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Generalizing Lie algebras, we consider anti-commutative algebras with skew-symmetric
identities of degree > 3. Given a skew-symmetric polynomial f , we call an anti-
commutative algebra f -Lie if it satisfies the identity f = 0. If sn is a standard skew-
symmetric polynomial of degree n, then any s4-Lie algebra is f -Lie if deg f ≥ 4. We
describe a free anti-commutative super-algebra with one odd generator. We exhibit vari-
ous constructions of generalized Lie algebras, for example: given any derivations D, F
of an associative commutative algebra U , the algebras (U, D ∧ F ) and (U, id ∧ D2) are
s4-Lie. An algebra (U, id ∧ D3 − 2D ∧ D2) is s′5-Lie, where s′5 is a non-standard skew-
symmetric polynomial of degree 5.
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1. Introduction

The functions algebras under the Poisson bracket are Lie algebras. At the same
time, there are many other brackets that do not generate a Lie algebra structure.
For example, so is the Jacobi bracket (the Mayer bracket, [14, 17])

ω(a, b) =
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∂(a)
∂x

∂(a)
∂p

∂(a)
∂z

∂(b)
∂x

∂(b)
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−p 0 1

∣∣∣∣∣∣∣∣∣∣
.

It satisfies the standard skew-symmetric identity of degree four, s4 = 0 [7]. We
prove that not only the Jacobi bracket, but also any multiplication of the form
u1D2 ∧D3 + u2D3 ∧D1 + u3D1 ∧D2 satisfies the identity s4 = 0. A particular case
of this result in which the derivations D1, D2, D3 commute was obtained in [7].
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We consider anti-commutative algebras with a skew-symmetric identity as a
natural generalization of Lie algebras. We show that the theory of generalized Lie
algebras has interesting examples of algebras which are constructed by means of
differentiation and integration operators. The theory of s4-Lie algebras might be
as reach as the theory of Lie algebras. The aim of the present paper is to demon-
strate some fragments of such a theory by constructing some examples of simple
generalized Lie algebras.

Let K{t1, t2, . . . , tk} be the space of non-commutative non-associative polyno-
mials in variables t1, t2, . . . , tk. To simplify presentation, we assume that the main
field K has characteristic 0. In fact many of our results hold true for charK �= 2, 3.

A polynomial f ∈ K{t1, t2, . . . , tk} is called skew-symmetric if

f(tσ(1), . . . , tσ(k)) = signσ f(t1, . . . , tk),

for any permutation σ ∈ Symk. We define the polynomial acom ∈ K{t1, t2} (the
anti-commutativity polynomial) by

acom(t1, t2) = t1t2 + t2t1.

Let sk ∈ K{t1, . . . , tk} be the standard skew-symmetric polynomial

sk(t1, . . . , tk) =
∑

σ∈Symk

signσ(· · · ((tσ(1)tσ(2))tσ(3)) · · ·)tσ(k).

In the associative case, all skew-symmetric polynomials are generated by stan-
dard skew-symmetric polynomials. This is no longer true in the non-associative
case.

Let (A, ◦) be an algebra with vector space A and multiplication ◦. Recall some
definitions about polynomial identities. We say that A has an identity f = 0, where
f ∈ K{t1, t2, . . . , tk}, if

f(a1, a2, . . . , ak) = 0

for any substitutions t1 := a1, t2 := a2, . . . , tk := ak by elements of A, where
multiplications are calculated in terms of the multiplication ◦. If any algebra with
an identity f = 0 also satisfies an identity g = 0, we say that the identity g = 0 is
a consequence of the identity f = 0 and use the notation

f = 0 ⇒ g = 0.

Recall that the multiplication induced by the anti-commutativity polynomial
acom(a, b) = a ◦ b + b ◦ a is usually called the Jordan multiplication.

Lie algebras are defined as anti-commutative algebras with the skew-symmetric
identity of degree 3, i.e., they are algebras with the identities

acom = 0, s3 = 0.
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In this paper, we are interested in the following generalizations of Lie alge-
bras. Let K−{t1, . . . , tk} be the subspace of multi-linear skew-symmetric anti-
commutative polynomials, i.e., skew-symmetric multilinear polynomials in the
variety of anti-commutative algebras. For a subspace S ⊆ K−{t1, . . . , tk}, we call
A = (A, ◦) S-Lie if it satisfies the identities f = 0 for all f ∈ S. If S is generated
by polynomials f1, . . . fn, then we call A {f1, . . . , fn}-Lie. In the case of n = 1, we
often write f -Lie instead of {f}-Lie.

We describe free anti-commutative super-algebras with one odd generator.
We are interested in f -Lie algebras for f ∈ K−{t1, . . . , tk}. Note that non-trivial

examples of f -Lie algebras appear, beginning with degrees k = 3, 4, . . . . If k = 3,

K−{t1, t2, t3} = 〈s3〉

is 1-dimensional and {s3}-Lie algebras are nothing else than the usual Lie algebras.
If k = 4,

K−{t1, t2, t3, t4} = 〈s4〉,

and anti-commutative algebras with skew-symmetric identity of degree 4 are s4-Lie
algebras. If k = 5, then K−{t1, t2, t3, t4, t5} is 2-dimensional and

K−{t1, t2, t3, t4, t5} = 〈s5, s′5〉,

where s′5 is the skew-symmetrization of the polynomial ((t1t2)t3)(t4t5).
We prove that any sd-Lie algebra is f -Lie for any multi-linear skew-symmetric

polynomial f of degree deg f ≥ d if d = 3, 4. If d ≥ 5 this result is not true.
We give non-trivial examples of simple s4-Lie algebras and s5-Lie, s′5-Lie

algebras.
Let U be an associative commutative algebra with multiplication (a, b) 
→ ab

and derivations D and F . We can endow U with the multiplication

(a, b) 
→ (D ∧ F )(a, b) = D(a)F (b) −D(b)F (a).

We establish that (U,D ∧ F ) is s4-Lie. Moreover, if D1, D2, D3 are derivations of
an associative commutative algebra U and u1, u2, u3 ∈ U, then (U, ω) is s4-Lie for

ω = u1D2 ∧D3 + u2D3 ∧D1 + u3D1 ∧D2.

If U is an algebra of smooth functions on a manifold and D,F are vector fields
then, by the Frobenius theorem, (U,D ∧F ) is s3-Lie if and only if the vector fields
D and F are in involution. We prove that (U, id ∧D2) is also s4-Lie, where

id ∧D2(a, b) = aD2(b) − bD2(a).

The algebra (U,D ∧D2) is also s4-Lie and (U, id∧D2) is a homomorphic image of
the algebra (U,D ∧D2).
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Let U be an associative commutative algebra with derivation D. Endow it with
the new multiplication

a � b = aD3(b) − 2D(a)D2(b) + 2D2(a)D(b) −D3(a)b.

