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JORDAN ELEMENTS AND LEFT-CENTER OF A FREE

LEIBNIZ ALGEBRA

A. S. DZHUMADIL’DAEV

(Communicated by Alexander Olshanskii)

Abstract. An element of a free Leibniz algebra is called Jordan if it belongs
to a free Leibniz-Jordan subalgebra. Elements of the Jordan commutant of
a free Leibniz algebra are called weak Jordan. We prove that an element of
a free Leibniz algebra over a field of characteristic 0 is weak Jordan if and
only if it is left-central. We show that free Leibniz algebra is an extension of
a free Lie algebra by left-center. We find the dimensions of the homogeneous
components of the Jordan commutant and the base of its multilinear part. We
find criterion for an element of free Leibniz algebra to be Jordan.

1. Introduction

Let K be a field of characteristic 0 and K = K〈t1, t2, . . .〉 be a free magma, i.e.,
a space of non-associative non-commutative polynomials with generators t1, t2, . . . .
An ideal I of K is called T -ideal if for any f(t1, . . . , tk) ∈ I and for any endomor-
phism φ of K,

f(φ(t1), . . . , φ(tk)) ∈ I.

For non-associative, non-commutative polynomials f1, . . . , fl ∈ K, denote by
J(f1, . . . , fl) the T -ideal of K generated by these elements.

Leibniz algebras were introduced by J.L. Loday [3]. They are defined by the
identity lei = 0, where

lei = lei(t1, t2, t3) = (t1t2)t3 − t1(t2t3) + t2(t1t3).

Let
acom = acom(t1, t2) = t1 ? t2 = t1t2 + t2t1,

and
jac = jac(t1, t2, t3) = t1(t2t3) + t2(t3t1) + t3(t1t2),

be anti-commutative and Jacobi polynomials, respectively.
Let (A, ◦) be an algebra with vector space A over a field K and multiplication

A×A → A, (a, b) 7→ a◦b.Define the Lie and Jordan commutators (anti-commutator)
by

[a, b] = a ◦ b− b ◦ a, and a ? b = a ◦ b+ b ◦ a.
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Call the algebras (A, [ , ]) and (A, ?) the minus- and plus-algebras, respectively, of
A.

Let

[q] = {1, 2, . . . , q}.

Here q might be infinite. Let F (X) be the free Leibniz algebra defined on a set
of generators X = {xi|i ∈ [q]}. Let F+(X) be the subalgebra of the plus-algebra
(F (X), ?) generated by X. Let us introduce the following non-commutative, non-
associative polynomials

com = t1t2 − t2t1, leibjor = (t1t2)(t3t4)

(commutativity and metabelian polynomials). We will see that F+(X) is a free
algebra of the variety given by the polynomial identities com = 0 and leibjor = 0
(Theorem 1.2). If q is infinite we will sometimes write F and F+ instead of F (X)
and F+(X).

For a1, . . . , an ∈ F (X), denote by a1 · · · an or a1···n a right-bracketed element
a1 ◦ (· · · (an−1 ◦ an) · · · ). Note that

a1 ? (· · · (an−2 ? (an−1 ? an)) · · · ) = a1 ◦ (· · · (an−2 ◦ (an−1 ? an)) · · · ),

so, in fact, in an expression of the form a1 ? (· · · (an−2 ? (an−1 ? an)) · · · ) one can
change all Jordan multiplications ?, except the last one, to the Leibniz multiplica-
tion ◦.

In [3] it is proved that the following set of elements

V(X) = ∪n{xi1...in
def
= xi1 · · ·xin |xi1 , . . . , xin ∈ X}

forms a base of the free Leibniz algebra F (X). For v = xi1 · · ·xin−1xin ∈ V(X), we
say that v has degree n and that xin−1 is the pre-head and xin is the head of v.

Let P+, p+, p− : F (X) → F (X) be linear maps defined on base elements by

P+(xi1 ◦ (· · · (xin−2 ◦ (xin−1 ◦ xin)) · · · ) = xi1 ? (· · · (xin−2 ? (xin−1 ? xin)) · · · ),

(changing all Leibniz mutiplications by anti-commutator)

p+(xi1 ◦ (· · · (xin−2 ◦ (xin−1 ◦ xin)) · · · ) = xi1 ◦ (· · · (xin−2 ◦ (xin−1 ? xin)) · · · ),

(changing a mutiplication between pre-head and head by anti-commutator)

p−(xi1 ◦ (· · · (xin−2 ◦ (xin−1 ◦ xin)) · · · ) = xi1 ◦ (· · · (xin−2 ◦ [xin−1 , xin ]) · · · )

(changing a multiplication between pre-head and head by commutator).
Call an element a ∈ F (X) Jordan if a ∈ F+(X) and weak Jordan if

a ∈ F (X) ? F (X).

It is clear that any Jordan element is weak Jordan. For example, if q > 1, then

a = x2 ? (x1 ◦ x2)

is a Jordan element, since

a = x2 ◦ (x1 ◦ x2) + (x1 ◦ x2) ◦ x2

= x2 ◦ (x1 ◦ x2) + x1 ◦ (x2 ◦ x2)− x2 ◦ (x1 ◦ x2)

= x1 ? (x2 ? x2)/2 ∈ F+(X),

and b = (x1 ◦ x2) ◦ (x1 ◦ x2) is weak Jordan, since

b = (x1 ◦ x2) ? (x1 ◦ x2)/2 ∈ F (X) ? F (X).
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However, by Theorem 1.2 given below, the element b is not Jordan:

b = 2x1 ◦ (x2 ◦ (x1 ◦ x2))− 2x2 ◦ (x1 ◦ (x1 ◦ x2)),

which implies that

p+(b) = 2x1 ◦ (x2 ◦ (x1 ◦ x2))− 2x2 ◦ (x1 ◦ (x1 ◦ x2))

+ 2x1 ◦ (x2 ◦ (x2 ◦ x1)) − 2x2 ◦ (x1 ◦ (x2 ◦ x1))

6= 2b,

and hence, b 6∈ F+(X) when q > 1.
Note that the Jordan commutant F (X) ? F (X) is an ideal of F (X) with trivial

right-action and left-action as a derivation,

a ◦ (b ? c) = (a ◦ b) ? c+ b ? (a ◦ c),

(b ? c) ◦ a = 0,

for any a, b, c ∈ F (X). Proofs of these facts are easy. See, for example, [1].
Call an element z ∈ F (X) left-central if

z ◦ a = 0

for any a ∈ F (X). Let Z(X) be the left-center, i.e., the set of left-central elements
of F (X):

Z(X) = {z ∈ F (X)|z ◦ a = 0, ∀a ∈ F (X)}.

