γ + µ =
k

∑

s=1

ǫis .

Take
F = X1 ⊗ ξ1 + · · · +Xk ⊗ ξk ∈ L,

where Xi ∈Wn, i = 1, . . . , k are even elements. It is evident that

F k = sk(X1, . . . ,Xk) ⊗ (ξ1 · · · ξk).

On the other hand, if X1 = xα(1)
∂i1 ,X2 = xα(2)

∂i2 , . . . ,Xk = xα(k)
∂ik , then F can be

represented in the form

F =
k

∑

i=1

fi∂i ∈ L, where fi =
∑

s|is=i

xα(s)
⊗ ξs ∈ U .

So, substituting

ηi 7→
∑

s|is=i

xα(s)
⊗ ξs ∈ U

in Dk and performing calculations in U gives us, on the one hand,

λ{α(1) ,i1),...,(α(k),ik);µ}α
(1)! · · ·α(k)!∂µ ⊗ ξ1 · · · ξk + Y,

where
Y ∈< xα∂β ⊗Grk | |α| > 0, α, β ∈ Zn

+ >,

and, one the other hand,

sk(x
α(1)

∂i1 , . . . , x
α(k)

∂ik) ⊗ ξ1 · · · ξk.

Take the projections Diff →< 1 > ⊗ξ1 . . . ξk of both sides. We have

λ{α(1),i1),...,(α(k),ik);µ}α
(1)! · · ·α(k)!∂µ = esc(sk)(x

α(1)
∂i1 , . . . , x

α(k)
∂ik).

Thus,

esc(sk)(x
(α(1))∂i1 , . . . , x

(α(k))∂ik) = λ{α(1),i1),...,(α(k),ik);µ}∂
µ,

which is what we need to prove. �

Denote by s◦k the map ∧kWn −→Wn given by

s◦k(X1, . . . ,Xk) =
∑

σ∈Symk

sign σ Xσ(1) ◦ (Xσ(2) ◦ (· · · (Xσ(k−1) ◦Xσ(k)))),

where Wn is considered as a left-symmetric algebra under the multiplication f∂i ◦ g∂j =
f∂i(g)∂j .
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Corollary 1. The following statements are equivalent: (1) Dk ∈ DerL; (2) Dk = D◦k;
(3) sk is a k-commutator on Wn; (4) sk = s◦k.

Theorem 3 has two-fold applications. We use it in constructing Dk by means of sk and,
vice versa, one can use Dk in calculating k-commutators.

7 How to calculate the 10-commutator ?

Let

s+5 (t1, t2, t3, t4, t5) =
∑

σ∈Sym5

tσ(1) · · · tσ(5)

be the associative symmetric polynomial in 5 variables.

Lemma 13.

s10(t1, . . . , t10) =
∑

σ∈Sym′

10

sign σ s+5 ([tσ(1), tσ(2)], . . . , [tσ(9), tσ(10)]),

where

Sym′
10 = {σ ∈ Sym10 | σ(1) < σ(2), . . . , σ(9) < σ(10), σ(1) < σ(3) < σ(5) < σ(7) < σ(9)}.

Notice that Sym′
10 contains 945 permutations. The best way to calculate sN (X1, . . . ,XN )

in Mathematica is as follows. First step: Calculate all wedge-products

[Xσ(1),Xσ(2)] ∧ · · · ∧ [Xσ(9),Xσ(10)]

for all 945 shuffle-permutations σ ∈ Sym′
10. Usually, there are not too many non-zero

wedge-products. Second step: for these wedge-products, calculate

s+5 ([Xσ(1),Xσ(2)], . . . , [Xσ(9),Xσ(10)])

and take their anti-symmetric sum. Direct calculation of s10(X1, . . . ,X10) needs calcu-
lating 10! = 3628800 summands; this is very hard. Practically, direct calculation of
sN (X1, . . . ,XN ) are not possible on the modern PC if N > 7.
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