The algebra (U, �) satisfies the identity g = 0 (see the definition of g in Sec. 9)
and any anti-commutative algebra with the identity g = 0 is s′5-Lie. Moreover, the
identity g = 0 is a consequence of Filippov’s identity h = 0. The identities g = 0
and h = 0 are not equivalent. In particular, the algebra (U, �) and Malcev algebras
are examples of s′5-Lie algebras.

Algebras with identities of degree 4 were also studied in [12, 15, 16, 7, 11]. The
functions algebras under the Jacobi bracket are s4-Lie [7]. This claim is a special
case of our Theorem 5.4.

Closing the introduction, let us pose some problems.
Let U be an associative commutative algebra with derivations Di, Fi, i =

1, . . . , n, and let

ωn =
n∑

i=1

Di ∧ Fi

be a new multiplication on U . If n = 1, the algebra (U, ω1) satisfies the identity
s4 = 0. The identity s4 = 0 is the best one in the following sense:

• s4 = 0 is an identity of (U, ω1), ω1 = D1 ∧ F1, for any associative commutative
algebra U with any derivations D1, F1.

• There exist some associative commutative algebra U and some derivations D1

and F1 such that the identity s4 = 0 is minimal for the algebra (U, ω1).
• The algebra (U, ω1) is s3-Lie iff D1, F1 are in involution.

Question 1. What can be said about an analog of the s4-identity for ωn in the
case of n > 1? What is the best identity for (U, ωn)?

In particular, what should be the best identity for the Jacobi bracket

[a, b] =
n∑

i=1

∂a

∂pi

(
∂b

∂xi
+ pi

∂b

∂z

)
− ∂b

∂pi

(
∂a

∂xi
+ pi

∂a

∂z

)
,

where a, b are functions in 2n+ 1 variables (x1, . . . , xn, p1, . . . , pn, z)?
More generally, assume D1, . . . , Dn ∈ DerU and let

τn = D1 ∧ · · · ∧Dn

be an n-ary multiplication. Then (U, τn) is n-Lie in the sense of Filippov [6] iff the
derivations D1, . . . , Dn are in involution [4], [8].

Question 2. What can be said about an analog of the s4-identity for the n-ary
multiplication τn?
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Assume given derivations D1, . . . , Dm ∈ DerU and elements ui1,...,in ∈ U . Let
an n-ary multiplication

η =
∑

1≤i1<···<in≤m

ui1,...,inDi1 ∧ · · · ∧Din

be defined as a linear combination of multiplications of the form τn.

Question 3. What is the minimal identity for (U, η) that does not follow from the
anti-commutativity identity for η?

Call an f -Lie algebra A absolutely minimal f -Lie if f = 0 is a minimal identity
for A. Call A minimal f -Lie if f = 0 is minimal in the space of skew-symmetric iden-
tities. Any Lie algebra is s4-Lie, but not (absolutely) minimal s4-Lie. The algebra
(K[x]/K, id ∧ ∂2) is absolutely minimal s4-Lie and simple.

Problem 4. Classify all simple (absolutely) minimal s4-Lie algebras.

2. Cup-Product in an Anti-Commutative Module

Given vector spaces A and M , for k > 0 we denote by T k(A,M) the space of
multilinear maps

ψ : A× · · · ×A︸ ︷︷ ︸
k times

→M.

We also set

T 0(A,M) = M,

T k(A,M) = 0 if k < 0.

Let Ck(A,M) be the subspace of skew-symmetric maps:

ψ(a1, . . . , ak) = signσ ψ(aσ(1), . . . , aσ(k))

for any σ ∈ Symk. Put

T ∗(A,M) = ⊕kT
k(A,M), C∗(A,M) = ⊕kC

k(A,M).

Let M , N and S be vector spaces. Suppose that we are given a bilinear map

M ×N → S, (m,n) 
→ m� n.

Such a map is called a cup-product, and the element of S corresponding to m ∈
M,n ∈ N is denoted by m � n. Prolong this cup-product to a bilinear map (call
it as before cup-product)

T ∗(A,M) × T ∗(A,N) → T ∗(A,S), (ψ, φ) 
→ ψ � φ,

by

(ψ � φ)(a1, . . . , ak, ak+1, . . . , ak+r) = ψ(a1, . . . , ak) � φ(ak+1, . . . , ak+r)

if

ψ ∈ Ck(A,M), φ ∈ Cr(A,N).
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Let Symn be the permutation group on n elements, and let Symk,r ⊆ Symk+r

be the subset consisting of shuffle permutations

τ =

(
1 · · · k k + 1 · · · k + r

i1 · · · ik j1 · · · jr

)
∈ Symk+r , i1 < · · · < ik, j1 < · · · < jr.

We prolong a cup-product M ×N → S to a bilinear map

C∗(A,M) × C∗(A,N) → C∗(A,S), (ψ, φ) 
→ ψ ∧ φ,
called wedge-product, by the following rule. If

ψ ∈ Ck(A,M), φ ∈ Symr(A,N),

then

ψ ∧ φ ∈ Ck+r(A,S)

and

ψ ∧ φ(a1, . . . , ak+r) =
∑

τ∈Symk,r

sign τ ψ(aτ(1), . . . , aτ(k)) � φ(aτ(k+1), . . . , aτ(k+r)).

In the case when all the spaces M,N and S coincide, the cup-product endows
M with an algebra structure. In this case T ∗(A,M) and C∗(A,M) as well have
algebra structures induced by the cup-product and the wedge-product. Algebraic
properties of the algebra M give rise to similar algebraic properties of T ∗(A,M)
and C∗(A,M). For example, if M is an associative algebra, then T ∗(A,M) is an
associative algebra, too.

If M satisfies the identity of degree 2, then the cup (wedge) products satisfy the
corresponding super-identities on T ∗(A,M) (C∗(A,M)).

Suppose that a cup product M × M → M is given which satisfies the anti-
commutative identity

m� n = −n � m, ∀m,n ∈M.

In other words, M has the structure of an anti-commutative algebra. Then

ψ ∧ φ(a1, . . . , a2n) = −(−1)nφ ∧ ψ(a1, . . . , a2n),

for all ψ, φ ∈ Cn(A,M). This can be easily proved by using the following property
of the shuffle-product:

sgnσ = (−1)n

for any shuffle-permutation

σ =

(
1 · · · n n+ 1 · · · 2n

i1 · · · in j1 · · · jn

)
∈ Sym2n, i1 < · · · < in, j1 < · · · < jn.

In particular,

ψ ∧ ψ = 0

if n is even, charK �= 2.
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Now, let A = K−{t1, t2, . . .} be the space of multilinear skew-symmetric poly-
nomials in the anti-commutative variety. Let sk be a standard skew-symmetric
polynomial

sk(t1, . . . , tk) =
∑

σ∈Symk

(· · · (tσ(1)tσ(2)) · · ·)tσ(k), k > 1,

s1(t1) = t1.