Let

Z1(X) = {z ∈ F (X)|z ◦ x1 = 0}

be the left-centralizer of the element x1 ∈ X in F (X).
If z ∈ Z(X), then for any y1, y2 ∈ F (X),

(z ◦ y1) ◦ y2 = z ◦ (y1 ◦ y2)− y1 ◦ (z ◦ y2) = 0.

Hence, z ◦ y1 ∈ Z(X). Similarly, y1 ◦ z ∈ Z(X), and so Z(X) is an ideal of F (X).
Likewise, Z1(X) is also an ideal of F (X), and

Z(X) ⊆ Z1(X).

Since

(a ◦ b+ b ◦ a) ◦ c = a ◦ (b ◦ c)− b ◦ (a ◦ c) + b ◦ (a ◦ c)− a ◦ (b ◦ c) = 0,

we have

F (X) ? F (X) ⊆ Z(X).

For the left-center Z(X) of the free Leibniz algebra F (X), denote by Z(X)m1...mq

the homogenous component of Z(X) generated by m1 generators x1, m2 generators
x2, etc, mq generators xq. Recall that a multinomial coefficient is defined by

(
n

m1 · · ·mq

)

=
n!

m1! · · ·mq!
.

We write d|mi if d is a divisor of m1, . . . ,mq. Recall that the Moebius function µ(d)
is defined as (−1)k if d is a product of k different prime numbers and it equals 0 if
d is divisible by greater than one.

The aim of this paper is to prove that the left-center of a free Leibniz algebra
F (X) is generated by the squares a ◦ a, a ∈ F (X).
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Theorem 1.1. Let F (X) be a free Leibniz algebra over a field K of characteristic
0 generated by a set X = {xi|i ∈ [q]}. Then, for any a ∈ F (X) of degree greater
than one, the following conditions are equivalent:

• a ∈ F (X) ? F (X)
• a ∈ Z(X)
• a ∈ Z1(X).

In particular,

Z1(X) = Z(X) = F (X) ? F (X),

and a ∈ F (X) is weak Jordan if and only if a ◦ x1 = 0.
The set of elements of the form xi1 ? xi2...in , where xi1 , . . . , xin ∈ X, spans the

space of weak Jordan elements F (X)?F (X). The elements of the form xi1 ?xi2...iq ,
where i1 . . . iq are permutations of the set {1, . . . , q}, such that i1 6= q, form a base
of the multilinear part of F (X) ? F (X).

Homogeneous components of the left-center have dimension

dim Z(X)m1...mq
=

n− 1

n

(
n

m1 · · · mq

)

−
1

n

∑

d|mi,d>1

µ(d)

(
n/d

m1/d · · · mq/d

)

,

where n = m1 + · · ·+mq. In particular, multilinear part of the left center Z(X) of
degree q has dimension (q − 1)(q − 1)!.

The dimension of degree n part of the left-center generated by q generators is
equal to

dim Z(X)n =
n− 1

n
qn −

1

n

∑

d|mi,d>1

µ(d)qn/d.

Theorem 1.2. Let K be a field of characteristic 0. Then F+(X), the subalgebra of
(F (X), ?) generated by X = {xi|i ∈ [q]}, is isomorphic to a free algebra generated
by X of the variety given by the commutativity and the metabelian identities.

For any a ∈ F (X) of degree greater than one, the following conditions are equiv-
alent:

• a is Jordan element
• P+(a) = 2a
• p+(a) = 2a
• p−(a) = 0.

The dimension of the homogeneous part F+(X)m1...mq
, i.e., the dimension of a

subspace of F+(X) generated by mi elements xi, where i = 1, . . . , q, is equal to

dimF+(X)m1...mq
=

1

2

(∑q
i=1 m

2
i

n(n− 1)
+

n− 2

n− 1

)(
n

m1 · · · mq

)

,

where n =
∑q

i=1 mi. In particular, the multilinear part of F+(X) has dimension
q!/2.

Let us give some applications of these theorems for small q and n. If q = 1 and
F2(X) is a space generated by elements of degree more than one, then

F2(X) = F (X) ? F (X).

If q = 2 then any weak Jordan element of degree no more than 3 is Jordan.
Another application concerns tetrads. Call an element of the form

u = x1 ◦ (· · · (xn−1 ◦ xn) · · · ) + (· · · ((xn ◦ xn−1) ◦ xn−2) · · · ) ◦ x1
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reversible of degree n. Reversible elements of degree 4 are called tetrads.
If A is a free associative algebra, then its Jordan elements are reversible, and

the space of reversible elements is generated by Jordan elements and tetrads, i.e.,
by elements of the form abcd + dcba [2]. Tetrads are not Jordan elements. A
criterion for an element of the free associative algebra to be Jordan is not known.
For the case of Leibniz algebras, Theorem 1.1 gives us the following criterion for
weak Jordan elements: any element a ∈ F (X) is weak Jordan if and only if z is
left-central. Opposite to the associative case, tetrads for Leibniz algebras are weak
Jordan elements. Let a, b, c, d ∈ F (X). Then

a ◦ (b ◦ (c ◦ d)) + ((d ◦ c) ◦ b) ◦ a = (a ◦ b) ◦ (c ◦ d) + b ◦ (a ◦ (c ◦ d))

+ (d ◦ c) ◦ (b ◦ a)− b ◦ ((d ◦ c) ◦ a)

= −(b ◦ a) ◦ (c ◦ d) + b ◦ (a ◦ (c ◦ d))

− (c ◦ d) ◦ (b ◦ a) + b ◦ ((c ◦ d) ◦ a)

= −(b ◦ a) ? (c ◦ d) + b ◦ (a ? (c ◦ d))

= −(b ◦ a) ? (c ◦ d) + b ? (a ? (c ◦ d))

∈ F (X) ? F (X).