Then

sk = sk−1 ∧ s1, k > 1.

3. Free Anti-Commutative Algebras with One Odd Generator

Let Q = Q0 + Q1 be a free anti-commutative super-algebra with a parity map
q : Q→ {0, 1},

ab = −(−1)q(a)q(b)ba,

Q0Q0 ⊆ Q0, Q0Q1 ⊆ Q1, Q1Q1 ⊆ Q0.

The elements of Q0 are called even, and the elements of Q1 odd.
We consider super-algebras with one generator x. If x is even, then x2 = 0. So,

a free anti-commutative super-algebra with one even generator has no non-trivial
elements of degree larger than 1.

A more interesting case appears when x is odd. In this case the kth power of x
(independently of bracketing) is even (odd) if k is even (odd). Note that

ab = −ba
if one of a, b is an even element, and

ab = ba

for odd elements a, b. In particular, powers of even powers of x (independently of
bracketing) vanish. So, a base of a free anti-commutative algebra with one odd
generator x can be constructed by induction on length.

Let l = l(a) be the length of an element a (the number of occurrences of x in
a). For instance, l((xx)x) = 3. Denote by base[l] the base elements of length l of a
free anti-commutative super-algebra with one odd generator. Let

base =
⋃
k≥1

base[k].

For l = 1 take

base[1] = {x}.
Suppose that base[k] is constructed for all k < l. Order the elements of base[k]

somehow.
If a and b are base elements of degrees k1 and k2, and k1 + k2 = l, then ab can

be chosen as a base element of degree l if k1 > k2. Suppose that k1 = k2. Then l

should be even. If l is divisable by 4 and k1 = k2 = l/2, we have to exclude the
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element ab from base[l] if a = b. If l is not divisable by 4, then such cases cannot
appear. In the case when l is even, but l �≡ 0(mod4), we include ab into base[l] if
a > b.

This is a repetition of the arguments in [18], where a base was constructed for
free commutative and anti-commutative algebras. Therefore, we refer to this paper
for the details of proof. Thus, we have proved the following

Theorem 3.1. Let Q be a free anti-commutative super-algebra with one generator.
Then base constructed above forms a base of Q. The dimensions of homogeneous
parts,

µn = |base[n]|,
satisfy the following recurrence relations:

µn =
∑

i<n/2

µiµn−i, if n �≡ 0(mod 2),

µn =
∑

i<n/2

µiµn−i + (µ2
n/2 + µn/2)/2, if n ≡ 0(mod 2), n �≡ 0(mod 4),

µn =
∑

i<n/2

µiµn−i + (µ2
n/2 − µn/2)/2, if n ≡ 0(mod 4),

for n ≥ 2. Here we set µ1 = 1.

Corollary 3.2.

µ1 = 1, µ2 = 1, µ3 = 1, µ4 = 1, µ5 = 2, µ6 = 4,

and

base[1] = {x},
base[2] = {xx},
base[3] = {(xx)x},
base[4] = {((xx)x)x},
base[5] = {(((xx)x)x)x, ((xx)x)(xx)},
base[6] = {((((xx)x)x)x)x, (((xx)x)(xx))x, (((xx)x)x)(xx), ((xx)x)((xx)x)}.
Let y be a base element of a free anti-commutative algebra with one odd gen-

erator of length k. Change all x in y to t1, . . . , tk from left to right. Consider the
alternating sum of the resulting elements over the parameters t1, . . . , tk. This con-
struction was done in [22], and the so-obtained element is denoted by Skew(y). For
example,

Skew((xx)x) = (t1t2)t3 + (t2t3)t1 + (t3t1)t2 − (t2t1)t3 − (t3t2)t1 − (t1t3)t2.

Note that Skew(y) coincides with the skew-symmetric polarization of y.
By the results of [20–23] we can give another formulation of Theorem 3.1.
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Theorem 3.3. Let K−{t1, . . . , tn} be the space of anti-commutative multilinear
skew-symmetric polynomials. Then the elements Skew(x), where x runs through the
base elements of a free anti-commutative algebra with one odd generator, form a
base for K−{t1, . . . , tn}.

Whence we infer a classification of skew-symmetric anti-commutative multi-
linear polynomials of degree d ≤ 6.

Corollary 3.4. The following polynomials form a base for skew-symmetric multi-
linear polynomials in the variety of anti-commutative polynomials of degree d.

d = 3, {s3},
d = 4, {s4},
d = 5, {s5, s′5 = 1/6s3 ∧ s2},
d = 6, {s6, s(2)6 = s′5 ∧ s1, s(3)6 = s4 ∧ s2, s(4)6 = s3 ∧ s3}.

Note that

s′5(t1, t2, t3, t4, t5) =
∑

σ∈Sym5,σ(1)<σ(2),σ(4)<σ(5)

signσ((tσ(1)tσ(2))tσ(3))(tσ(4)tσ(5)).

4. The Identities sd = 0, d = 3, 4, and Skew-Symmetric Identities
of Degree ≥ d

Theorem 4.1. Let A be an sd-Lie algebra, where d = 3 or d = 4. Let f be any
skew-symmetric multi-linear anti-commutative polynomial of degree no less than d.
Then A is f -Lie.

Proof. Let

r = r(t1, t2, t3, t4, t5)

= −s4(t1, t2, t3, t4)t5 + s4(t1, t2, t3, t5)t4 − s4(t1, t2, t4, t5)t3
+ s4(t1, t3, t4, t5)t2 − s4(t2, t3, t4, t5)t1 + s4(t1t2, t3, t4, t5)

− s4(t1t3, t2, t4, t5) + s4(t1t4, t2, t3, t5) − s4(t1t5, t2, t3, t4)

+ s4(t2t3, t1, t4, t5) − s4(t2t4, t1, t3, t5) + s4(t2t5, t1, t3, t4)

+ s4(t3t4, t1, t2, t5) − s4(t3t5, t1, t2, t4) + s4(t4t5, t1, t2, t3).

Prove that

−2s′5 = r. (1)

For y ∈ K−{t1, . . . , t5}, denote by coef1(y) the coefficient of y in (((t1t2)t3)t4)t5
and denote by coef2(y) the corresponding coefficient in ((t1t2)t3)(t4t5).

Note that the polynomial r is skew-symmetric. Therefore, by Theorem 3.3,

r = λs5 + µs′5
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for some λ, µ ∈ K. Calculate the coefficients in (((t1t2)t3)t4)t5 on the left- and
right-hand sides of this equality. We have

coef1(r) = coef1 (−s4(t1, t2, t3, t4)t5 + s4(t1t2, t3, t4, t5)) = −1 + 1 = 0,

coef1(s5) = 1, coef1(s′5) = 0.

Thus,

λ = 0.

Further,

coef2(r) = coef2(s4(t4t5, t1, t2, t3))

= coef2(−((t1t2)t3)(t4t5) + ((t2t1)t3)(t4t5)) = −2.

Therefore, (1) is proved.
By (1) any algebra with the identity s4 = 0 satisfies the identity s′5 = 0,

s4 = 0 ⇒ s′5 = 0.

Since s5 = s4 ∧ s1, the implication

s4 = 0 ⇒ s5 = 0

is evident.
Let now

s
(4)
6 = s3 ∧ s3

be the skew-symmetric polynomial corresponding to the bracketing type
((••)•)((••)•). Note that

s
(4)
6 (t1, t2, t3, t4, t5, t6)

=
∑

σ∈Sym3,3,σ(1)<σ(4)

signσ[jac(tσ(1), tσ(2), tσ(3)), jac(tσ(4), tσ(5), tσ(6))],

where

jac(t1, t2, t3) = (t1t2)t3 + (t2t3)t1 + (t3t1)t2

is the Jacobian and [ , ] is the usual commutator, [a, b] = ab− ba.

Let p be a polynomial in 6 variables given by

p(t1, t2, t3, t4, t5, t6)

=
∑

σ∈Sym3,3

signσ s4(jac(ti1 , ti2 , ti3), ti4 , ti5 , ti6)

− s6(t1, t2, t3, t4, t5, t6) + 2
6∑

i=1

(−1)is′5(t1, . . . , t̂i, . . . , t6)ti.

Prove that

−2s(4)6 = p. (2)
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For y ∈ K−{t1, t2, t3, t4, t5, t6}, denote by coef1(y), coef2(y), coef3(y) and
coef4(y) the coefficients in ((((t1t2)t3)t4)t5)t6, (((t1t2)t3)(t4t5))t6, (((t1t2)t3)t4)(t5t6)
and ((t1t2)t3)((t4t5)t6) respectively.

Note that the polynomial p is skew-symmetric in all 6 parameters. Therefore,
by Theorem 3.3

p = λ1s6 + λ2s
′
5 ∧ s1 + λ3s4 ∧ s2 + λ3s3 ∧ s3.

We have

coef1(p) =
∑

σ∈Sym3,3

signσ coef1(s4(jac(ti1 , ti2 , ti3), ti4 , ti5 , ti6))

− coef1(s6(t1, t2, t3, t4, t5, t6)) = 1 − 1 = 0,

coef2(p) =
∑

σ∈Sym3,3

signσ coef2(s4(jac(ti1 , ti2 , ti3), ti4 , ti5 , ti6))

+ 2
6∑

i=1

(−1)i coef2(s′5(t1, . . . , t̂i, . . . , t6)ti)

= coef2(((t4t5) jac(t1, t2, t3))t6 − ((t5t4) jac(t1, t2, t3))t6)

+ 2 coef2((((t1t2)t3)(t4t5))t6) = 2 − 2 = 0,

coef3(p) =
∑

σ∈Sym3,3

signσ coef3(s4(jac(ti1 , ti2 , ti3), ti4 , ti5 , ti6))

− coef3(s6(t1, t2, t3, t4, t5, t6))

+ 2
6∑

i=1

(−1)i coef3(s′5(t1, . . . , t̂i, . . . , t6)ti) = 0 − 0 + 2 · 0 = 0,

coef4(p) =
∑

σ∈Sym3,3

signσ coef4(s4(jac(ti1 , ti2 , ti3), ti4 , ti5 , ti6))

− coef4(s6(t1, t2, t3, t4, t5, t6)) + 2
6∑

i=1

(−1)i coef4(s′5(t1, . . . , t̂i, . . . , t6)ti)

= coef4(−((t4t5)t6) jac(t1, t2, t3) + ((t5t4)t6) jac(t1, t2, t3))

= −1 − 1 = −2.

So, we establish (2).
Since s6 = (s4 ∧ s1) ∧ s1, by (2) we see that

s4 = 0 ⇒ s
(4)
6 = 0.

It is easy to see that

s4 = 0 ⇒ s6 = 0,

s4 = 0 ⇒ s′5 = 0 ⇒ s′5 ∧ s1 = 0,

s4 = 0 ⇒ s4 ∧ s2 = 0.
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Now, prove that

s4 = 0 ⇒ f = 0

for any skew-symmetric multilinear anti-commutative polynomial f of degree ≥ 4.
We proceed by induction on the degree of f , n = deg f .

In the case n = 4 we have nothing to prove. The cases n = 5, 6 were examined
above. Suppose that n ≥ 7 and that our statement is true for n−1. By Theorem 3.3,
any base skew-symmetric multilinear polynomial f can be represented as a wedge-
product f = g ∧ h, where deg h ≤ deg g < n and deg g ≥ 4. By the induction
hypothesis,

s4 = 0 ⇒ g = 0.

Hence

s4 = 0 ⇒ f = 0.

Since

s3 = 0 ⇒ s4 = s3 ∧ s1 = 0,

for any skew-symmetric multilinear anti-commutative polynomial f of degree no
less than 3 we have

s3 = 0 ⇒ f = 0.

The theorem is proved completely.

Corollary 4.2. If A = (A, ◦) is s4-Lie, then (A,ω) is 3-Lie in the sense of Hanlon
[9], where ω is any skew-symmetric map constructed from the multiplication ◦, i.e.,

ω(a, b, c) = [a, b] ◦ c+ [b, c] ◦ a+ [c, a] ◦ b+ q(a ◦ [b, c] + b ◦ [c, a c ◦ [a, b])

for some q ∈ K. In particular, (A, jac) is 3-Lie in the sense of Hanlon.

Remark. For d ≥ 5 Theorem 4.1 is not true. The non-Lie 7-dimensional Malcev
algebra (octonians under commutator) satisfies the identity s′5 = 0 but s5 = 0 and
s6 = 0 are not identities,

s6(e1, e2, e3, e4, e5, e6) = 432e7.

Here we use the base for octonians which was constructed in [19, Exercise 3, p. 48].

Remark. Note that here the condition of multilinearity of identities is essential.
For example,

f(t1, t2) = ((t1t2)t1)t2 + ((t1t2)t2)t1

is a skew-symmetric polynomial of type (2, 2) in the variety of anti-commutative
polynomials. If we consider f -Lie algebras for any skew-symmetric polynomial f,
then in degree 4 appear two different generalizations of Lie algebras.
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5. s4-Lie Algebras

In this section we give non-trivial examples of s4-Lie algebras.

Theorem 5.1. Let (U, ·) be an associative commutative algebra with derivation D.
Then (U, ω) is s4-Lie for ω = id ∧D2.

Proof. Denote by sω
4 the 4-linear function on U generated by (a, b, c, d) 
→

s4(a, b, c, d). It is clear that s4(a, b, c, d) is a sum of elements of the form Y i1,i2,i3,i4 =
±Di1(a)·Di2(b)·Di3(c)·Di4(d), where i1+i2+i3+i4 = 6. Since sω

4 (a, b, c, d) is skew-
symmetric in a, b, c, d it is enough to collect all Y i1,i2,i3,i4 for 0 ≤ i1 < i2 < i3 < i4.