It is not true, however, that all reversible elements of Leibniz algebras are weak
Jordan. For example, take

R = R(a, b, c) = a ◦ (b ◦ c) + (c ◦ b) ◦ a

Then

R ◦ d = (a ◦ (b ◦ c) + (c ◦ b) ◦ a) ◦ d

= (a ◦ (b ◦ c)) ◦ d+ ((c ◦ b) ◦ a) ◦ d

= (a ◦ (b ◦ c)) ◦ d− (a ◦ (c ◦ b)) ◦ d

= 2(a ◦ (b ◦ c)) ◦ d− (a ◦ (c ? b)) ◦ d

= 2(a ◦ (b ◦ c)) ◦ d− (a ? (c ? b)) ◦ d

= 2(a ◦ (b ◦ c)) ◦ d

= 2(a ◦ (b ◦ (c ◦ d))− a ◦ (c ◦ (b ◦ d))

− b ◦ (c ◦ (a ◦ d)) + c ◦ (b ◦ (a ◦ d)))

= 2[a, b ◦ c] ◦ d

Note that [a, b ◦ c] ∈ F (X) ?F (X) if b and c are linearly dependent, and R ∈ Z(X)
in this case. If b and c are linearly independent (it might happen if q = |X | > 2),
then it is not necessary that R ◦ d = 0. For example,

R(x1, x2, x3) = x1 ◦ (x2 ◦ x3) + (x3 ◦ x2) ◦ x1 6∈ F (X) ? F (X), q > 2.

So, reversible elements of degree 3 might not be left-central. On the other hand,
the Jacobian of three elements is left-central:

jac(a, b, c) = a ◦ (b ◦ c) + b ◦ (c ◦ a) + c ◦ (a ◦ b)

= (a ◦ b) ◦ c+ b ◦ (a ◦ c) + b ◦ (c ◦ a) + c ◦ (a ◦ b)

= (a ◦ b) ? c+ b ◦ (a ? c)

= (a ◦ b) ? c+ b ? (a ? c)

∈ F (X) ? F (X) ⊆ Z(X).
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Since,

[[a, b], c] + [[b, c], a] + [[c, a], b] = (a ◦ b) ◦ c+ (b ◦ c) ◦ a+ (c ◦ a) ◦ b

= a ◦ [b, c] + b ◦ [c, a] + c ◦ [a, b]

= jac(a, b, c)− jac(a, c, b)

∈ Z(X),

any Leibniz algebra satisfies the following identity of degree 4:

([[a, b], c] + [[b, c], a] + [[c, a], b]) ◦ d = 0.

If one considers identities of Leibniz algebras under the Lie commutator, then there
are no non-trivial identities for Leibniz-Lie algebras until degree 5. When the degree
is 5, two identities appear for Leibniz algebras under the Lie commutator. These
facts and other properties of left-central elements can be found in [3] and [1].

Corollary 1.3. Any reversible element of even degree is weak Jordan.

Proof. By the identity (a ◦ b) ◦ c = −(b ◦ a) ◦ c, we have,

((· · · ((xn ◦ xn−1) ◦ xn−2) · · · ) ◦ x1) ◦ x1 = −((· · · ((xn−1 ◦ xn) ◦ xn−2) · · · ) ◦ x1) ◦ x1

= ((· · · (xn−2 ◦ (xn−1 ◦ xn)) · · · ) ◦ x1) ◦ x1

...

= (−1)n−1(x1 ◦ (· · · (xn−2 ◦ xn) · · · )) ◦ x1

= (−1)n−1(x1 · · ·xn) ◦ x1.

Therefore, if n is even, then

u = x1 ◦ (· · · (xn−1 ◦ xn) · · · ) + (· · · ((xn ◦ xn−1) ◦ xn−2) · · · ) ◦ x1 ∈ Z1(X).

So, by Theorem 1.1 u ∈ F (X) ? F (X) if n is even and q ≥ n.

Corollary 1.4. (charK = 0) The left-center of a free Leibniz algebra is abelian.
Moreover, the factor-algebra of a free Leibniz algebra F (X) over the left-center
Z(X) is isomorphic to a free Lie algebra L(X).

In other words, the free Leibniz algebra F (X) is an extension of the free Lie
algebra L(X) by an anti-symmetric abelian module:

0 → Z(X) → F (X) → L(X) → 0.

Recall that modules of Lie algebras are usually considered as symmetric, i.e., left
and right-actions are connected by the relation

xm+mx = 0,

for any x of the Lie algebra L and for any element m the of L-module M. Here,
we consider a Lie algebra L(X) as a skew-symmetric Leibniz algebra and consider
Z(L) as an anti-symmetric module over a Leibniz algebra, i.e., the left action is
induced by multiplication in the Leibniz algebra and the right-action is trivial:

zx = 0, xz = x ◦ z, x ∈ L(X), z ∈ Z(X).

So, in the realization of the free Leibniz algebra as an extension of free Lie algebra

F (X) = L(X) + Z(X),
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the multiplication is given by

(a+ z1) ◦ (b+ z2) = [a, b] + a ◦ z2, a, b ∈ L(X), z1, z2 ∈ Z(X).

It would be interesting to find a criterion specifying when elements of free Leibniz
algebras are Lie elements. Note that any weak Jordan element of degree more than
2 is weak Lie,

a ? (b ◦ c) = [a, c ◦ b] + [b, a ◦ c]− [c, a ◦ b].

There are weak Lie elements that are not weak Jordan. For example, [a, b ◦ c] is a
such element:

[a, b ◦ c] = a ◦ (b ◦ c)− b ◦ (c ◦ a) + c ◦ (b ◦ a),

which implies

p+([a, b ◦ c])− 2[a, b ◦ c] = −a ◦ [b, c] + b ◦ [c, a]− c ◦ [b, a] 6= 0.