Note that 6 can be presented as a sum of four non-negative different integers only
in one way

6 = i1 + i2 + i3 + i4, 0 ≤ i1 < i2 < i3 < i4 ⇒ i1 = 0, i2 = 1, i3 = 2, i4 = 3.

Therefore,

sω
4 = λ id ∧D ∧D2 ∧D3

for some λ ∈ K. Note that the coefficient λ is universal, i.e., it does not depend on
the choice of the derivation D. Let O1 be the algebra of divided power series,

O1 =
〈
x(i)|x(i) · x(j) =

(
i+ j

i

)
x(i+j), 0 ≤ i, j

〉
with a special derivation ∂ defined by

∂(x(i)) = x(i−1), i > 0, ∂(x(0)) = 0.

Take U = O1 and D = ∂. Easy calculations show that

s4(x(0), x(1), x(2), x(3)) = 0,

(id ∧D ∧D2 ∧D3)(x(0), x(1), x(2), x(3)) = x(0).

Thus, λ = 0, and

s4 = 0

is an identity on (U, ω).

Theorem 5.2. Let U be an associative commutative algebra with derivation D,

and ω = D ∧D2. Then (U, ω) is s4-Lie.

Proof is similar to that of Theorem 5.1.

Note that the derivation map ∂ : U → U gives us the homomorphism of algebras

(U, ∂ ∧ ∂2) → (U, ∂0 ∧ ∂2).

Indeed,

∂(∂ ∧ ∂2)(a, b)) = ∂ ∧ ∂3(a, b) = ∂0 ∧ ∂2(∂(a), ∂(b))

for all a, b ∈ U. If U = K[x], this gives us the isomorphism of algebras

(U/K, ∂ ∧ ∂2) ∼= (U, ∂0 ∧ ∂2).
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Theorem 5.3. Let (U, ·) be an associative commutative algebra with two deriva-
tions D and F . Then (U, ω) is s4-Lie algebra for ω = D ∧ F .

Proof. Notice that sk is a linear combination of degree k exterior products of the
form Di1,1Di1,2 · · ·Di1,p1

∧ · · · ∧Dik,1Dik,2 · · ·Dik,pk
such that

• Dij,r is either of D and F ;
• p1 > 0, . . . , pk > 0;
• p1 + · · · + pk = 2(k − 1);
• sk(a1, . . . , ak) is skew-symmetric in a1, . . . , ak.

We see that

s3(a, b, c)

= D(D(a)F (b) −D(b)F (a))F (c) −D(c)F (D(a)F (b) −D(b)F (a))

+D(D(b)F (c) −D(c)F (b))F (a) −D(a)F (D(b)F (c) −D(c)F (b))

+D(D(c)F (a) −D(a)F (c))F (b) −D(b)F (D(c)F (a) −D(a)F (c))

= −[D,F ](a)(D(b)F (c) −D(c)F (b)) − [D,F ](b)(D(c)F (a) −D(a)F (c))

− [D,F ](c)(D(a)F (b) −D(b)F (a)).

In other words,

s3 = −[D,F ] ∧D ∧ F.
Therefore, s4 is a linear combination of degree 4 exterior products of the form

H = Di1,1Di1,2 · · ·Di1,p1
∧ · · · ∧Di4,1Di4,2 · · ·Di4,p4

such that p1 + p2 + p3 + p4 = 6,
p1, p2, p3, p4 > 0, and Dij,r is among D,F and [D,F ].

So, there are two possibilities for the pi’s:

• one element of the set {p1, p2, p3, p4} is equal to 3 and the other three are equal
to 1;

• two elements of the set {p1, p2, p3, p4} are equal to 2 and the two other elements
are equal to 1.

In the first case, we suppose, to simplify notation, that p4 = 3 and p1 = p2 =
p3 = 1. Then H looks like ±Di1,1 ∧Di2,1 ∧Di3,1 ∧Di4,1Di4,2Di4,3 , where the three
derivations Di1,1 , Di2,1 , Di3,1 run in the two element set {D,F}. Therefore, H = 0.

In the second case, we suppose, to simplify notation, that p1 = p2 = 2 and
p3 = p4 = 1. Then H is a linear combination of exterior products of derivations of
the form [D,F ] ∧ [D,F ] ∧Di3,1 ∧Di4,1 . Thus, H = 0.

Thus, we have proved that s4(a, b, c, d) = 0 for any a, b, c, d ∈ U.

Theorem 5.4. Let U be an associative commutative algebra, let D1, D2, D3 be
derivations of U, and u1, u2, u3 ∈ U. Let

ω = u1D2 ∧D3 + u2D3 ∧D1 + u3D1 ∧D2.

Then (U, ω) is s4-Lie.
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Proof. Note that

jacω = {−u1D3(u2) + u1D2(u3) − u2D1(u3)

+ u2D3(u1) − u3D2(u1) + u3D1(u2)} · Jac

− (u1[D2, D3] + u2[D3, D1] + u3[D1, D2]) ∧ ω,
where

jacω(a, b, c) = ω(ω(a, b), c) + ω(ω(b, c), a)ω(ω(c, a), b),

Jac(a, b, c) =

∣∣∣∣∣∣∣
D1(a) D1(b) D1(c)

D2(a) D2(b) D2(c)

D3(a) D3(b) D3(c)

∣∣∣∣∣∣∣ .
Using this fact one calculates that

s4(a, b, c, d) = 2(jacω(a, b, c)d− jacω(a, b, d)c

+ jacω(a, c, d)b − jacω(b, c, d)a) = 0.

Remark. Recall in 3-dimensional space the no Plucker conditions, and ω =
u1D2 ∧ D3 + u2D3 ∧ D1 + u3D1 ∧ D2 can be presented in the form D ∧ F for
some derivations D and F . Therefore, if U is an algebra of smooth functions on a
manifold and at least one of the elements u1, u2, u3 is invertible, then Theorem 5.4
follows from Theorem 5.3.

Corollary 5.5. [7] Let U be an algebra of functions in 3 variables x, p, z and let
ω : ∧2U → U be the Jacobi bracket ([14, 17]),

ω(a, b) =

∣∣∣∣∣∣∣∣∣∣

∂(a)
∂x

∂(a)
∂p

∂(a)
∂z

∂(b)
∂x

∂(b)
∂p

∂(b)
∂z

−p 0 1

∣∣∣∣∣∣∣∣∣∣
.

Then (U, ω) is s4-Lie.

Proof. Note that

ω =
∂

∂x
∧ ∂

∂p
− p

∂

∂p
∧ ∂

∂z
.

6. Minimality of the Identity s4 = 0 for the Multiplication id ∧ D2

In the previous section we have introduced several classes of s4-Lie algebras. The
natural question appears of whether the identity s4 = 0 can be improved. Below
we prove that this is not possible. We show that for some derivations D and F the
identity s4 = 0 is minimal for the algebras (U,D ∧ F ) and (U, id ∧D2).

Let U = K[x] and

a ◦ b = a ∂2(b) − b ∂2(a).
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As we established above (U, ◦) is s4-Lie. In this section we prove that this algebra
is s4-minimal.

Theorem 6.1. Let X = 0 be a multilinear identity of degree 4 which does not
follow from the anti-commutativity identity acom = 0. Then

s4 = 0 ⇒ X = 0.

Proof. The following set consists of all fifteen types of multilinear anti-
commutative polynomials of degree 4,

{(t1t2)(t3t4), (t1t3)(t2t4), (t2t3)(t1t4), ((t1t2)t3)t4, ((t1t2)t4)t3,
((t1t3)t2)t4, ((t1t3)t4)t2, ((t1t4)t2)t3, ((t1t4)t3)t2, ((t2t3)t1)t4,

((t2t3)t4)t1, ((t2t4)t1)t3, ((t2t4)t3)t1, ((t3t4)t1)t2, ((t3t4)t2)t1}.

Let

X(t1, t2, t3, t4)

= λ1(t1t2)(t3t4) + λ2(t1t3)(t2t4) + λ3(t2t3)(t1t4) + λ4((t1t2)t3)t4

+λ10((t1t2)t4)t3 + λ5((t1t3)t2)t4 + λ11((t1t3)t4)t2 + λ6((t1t4)t2)t3

+λ12((t1t4)t3)t2 + λ7((t2t3)t1)t4 + λ13((t2t3)t4)t1 + λ8((t2t4)t1)t3

+λ14((t2t4)t3)t1 + λ9((t3t4)t1)t2 + λ15((t3t4)t2)t1

be their linear combination (a general anti-commutative polynomial of degree 4).
Let M be the set of 4-tuples {i, j, s, k} such that

• 0 ≤ i, j, s, k ≤ 6;
• i+ j + s+ k = 6 and
• at least one of the components of {i, j, s, k} is 0.

It is easy to see that M has 74 elements. Let R be the set of differential monomials
of the form

∂i1(a(x))∂i2 (b(x))∂i3 (c(x))∂i4 (d(x)),

where (i1, i2, i3, i4) runs in M. Note that X(a(x), b(x), c(x), d(x)) is a linear combi-
nation of 74 elements of the set R.

Suppose that

X(t1, t2, t3, t4) = 0

is an identity on (U, ◦). Make substitutions t1 := a(x), t2 := b(x), t3 := c(x), t4 :=
d(x) by elements of U and calculate the coefficients of the elements of R. They
should be 0. We obtain a system of 74 linear equations in 15 unknowns.
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This system has a one-parameter solution:

λ1 = 0, λ2 = 0, λ3 = 0, λ4 = −λ15,

λ5 = λ15, λ6 = −λ15, λ7 = −λ15,

λ8 = λ15, λ9 = −λ15, λ10 = λ15, λ11 = −λ15,

λ12 = λ15, λ13 = λ15, λ14 = −λ15.

Thus, the identity condition X = 0 implies that

X(t1, t2, t3, t4) = −λ15 s4(t1, t2, t3, t4).

In other words, any multi-linear skew-symmetric identity of degree 4 of the algebra
(U, ◦) follows from the identity s4 = 0.

7. Minimality of s4 = 0 for D ∧ F

We repeat the arguments of the previous section. We save notations of Sec. 6 and
omit technical details. Suppose that f(t1, t2, t3, t4) = 0 is an identity for the algebra
(U, ◦), where

U = K[x1, x2, x3], D = ∂1, F = x1∂2 + x2∂3,

and

a ◦ b = ∂1(a)(x1∂2(b) + x2∂3(b)) − (x1∂2(b) + x2∂3(a)∂1(b)).

Substitute ordered 4 elements of the set of monomials of degree 2,

{x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3},

for (t1, t2, t3, t4). We obtain a linear combination of polynomials of degree 5. Collect
the coefficients of the homogeneous monomials of degree 5. They should be equal
to 0. We obtain a system of 96 linear equations in 15 unknowns λi, 1 ≤ i ≤ 15.
Solve this system. We obtain a solution as in previous section, and find that

f = −λ15s4.

This means that the identity s4 = 0 is a minimal identity for algebras of the form
(U,D∧F ), where U = K[x1, x2, x3] is an associative commutative algebra with two
derivations D = ∂1 and F = x1∂2 + x2∂3.

8. A Simple s4-Lie Algebra

Theorem 8.1. Let A be the subspace of K[x] consisting of polynomials without a
constant term and let

a ∗ b = a∂2b− ∂2(a)b

be a multiplication on A. Then (A, ∗) is s4-Lie and simple.

Proof. By Theorem 5.1 (A, ∗) is s4-Lie.
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Let ei = xi+2, i ≥ −1. Then

ei ∗ ej = (j − i)(i+ j + 3)ei+j .

So, A is graded and filtered,

A = ⊕iAi, Ai = 〈ei〉, Ai ∗Aj ⊆ Ai+j ,

A = A−1 ⊇ A0 ⊇ A1 ⊇ · · · , Ai = ⊕j≥iAj , Ai ∗ Aj ⊆ Ai+j .

Moreover, this algebra is transitive,

A−1 ∗Ai = 0 ⇒ i = −1.

Therefore, any non-trivial ideal J of A contains an element of the form

a = e−1 + a0, a ∈ A0.

Then

ei+1 ∗ a = −(i+ 3)(i+ 2)ei + bi ∈ J, bi ∈ Ai+1

for any i ≥ 0. So, J = A, and A is simple.

9. An s′
5-Lie Algebra

In this section we prove that the algebra (K[x], �), where

a � b = a∂3b− 2∂(a)∂2(b) + 2∂2(a)∂(b)) − ∂3(a)b, ∂ =
∂

∂x
,

satisfies the identity s′5 = 0 but not the identity s5 = 0. Moreover we prove that
the identity s′5 = 0 is not minimal.

Let

alt2,3 f(t1, t2, t3, t4, t5)

= f(t1, t2, t3, t4, t5) − f(t1, t2, t3, t5, t4) − f(t1, t2, t4, t3, t5) + f(t1, t2, t4, t5, t3)

+ f(t1, t2, t5, t3, t4) − f(t1, t2, t5, t4, t3) − f(t2, t1, t3, t4, t5) + f(t2, t1, t3, t5, t4)

+ f(t2, t1, t4, t3, t5) − f(t2, t1, t4, t5, t3) − f(t2, t1, t5, t3, t4) + f(t2, t1, t5, t4, t3)

be the operator that makes the parameters (t1, t2) and (t3, t4, t5) skew-symmetric.
Define a polynomial g ∈ K{t1, . . . , t5} by

g(t1, t2, t3, t4, t5)

=
1
2
alt2,3{−7((t1t2)(t3t4))t5 + 7((t1t3)(t4t5))t2

+ 2((t1t3)t2)(t4t5) − 2(((t1t2)t3)t4)t5 + 2(((t1t3)t4)t5)t2 + 2(((t3t4)t1)t2)t5
− ((t1t2)t3)(t4t5) + ((t3t4)t5)(t1t2) − (((t3t4)t1)t5)t2 + (((t3t4)t5)t1)t2}.