2. The Left-center and the Jordan commutant

Lemma 2.1. The condition z ∈ Z(X), where X = {x1, . . . , xq}, is equivalent to
the condition z ◦ xi = 0 for any i = 1, 2, . . . q.

Proof. If z ◦ a = 0 for any a ∈ F (X), then, in particular, z ◦ xi = 0 for any
generator xi ∈ X.

Conversely, suppose that z ◦ xi = 0 for any generator xi ∈ X. Let v be any
base element of the free Leibniz algebra F (X). By induction on the degree n of
v ∈ V(X), let us prove that z ◦ v = 0. The base of induction n = 1 is trivially
true by our assumption. Suppose that our statement is true for any base element
of length n − 1. Then any base element of length n can be presented in the form
v = xi ◦ u, where u is a base element of length n− 1. Therefore,

z ◦ v = z ◦ (xi ◦ u) = (z ◦ xi) ◦ u+ xi ◦ (z ◦ u) = 0.

So, our statement is true for n. �
Consider the following set of permutations

S(k, n) = {σ ∈ Symn|σ(1) < · · · < σ(k − 1) < σ(k) = n

> σ(k + 1) > · · · > σ(n)}.

Let S(n) = ∪n
k=0S(k, n). Note that |S(n)| = 2n−1.

The following multiplication rule holds in free Leibniz algebras.

Lemma 2.2. For any a1, . . . , an+1 ∈ F (X),

a1...n ◦ an+1 =

n∑

k=0

(−1)n−k
∑

σ∈S(k,n)

aσ n+1.

In particular, for any u, v ∈ V(X), the product u ◦ v is a linear combination of
elements w ∈ V(X) whose heads coincide with a head of v.

Proof. We will use induction on n. If n = 1, then there is nothing to prove.
Suppose that our statement is true for n− 1. Then

a12...n ◦ an+1 = (a1 ◦ a2...n) ◦ an+1

= a1 ◦ (a2...n ◦ an+1)− a2...n ◦ (a1 ◦ an+1)

= a1 ◦
∑

β∈S′

(−1)|β̄|aβ rev(β̄)n+1 −
∑

β∈S′

(−1)|β̄|aβ rev(β̄) 1n+1,
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where S′ is a set of subsequences β = β1 . . . βk of the sequence 2 . . . n such that
βk = n and β1 < . . . < βk, and β̄ = β̄1 . . . β̄n−k−1 is the complement subsequence
of β in 2 . . . n, such that β̄1 < . . . < β̄n−k−1. Hence,

a12...n ◦ an+1 =
∑

β∈S′

(−1)|β̄|a1 β rev(β̄)n+1 −
∑

β∈S′

(−1)|β̄|aβ rev(β̄) 1n+1.

Note that

S(n) = S1 ∪ S2,

where S1 is a set of subsequences α = α1 . . . αk of the sequence 1 . . . n such that
α1 = 1 and αk = n, and S2 is a set of subsequences α = α1 . . . αk of the sequence
1 . . . n such that α1 > 1 and αk = n. Then α = α1 . . . αk ∈ S1 implies that α = 1 β,
where β = α2 . . . αk ∈ S′. Furthermore, α = α1 . . . αk ∈ S2 implies that ᾱ = 1 β̄,
where β̄ = ᾱ2 . . . αn−k and β = β1 . . . βk ∈ S′. Therefore,

a12...n ◦ an+1 =
∑

α∈S1

(−1)|ᾱ|aαrev(ᾱ)n+1 −
∑

α∈S2

(−1)|ᾱ|−1aαrev(ᾱ)n+1

=
∑

α∈S(n)

(−1)|α|aα rev(ᾱ) n+1.

Thus, our statement is true for n as well. �
Example 1. Lemma 2.2 allows us to construct a multiplication table for a free

Leibniz algebra. For example,

a1a2a3a4 ◦ b = a1a2a3a4b− a1a2a4a3b− a1a3a4a2b − a2a3a4a1b

+ a1a4a3a2b+ a2a4a3a1b+ a3a4a2a1b− a4a3a2a1b,

and the product of two base elements u = x3x1x3x2 and v = x2x1 is

x3x1x3x2 ◦ x2x1 = x3x1x3x2x2x1 − x3x1x2x3x2x1 − x3x3x2x1x2x1

− x1x3x2x3x2x1 + x3x2x3x1x2x1 + x1x2x3x3x2x1

+ x3x2x1x3x2x1 − x2x3x1x3x2x1.

Lemma 2.3. Let a ∈ F (X). Then z is left-central if and only if z ◦ x1 = 0. In
particular, Z(X) = Z ∩ F (X), where Z is the left-center of F = F (x1, x2, . . .).

Proof. By Lemma 2.2 an element z ◦x1 is a linear combination of base elements
with head x1, and an element z ◦ xk can be obtained from the element z ◦ x1

by changing heads of base elements; that is, changing x1 to xk.Therefore, the
conditions z ◦ xk = 0 and z ◦ x1 = 0 are equivalent for any k = 1, . . . , q. So, by
Lemma 2.1

z ∈ Z(X) ⇐⇒ z ∈ Z1(X).

�

Lemma 2.4. Let z be a left-central element generated by x1, . . . , xq,

z = z(x1, . . . , xq) =
∑

λi1...inxi1 · · ·xin ∈ Z(X),

where the summation runs over i1 . . . in ∈ [q]. Then z is left-central as an element
of the free Leibniz algebra F. Moreover, for any substitution of xi by elements
ai ∈ F, i = 1, . . . , q, we once again obtain a left-central element

z′ = z(a1, . . . , aq) =
∑

i1,...,in∈[q]

λi1...inai1 · · ·ain ∈ Z.
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Proof. By Lemma 2.3, z ∈ Z(X) implies that z ∈ Z. By Lemma 2.2, for any
i1 . . . in ∈ [q] and any u ∈ F , we have

(xi1 ◦ (· · · (xin−1 ◦ xin) · · · ) ◦ u =

n∑

k=0

(−1)n−k
∑

σ∈S(k,n)

xiσ(1)
◦ (· · · (xiσ(n)

◦ u) · · · ).

Therefore, for any substitution xi 7→ ai, we have

(ai1 ◦ (· · · (ain−1 ◦ ain) · · · ) ◦ u =

n∑

k=0

(−1)n−k
∑

σ∈S(k,n)

aiσ(1)
◦ (· · · (aiσ(n)

◦ u) · · · ).

So, the condition

z =
∑

i1,...,in∈[q]

λi1...inxi1 ◦ (· · · (xin−1 ◦ xin) · · · ) ∈ Z(X)

implies the condition

n∑

k=0

(−1)n−k
∑

σ∈S(k,n)

∑

i1,...,in∈[q]

λi1...inxiσ(1)
◦ (· · · (xiσ(n)

◦ u) · · · ) = 0.

Now take u = xl and collect all coefficients of z ◦ xl at base elements xj1...jn l,
where j1, . . . , jn ∈ [q], and denote their sum as γj1...jn l. Note that γj1...jn l = γj1...jn
does not depend on l. Therefore,

z ◦ xl =
∑

j1...jn∈[q]

γj1...jnxj1...jn l.

By Lemma 2.2 the element z′ = z(a1, . . . , aq) constructed from z = z(x1, . . . , xq)
by replacing xi with ai ∈ F has the same property:

z′ ◦ xl =
∑

j1...jn

γj1...jnaj1 ◦ (· · · (ajn ◦ xl) · · · ).

Hence, the condition

z =
∑

i1,...,in∈[q]

λi1...inxi1 · · ·xin ∈ Z(X)

implies that γj1...jn = 0 for all j1, . . . , jn ∈ [q]. Consequently,

z′ ◦ xl =
∑

j1...jn

γj1...jnaj1 ◦ (· · · (ajn ◦ xl) · · · ) = 0.

In other words,

z = z(x1, . . . , xq) ∈ Z(X) ⇒ z′ = z(a1, . . . , aq) ∈ Z.

�

Let F (X)m1 ...mq
be a subspace of F (X) generated by ms elements xs, where

s = 1, 2, . . . , q. Let Fn(X) be the subspace of F (X) generated by the base elements
v ∈ V(X) of length n. Then

Fn(X) = ⊕k≥1 ⊕m1+···+mq=n Fm1 ...mq
.
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Lemma 2.5. For any non-negative integers i1, . . . , iq, j1, . . . , jq,

F (X)i1 ... iq ◦ F (X)j1,...,jq ⊆ F (X)i1+j1,...,iq+jq .

In particular, for any positive integers n,m,

F (X)n ◦ F (X)m ⊆ Fn+m(X).

Proof. Follows from Lemma 2.2. �
Let Z0 be the set of non-negative integers and

Zn
0 = Z0 × · · · × Z0

︸ ︷︷ ︸

n times

.

Let πm1,...,mq
: F (X) → F (X)m1,...,mq

be a projection map.

Lemma 2.6. Let z = z(x1, . . . , xq) ∈ Z(X). Then for any α ∈ Z
q
0, παz ∈ Z(X).

Proof. For any λ1, . . . , λq ∈ K by Lemma 2.4

z′ = z(λ1x1, . . . , λqxq) ∈ Z(X).

Present z as a sum of homogeneous components:

z = z(x1, . . . , xq) =
∑

i1...iq∈Z
q
0

πi1...iqz.

Then,

z′ =
∑

i1...iq∈Z
q
0

λi1
1 · · ·λiq

q πi1...iqz ∈ Z(X).

Since λ1, . . . , λq ∈ K are arbitrary elements of the infinite field K, standard rea-
sonings based on the Vandermonde determinant shows that

πi1...iqz ∈ Z(X)

for any non-negative integers i1, . . . , iq. �
For a permutation σ ∈ Symq written in one-line form, denote by l(σ) and r(σ)

the parts of σ to the left and to the right of q, respectively. Denote by rev(σ) the
sequence σ written in reverse order. For example, if σ = 3264751, then l(σ) = 3264,
r(σ) = 51 and rev(σ) = 1574623.

Recall that a shuffle product αttβ of sequences α = α1 . . . αk and β = β1 . . . βl is
defined as a sum of sequences γ = γ1 . . . γk+l, such that γi ∈ {α1, . . . , αk, β1, . . . βl},
for any i = 1, . . . , k + l. Moreover, if γi1 = α1, . . . γik = αk, γj1 = β1, . . . , γjl = βl,
then i1 < · · · < ik and j1 < · · · < jl. We will write τ ∈ αttβ if τ is one such
summands. For example, if α = 14, β = 32, then

αttβ = 1432 + 1342 + 1324 + 3142 + 3124 + 3214,

1342 ∈ αttβ, 3421 6∈ αttβ.

Lemma 2.7. If b =
∑

µ∈Symn,µ(n)=n λµaµ, then

b ◦ an+1 = (−1)n
∑

σ∈Symn

(−1)|l(σ)|+1




∑

τ∈l(σ)ttrev(r(σ))

λτ n



 aσ n+1.
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Proof. By Lemma 2.2

b ◦ an+1 =
∑

µ∈Symn,µ(n)=n

λµaµ ◦ an+1

=
∑

µ∈Symn

µ(n)=n

n∑

k=0

∑

α∈S(k,n)

λµ(−1)n−k
(
aµ(α(1)) . . . aµ(α(k−1))aµ(α(k)) · . . .

· aµ(α(k+1)) . . . aµ(α(n))an+1

)

=
∑

µ∈Symn

µ(n)=n

n∑

k=0

∑

α∈S(k,n)

λµ(−1)n−k
(
aµ(α(1)) . . . aµ(α(k−1))aµ(n) · . . .

· aµ(α(k+1)) . . . aµ(α(n))an+1

)

=
∑

µ∈Symn

µ(n)=n

n∑

k=0

∑

α∈S(k,n)

λµ(−1)n−k
(
aµ(α(1)) . . . aµ(α(k−1))an · . . .

· aµ(α(k+1)) . . . aµ(α(n))an+1

)

= (−1)n
∑

σ∈Symn

∑

τ∈l(σ)ttrev(r(σ))

λτ n(−1)k
(
aσ(1) . . . aσ(k−1)an · . . .