Theorem 9.1. Let U = K[x] or the Laurent polynomials algebra K(x) and let
A = (U, �). Then

• any identity of the algebra A of degree ≤ 4 follows from the anti-commutativity
identity acom = 0;

• the algebra A satisfies the identity g = 0;
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• any multilinear identity of degree 5 of A follows from the identity g = 0;
• the algebra A satisfies the identity s′5 = 0 but not identity s5 = 0;
• the algebra A is simple.

Proof. Direct calculations show that (U, �) satisfies the identity g = 0.
Let Z = Z(t1, . . . , t5) be a generic multi-linear anti-commutative polynomial

of degree 5, i.e., a linear combination of 105 multilinear base elements of a free
anti-commutative algebra generated by 5 elements t1, . . . , t5.

If Z = 0 is an identity for the anti-commutative algebra (U, �), then

Z(a(x), b(x), c(x), d(x), e(x)) = 0

for any 5 polynomials a(x), b(x), c(x), d(x), e(x) ∈ U . Note that Z(a(x), b(x),
c(x), d(x), e(x)) is a linear combination of elements of the form Y (i1,...,i5) =
∂i1(a(x)) · · · ∂i5(e(x)), where i1 + · · · + i5 = 12 and i1 ≥ 0, . . . , i5 ≥ 0. The coeffi-
cients of Y (i1,...,i5) should be 0. These conditions give us a system of linear equations
in 105 unknowns. We solve this system using Mathematica. As a result we find that
the polynomial Y = Y (t1, . . . , t5) should be a linear combination of the following 5
polynomials

− g(t1, t4, t2, t3, t5) + g(t1, t5, t2, t3, t4) − g(t2, t3, t1, t4, t5),

+ g(t1, t2, t3, t4, t5),

g(t1, t4, t2, t3, t5) + g(t2, t3, t1, t4, t5),

g(t1, t3, t2, t4, t5),

g(t1, t5, t2, t3, t4) − g(t2, t3, t1, t4, t5).

In other words, any multilinear identity of degree 5 follows from the identity g = 0.
Take a base of A consisting of the vectors ei = xi+3. Then

ei � ej = (j − i)(i2 + j2 − ij − 7)ei+j .

In particular,

e−3 � ei = (1 + i)(2 + i)(3 + i)ei−3,

e−2 � ei = (−1 + i)(2 + i)(3 + i)ei−2,

e−1 � ei = (−2 + i)(1 + i)(3 + i)ei−1.

Let J0 be a non-trivial ideal of (K[x], �). If

X =
∑
i≥i0

λiei, λi0 �= 0,

write degX = i0 and say that X has degree i0. Prove that J0 has an element X of
degree −3.

Suppose that this is not true, and there exits X ∈ J0 such that i0 > −3, but
there are no elements of J with degree −3. If i0 = −2, then

X ′ = e−1 � X = 4λ−2e−3 +
∑

i≥−1

(i− 2)(i+ 3)(i+ 1)λiei−1 ∈ J0,
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so we obtain an element 0 �= X ′ ∈ J0 with degree −3. If i0 = −1, then

X ′′ = e−2 � X = −2λ−1e−3 +
∑
i≥0

(i+ 3)(i+ 2)(i− 1)λiei−2 ∈ J0

is an element of degree −3. If i0 ≥ 0, then e−3 �X ∈ J0 is also a non-trivial element
of J0 with degree i0−3. In all cases we come to a contradiction with the minimality
of i0, if i9 > −3. This means that J0 contains an element whose degree is −3.

Let 0 �= X =
∑

i≥−3 λiei ∈ J0 be an element with λ−3 �= 0. Then for any j ≥ −2

X � ej+3 =
∑
i≥j

µiei ∈ J0

for some µi ∈ K. Notice that

µj = λ−3(j + 5)(j + 4)(j + 3) �= 0.

So, for any j ≥ −3 the ideal J0 contains non-trivial elements of the form
∑

i≥j µiei,

with µj �= 0. This means that J0 = K[x]. So, (K[x], �) is simple.
The simplicity of (U, �) is true for the Laurent polynomials algebra too.
Let U be the algebra of Laurent polynomials K(x) and J be a non-trivial ideal

of (K(x), �). Then J0 = K[x] ∩ J is an ideal of (K[x], �). Prove that

J0 �= 0.

Let X =
∑

i≥i0
λiei ∈ J. Suppose that i0 < −3. Then

X � e−i0 =
∑
j≥0

γjej ∈ J0

for some γj ∈ K such that

γ0 = −2(3i20 − 7)i0 �= 0.

Therefore, J0 �= 0, and, as we have proved above, J0 = K[x]. In particular,

e0 ∈ J0.

Thus

e0 � ei = (i2 − 7)iei ∈ J.

If i < −3, then (i2 − 7)i �= 0. Thus,

ei ∈ J

for all i ∈ Z. So, (K(x), �) is simple.
Note that

s′5(t1, t2, t3, t4, t5)

= g(t1, t2, t3, t4, t5)/2 − g(t1, t3, t2, t4, t5)/2 − g(t1, t4, t2, t3, t5)

+ g(t1, t5, t2, t3, t4) − 3/2g(t2, t3, t1, t4, t5).

Thus, the skew-symmetric identity s′5 = 0 is a consequence of the identity g = 0.
Therefore the algebra (A, �) satisfies the identity s′5 = 0.
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We have

s5(1, x, x2, x4, x5) = −414720 �= 0.

So, (A, �) does not satisfy the identity s5 = 0.

Remark. In the class of multi-linear skew-symmetric identities, the identity s′5 = 0
for the algebra (U, id ∧ ∂3 − 2∂ ∧ ∂2) is a minimal identity.

10. Malcev Algebras as s′
5-Lie Algebras

Let

malc(t1, t2, t3, t4)

= (t1t3)(t2t4) − ((t1t2)t3)t4 − ((t2t3)t4)t1 − ((t3t4)t1)t2 − ((t4t1)t2)t3.

An anti-commutative algebra with the identity malc = 0 is called Malcev.