· aσ(k+1) . . . aσ(n)an+1

)

= (−1)n
∑

σ∈Symn

(−1)|l(σ)|+1




∑

τ∈l(σ)ttrev(r(σ))

λτ n



 aσ n+1.

�

Example 2. If n = 4 and

z = λ1234x1x2x3x4 + λ1324x1x3x2x4 + λ2134x2x1x3x4

+ λ2314x2x3x1x4 + λ3124x3x1x2x4 + λ3214x3x2x1x4,

then

z ◦ x5 = λ1234x1x2x3x4x5 + (−λ1234 − λ1324 − λ3124)x1x2x4x3x5

+ λ1324x1x3x2x4x5 + (−λ1234 − λ1324 − λ2134)x1x3x4x2x5

+ (λ1324 + λ3124 + λ3214)x1x4x2x3x5 + (λ1234 + λ2134 + λ2314)x1x4x3x2x5

+ λ2134x2x1x3x4x5 + (−λ2134 − λ2314 − λ3214)x2x1x4x3x5

+ λ2314x2x3x1x4x5 + (−λ1234 − λ2134 − λ2314)x2x3x4x1x5

+ (λ2314 + λ3124 + λ3214)x2x4x1x3x5 + (λ1234 + λ1324 + λ2134)x2x4x3x1x5

+ λ3124x3x1x2x4x5 + (−λ2314 − λ3124 − λ3214)x3x1x4x2x5

+ λ3214x3x2x1x4x5 + (−λ1324 − λ3124 − λ3214)x3x2x4x1x5

+ (λ2134 + λ2314 + λ3214)x3x4x1x2x5 + (λ1234 + λ1324 + λ3124)x3x4x2x1x5

− λ3214x4x1x2x3x5 − λ2314x4x1x3x2x5 − λ3124x4x2x1x3x5

− λ1324x4x2x3x1x5 − λ2134x4x3x1x2x5 − λ1234x4x3x2x1x5.
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3. Base for Leibniz-Jordan algebras

Let [q] = {1, 2, . . . , q} and X = {xi|i ∈ [q]}. Let yi1...in−2in−1in , where i1, . . . in ∈
[q], denote symbols that satisfy the conditions

yi1...in−2in−1in = yi1...in−2inin−1 , ∀i1, . . . , in−2, in−1, in ∈ [q].

Let G(X) be the linear span of the elements yi1...in , where i1, . . . , in ∈ [q]. Take the
set of elements {yi1...in |i1, . . . , in ∈ [q], and in−1 ≤ in if n > 1} as a base of G(X).
Define a multiplication on G(X) by

yi1...inyj1...jm = 0, if n > 1 and m > 1,

yi1yj1...jm = yi1j1...jm , if n = 1,

yi1...inyj1 = yj1i1...in , if m = 1.

If n = m = 1, then

yi1yj1 = yi1j1 = yj1i1 = yj1yi1
If n = 1,m > 1, then

yi1yj1...jm = yi1j1...jm = yj1...jmyi1 .

Similarly, if n > 1,m = 1, then

yi1...inyj1 = yj1i1...in = yj1yi1...in ,

If n > 1,m > 1, then

yi1...inyj1...jm = 0 = yj1...jmyi1...in .

So, the multiplication of the algebra G(X) is well-defined. It is easy to see that the
algebra G(X) is commutative and metabelian:

(ab)(cd) = 0, ∀a, b, c, d ∈ G(X).

Moreover, G(X) is isomorphic to a free algebra of the variety of metabelian com-
mutative algebras generated on the set X = {xi|i ∈ [q]}. An isomorphism can be
given by the rule

yi1...in−1in 7→ xi1 (· · · (xin−1xin) · · · ).

It is easy to check that this assignment yields an isomorphism. By the metabelian
identity, any non right-bracketed and any non left-bracketed element should vanish.
By the commutativity identity,

xi1(· · · (xin−2 (xin−1xin)) · · · ) = xi1(· · · (xin−2 (xinxin−1)) · · · ),

and hence, any left-bracketed element can be reduced to a right-bracketed element.
In [1] it was established that the free Leibniz algebra F (X) under Jordan multi-

plication a ? b = a ◦ b+ b ◦ b satisfies the commutativity and metabelian identities.
Set

x+
i1...in−2in−1in

=

{

xi1 ◦ (· · · (xin−2 ◦ (xin−1 ? xin)) · · · ), in−1 ≤ in, if n > 1,

xi1 if n = 1.

Let us prove that set of elements

V+(X) = {x+
i1...in

|i1, . . . , in ∈ [q], and in−1 ≤ in if n > 1}

forms a base of F+(X).
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First, note that V+(X) ⊂ F (X) :

x+
i1...in−2in−1in

= xi1 ? (· · · (xin−2 ? (xin−1 ? xin)) · · · ) ∈ F+(X).

Suppose that the elements x+
i1...in

are linearly dependent:
∑

i1,...,in∈[q],in−1≤in

λi1...inx
+
i1...in

= 0,

for some λi1...in ∈ K,n > 1. Then,

0 =
∑

i1,...,in∈[q],in−1≤in

λi1...in−2in−1in(xi1...in−2in−1in + xi1...in−2inin−1)

=
∑

i1,...,in∈[q],in−1<in

λi1...in−2in−1in(xi1...in−2in−1in + xi1...in−2inin−1)

+
∑

i1...in−1∈[q]

2λi1...in−1in−1xi1...in−2in−1in−1

=
∑

i1,...,in∈[q],in−1<in

λi1...in−2in−1inxi1...in−2in−1in

+
∑

i1,...,in∈[q],in−1>in

λi1...in−2inin−1xi1...in−2in−1in

+
∑

i1...in−1∈[q]

2λi1...in−1in−1xi1...in−2in−1in−1 .

Since elements xi1...in are base elements of F (X), this means that λi1...in = 0 for
all i1, . . . in ∈ [q]. In other words, elements x+

i1...in
, where in−1 ≤ in, if n > 1, are

linearly independent.
Now let us prove that any element a ∈ F+(X) can be presented as a linear

combination of elements v ∈ V+(X). We can assume that a is a homogeneous
element. Let n be the degree of a. We proceed by induction on n. If n = 1 our
statement is evident. Suppose that for n − 1 our statement is true and n > 1.
Since any element of degree n is a linear combination of anti-commutators of two
base elements of degree < n, we have to prove that x+

i1...ik
? x+

j1...jn−k
is a linear

combination of base elements of the form x+
s1...sn ∈ V+(X). This fact is easy to

establish. If k > 1, then
x+
i1...ik

? x+
j1...jn−k

= 0.

If k = 1 and n > 2 then

x+
i1
? x+

j1...jn−1
= xi1 ◦ x

+
j1...jn−1

+ x+
j1...jn−1

◦ xi1 = xi1 ◦ x
+
j1...jn−1

= x+
i1j1...jn−1

.

If k = 1 and n = 2, then

x+
i1
? x+

j1
= xi1 ? xj1 = xi1j1 .

So, we have proved that the set V+(X) forms base of F+(X). Note that the map

G(X) → F+(X), yi1...in 7→ x+
i1...in

is a homomorphism of algebras and is one-to-one.
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So, we have established the following result.

Lemma 3.1. Let X = {xi|i ∈ [q]}. Let G(X) be a free algebra generated by X of
the variety given by the commutativity identity com = 0 and the metabelian identity
leibjor = 0, where

com = t1t2 − t2t1, leibjor = (t1t2)(t3t4).

Then F+(X), the subalgebra of (F (X), ?) generated by X = {xi|i ∈ [q]}, is isomor-
phic to G(X). An isomorphism is given by

G(X) → F+(X),

yi1...in 7→ x+
i1...in

def
= xi1...in−2in−1in + xi1...in−2inin−1 ,

where i1, . . . , in ∈ [q].

4. Criterion for Jordan elements

Lemma 4.1. a ∈ F+(X) if and only if a = p+b for some b ∈ F (X).

Proof. If a = p+b and b =
∑

i1,...,in∈[q] λi1...inxi1...in , then by the rule

a ◦ (b ? c) = a ? (b ? c),

we have

a = p+b =
∑

i1,...,in∈[q]

λi1...in(xi1...in−2in−1in + xi1...in−2inin−1)

= xi1 ? (· · · (xin−2 ? (xin−1 ? xin)) · · · )

∈ F+(X).

Conversely, if a ∈ F+(X), then by Lemma 3.1 a is a linear combination of
elements of a form

x+
i1...in

= xi1...in−2in−1in + xi1...in−2inin−1 , i1, . . . , in ∈ [q].

Since

x+
i1...in

= p+xi1...in ,

this means that a is a linear combination of elements of a form p+xi1...in . So,
a = p+b for some b ∈ F (X). �

Lemma 4.2. p2+ = 2p+.

Proof. For any base element v = xi1...in ∈ V(X) we have

p+v = p+xi1...in = xi1...in−2in−1in + xi1...in−2inin−1 .

Thus,

p2+v = 2(xi1...in−2in−1in + xi1...in−2inin−1) = 2p+v.

Therefore p2+a = 2p+a, for any a ∈ F (X). �

Lemma 4.3. For any a ∈ F (X) the following conditions are equivalent

• p+a = 2a
• p−a = 0
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Proof. It is evident that p−p+ = 0. Therefore, if p+a = 2a, then

pa = p−((p+a)/2) = p−p+(a)/2 = 0.

Conversely, suppose that pa = 0 for a =
∑

i1,...,in∈[q] λi1...inxi1...in ∈ F (X). Since

p−a =
∑

i1,...,in∈[q]

λi1...in(xi1...in−2in−1in − xi1...in−2inin−1)

=
∑

i1,...,in∈[q],in−1<in

(λi1...in−2in−1in − λi1...in−2inin−1)xi1...in−2in−1in

the condition p−a = 0 gives us that

λi1...in−2in−1in = λi1...in−2inin−1 , ∀i1, . . . in ∈ [q].

Therefore,

a =
∑

i1,...,in∈[q],in−1<in

λi1...in−2in−1in(xi1...in−2in−1in + xi1...in−2inin−1)

+
∑

i1,...,in−1∈[q]

λi1...in−2in−1in−1xi1...in−2in−1in−1

=
∑

i1,...,in∈[q],in−1<in

λi1...in−2in−1inp+(xi1...in−2in−1in)

+
∑

i1,...,in−1∈[q]

λi1...in−2in−1in−1p+(xi1...in−2in−1in−1/2).

In other words, a = p+b, for b ∈ F (X) given by

b =
∑

i1,...,in∈[q],in−1<in

λi1...in−2in−1inxi1...in−2in−1in

+
∑

i1,...,in−1∈[q]

λi1...in−2in−1in−1xi1...in−2in−1in−1/2.

Therefore, by Lemma 4.2

p+a = p2+b = 2p+b = 2a.

�

5. Dimension and base of left-center

Consider elements of F (X) ? F (X). Call elements of the form u
(s)
i1...isis+1...in

=

xi1...is ? xis+1...in as s-type elements. For 1-type elements, u
(1)
i1...in

= xi1 ? xi2...in ,

where n > 2, call xi1 the leader. If n = 2, call xi1 the leader of u
(1)
i1i2

= xi1 ? xi2 if
i1 ≤ i2.

Lemma 5.1. The degree n part of F (X) ?F (X) is generated by 1-type elements of
the form xi1 ? xi2...in , where xi1 , . . . , xin ∈ X.

Proof. Since F (X)?F (X) is generated by elements of the form u
(s)
i1...isis+1...in

=

xi1...is ? xis+1...in , it is enough to prove that any s-type element u
(s)
i1...isis+1...in

can

be presented as a linear combination of 1-type elements of the form u
(1)
i1i2...in

.
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We will use induction on s = 1, 2, . . . , n− 1. If s = 1, there nothing is to prove.
Suppose that the statement is true for s− 1.Then

u
(s)
i1...in

= (xi1 ◦ xi2...is) ? xis+1...in

= (xi1 ◦ xi2...is) ◦ xis+1...in + xis+1...in ◦ (xi1 ◦ xi2...is)

= xi1 ◦ (xi2...is ◦ xis+1...in)− xi2...is ◦ (xi1 ◦ xis+1...in)

+ (xis+1...in ◦ xi1) ◦ xi2...is + xi1 ◦ (xis+1...in ◦ xi2...is)

= xi1 ◦ (xi2...is ? xis+1...in)− xi2...is ◦ (xi1 ◦ xis+1...in)

− (xi1 ◦ xis+1...in) ◦ xi2...is

= xi1 ◦ (xi2...is ? xis+1...in)− xi2...is ? (xi1 is+1...in).