Theorem 10.1. Any Malcev algebra is s′5-Lie under the commutator. Moreover,
any Malcev algebra is g-Lie, where g is the polynomial defined in Sec. 9

Proof. Direct calculations show that

−s′5(t1, t2, t3, t4, t5)
= 3{−malc(t1, t2, t3, t4)t5 + malc(t2, (t1t4), t3, t5)

−malc(t3, (t2t4), t5, t1) + malc((t3t4), t1, t2, t5)}
+ 2{malc(t1, t2, t4, t5)t3 + malc(t1, t2, t5, t4)t3 − malc(t1, t4, t3, t5)t2
+ malc(t2, t3, t5, t4)t1 − malc(t2, t1, (t3t5)t4 − malc(t3, t2, (t1t5), t4)

−malc(t3, (t1t2), t4, t5) − malc(t4, t1, (t2t3), t5) − malc(t4, t3, (t1t2), t5)

−malc(t4, (t2t3), t1, t5) + malc((t2t5), t1, t3, t4)}
−malc(t1, t2, t3, t5)t4 − malc(t1, t3, t2, t4)t5 + malc(t1, t3, t4, t5)t2
+ malc(t1, t3, t5, t4)t2 − malc(t2, t1, t3, t4)t5 + malc(t2, t1, t3, t5)t4
+ malc(t2, t3, t4, t5)t1 + malc(t3, t1, t4, t5)t2
−malc(t1, t2t3, t4, t5) − malc(t1, t2t4, t3, t5) + malc(t1, t2t5, t3, t4)

+ malc(t1, t4t5, t2, t3) − malc(t2, t1, t3t4, t5) − malc(t2, t1t3, t4, t5)

+ malc(t2, t1t5, t3, t4) − malc(t2, t3t4, t1, t5)

+ malc(t2, t3t5, t1, t4) − malc(t3, t2, t1t4, t5) + malc(t3, t1t4, t2, t5)

−malc(t4, t2, t1t3, t5) − malc(t4, t1t3, t2, t5) − malc(t4, t1t3, t5, t2)

−malc(t2t3, t1, t4, t5) − malc(t2t4, t1, t3, t5)

+ malc(t3t5, t1, t2, t4) + malc(t4t5, t1, t2, t3).

Therefore,

malc = 0 ⇒ s′5 = 0.

Similar calculations show that g = 0 is an identity for Malcev algebras.
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Remark. This fact also can be deduced from Filippov’s results. Let

h(t1, t2, t3, t4, t5)

= −t1(t2(t5(t3t4))) + t1(t5(t2(t3t4))) + t2(t5(t1(t3t4))) − t2(t1(t5(t3t4)))

+ t5(t1(t4(t2t3))) + t5(t2(t4(t1t3))) − t5(t4(t1(t2t3))) − t5(t4(t2(t1t3)))

− 2t1((t2t5)(t3t4)) − 2t2((t1t5)(t3t4)) − 2t5((t1t3)(t2t4)) + 2t5((t1t4)(t2t3))

be the so-called h-polynomial [5]. The polynomial h plays an important role in the
theory of Malcev algebras. More detailed calculations show that

acom = 0, h = 0 ⇒ g = 0 ⇒ s′5 = 0.

11. Anti-Commutative Algebras with the Identity s5 + 2s′
5 = 0

Recall that an algebra with the identity zinbiel = 0,

zinbiel(t1, t2, t3) = (t1t2 + t2t1)t3 − t1(t2t3),

is called Zinbiel (sometimes chronological) [1, 2, 13, 10].

Example of a Zinbiel algebra. Let U = K[x] and let
∫
a(x) =

∫ x

0 a(x)dx be the
integration operator. Then (U, �), with

a(x) � b(x) = b(x)
∫
a(x),

is Zinbiel.
It is proved in [3] that Zinbiel algebras under the commutator satisfy the identity

tortkara = 0, with

tortkara = (t1t)(t2t) + jac(t1, t2, t)t.

Moreover, the algebra (U, �), where

a(x) � b(x) = a(x)
∫∫

b(x),

under the commutator also satisfies the identity tortkara = 0.
Calculations similar to those in previous sections show that the following theo-

rem is true.

Theorem 11.1. The identity s5 + 2s′5 = 0 is a consequence of the identity
tortkara = 0.

Corollary 11.2. Algebras of integrable functions in a single variable under the
multiplication

(a(x), b(x)) 
→ a(x)
∫
b(x) − b(x)

∫
a(x)

or

(a(x), b(x)) 
→ a(x)
∫∫

b(x) − b(x)
∫∫

a(x)

are (s5 + 2s′5)-Lie algebras.
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12. Independence of the Identities s5 = 0 and s′
5 = 0.

Below we construct a 5-dimensional anti-commutative algebra A = {e1, e2, e3, e4,
e5}. We give the product ei ◦ ej only for i < j and set

ej ◦ ei = −ei ◦ ej if i < j and ei ◦ ei = 0.

In each case we check whether the algebra A satisfies the identities s4 = 0, s5 = 0
and s′5 = 0.

If the multiplication table of A is given by

e1 ◦ e2 = e3, e1 ◦ e3 = e4, e1 ◦ e4 = e5, e1 ◦ e5 = 0,

e2 ◦ e3 = 0, e2 ◦ e4 = e1, e2 ◦ e5 = e2,

e3 ◦ e4 = e3, e3 ◦ e5 = e3, e4 ◦ e5 = 0,

then A satisfies the identity s5 = 0, but

s4(e1, e2, e3, e4) = −2e1 �= 0,

s′5(e1, e2, e3, e4, e5) = e1 �= 0.

So, s5 = 0 is a minimal identity among skew-symmetric multilinear identities, and

s5 = 0 �⇒ s′5 = 0.

If A is an algebra with the multiplication

e1 ◦ e2 = e3, e1 ◦ e3 = e4, e1 ◦ e4 = 0, e1 ◦ e5 = 0,

e2 ◦ e3 = e1, e2 ◦ e4 = e2, e2 ◦ e5 = e3,

e3 ◦ e4 = e5, e3 ◦ e5 = e5, e4 ◦ e5 = 0,

then s′5 = 0 is an identity, but s4 = 0 and s5 = 0 are not identities,

s4(e1, . . . , e4) = −2e5 �= 0,

s5(e1, . . . , e5) = 2e3 − 2e5 �= 0.

So, s′5 = 0 is a minimal identity among skew-symmetric multi-linear identities, and
s5 = 0 is not a consequence of the identity s′5 = 0. Hence,

s′5 = 0 �⇒ s5 = 0.

If the multiplication table of A is given by

e1 ◦ e2 = e3, e1 ◦ e3 = e4, e1 ◦ e4 = e5, e1 ◦ e5 = 0,

e2 ◦ e3 = e5, e2 ◦ e4 = e3, e2 ◦ e5 = e1, e3 ◦ e4 = e1, e3 ◦ e5 = e5, e4 ◦ e5 = 0,

then s′5 = 0 and s5 = 0 are identities, but s4 = 0 is not,

s4(e1, e2, e3, e4) = 2e1 + 2e4 �= 0.

Hence, the following inclusion of classes of generalized Lie algebras is strict:

s4 − Lie ⊂ {s5, s′5} − Lie.
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