Now, we have

xi1 ◦ (xi2...is ? xis+1...in) = xi1 ? (xi2...is ? xis+1...in).

Therefore, the element xi1 ◦ (xi2...is ? xis+1...in) can be presented as a linear combi-
nation of 1-type elements. By induction, the element xi2...is ? xi1 is+1...in is also a

linear combination of 1-type elements. Thus, the element u
(s)
i1...in

can be presented

as a linear combination of elements of the form u
(1)
j1...jn

. Hence, our statement is
true for s. �

Lemma 5.2. Any multilinear 1-type element u
(1)
n i1...in−1

of degree n with leader xn

is a linear combination of multilinear 1-type elements with leader xi1 , with i1 < n.

Proof. If n = 2 this statement is evident: u21 = x2 ? x1 = x1 ? x2 = u
(1)
12 .

Suppose that our statement is true for n− 1 > 1. We then have

u
(1)
n i1...in−1

= xn ? xi1 ... in−1

= xn ◦ xi1 ... in−1 + xi1 ... in−1 ◦ xn

= (xn ◦ xi1) ◦ xi2...in−1 + xi1 ◦ (xn ◦ xi2...in−1)

+ xi1 ◦ (xi2...in−1 ◦ xn)− xi2...in−1 ◦ (xi1 ◦ xn)

= −(xi1 ◦ xn) ◦ xi2...in−1 + xi1 ◦ (xn ◦ xi2...in−1)

+ xi1 ◦ (xi2...in−1 ◦ xn)− xi2...in−1 ◦ (xi1 ◦ xn)

= −xi1n ? xi2...in−1 + xi1 ◦ (xn ? xi2...in−1)

= −xi1n ? xi2...in−1 + xi1 ? (xn ? xi2...in−1).

By induction, the element x′
n−1 ?x1...x′

n−2
, where we set x′

l = xil+1
, i = 1, . . . , n− 2,

and x′
n = xi1n, is a linear combination of 1-type elements with leader x′

l, where
l ≤ n−2. Since x′

l = xil+1
and il+1 < n, this means that the element xi1n ?xi2...in−1

is a linear combination of elements of 1-type of degree n with leader xi, where i < n.
It is evident that the element xi1 ? (xn ? xi2...in−1) is a linear combniation of 1-type
elements with leader xi1 , where i1 < n. Therefore, any 1-type element of the form

u
(1)
n i1...in−1

is a linear combination of 1-type elements with leader xi1 , with i1 < n.

Our statement is proved for n. �
Example 3.

x3 ? x12 = x1 ? (x2 ? x3)− x2 ? x13,

x4 ? x123 = x1 ? (x23 ? x4)− x2 ? (x14 ? x3) + x3 ? x214,

x5 ? x1234 = x1 ? (x5 ? x234)− x2 ? (x15 ? x34) + x3 ? (x4 ? x215)− x4 ? x3215.
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6. Proof of Theorem 1.1

We know that F (X) ? F (X) ⊆ Z(X), and by Lemma 2.3, Z(X) = Z1(X). So,
to prove Theorem 1.1 it is enough to prove that

z = z(x1, . . . , xq) ∈ Z(X) ⇒ z ∈ F (X) ? F (X).

By Lemma 2.6 we can assume that the element z ∈ Z(X) is homogeneous.
Denote by ν1(z) = z1(x

′
1, x

′′
1 , x2, . . . , xq) ∈ F (X ′), whereX ′ = {x′

1, x
′′
1 , x2, . . . , xq},

the element

ν1(z) = z(x′
1 + x′′

1 , x2, . . . , xq)− z(x′
1, x2, . . . , xq)− z(x′′

1 , x2, . . . , xq).

For a homogeneous element z = z(x1, . . . , xq) ∈ Z(X)m1...mq
= Z ∩ F (X)m1...mq

,
define the degree degxi

z = mi if the entrance of xi in each component of z is mi.
If degx1z = 1, then ν1z = 0. By Lemma 2.4

ν1(z) ∈ Z

and

degx1z = m1 > 1,

which implies

degx1′
(ν1(z)) < m1 and degx1′′

(ν1(z)) < m1.

Conversely, if ν1(z) = z1(x1′ , x1′′ , x2, . . . , xq) ∈ Z(X ′), then

z(x1, . . . , xq) = (2m1 − 2)−1ν1(z)(x1, x1, x2, . . . , xq) ∈ Z(X).

Moreover, if ν1(z) = z1(x1′ , x1′′ , x2, . . . , xq) ∈ F (X ′) ? F (X ′), then

z(x1, . . . , xq) = (2m1 − 2)−1ν1(z)(x1, x1, x2, . . . , xq) ∈ F (X) ? F (X).

Repeat this procedure mi times for each i = 1, . . . , q. We see that we can assume
the element z ∈ Z(X) ⊂ Z is not only homogeneous, but is also multilinear, i.e.,
mi = 1, for any i = 1, . . . , q. Therefore, it is enough to prove that any multilinear
left-central element is a Jordan element.

Consider the multilinear left-central element z = z(x1, . . . , xq) ∈ Z(X). We must
demonstrate that z ∈ F (X) ? F (X).

Let L(X) be the free Lie algebra with generators X = {x1, x2, . . . , xq}. The
multilinear part of the free Lie algebra of degree q has a base generated by elements
of the form [xσ(1), [· · · , [xσ(q−1), xq] · · · ]], where σ runs through the permutations
of Symq such that σ(q) = q (see [5]). Since

L(X) ∼= K〈X〉/J(acom, jac) ∼= K〈X〉/J(acom, lei) ∼= F (X)/J(acom),

we can present z ∈ F (X) in the form

z =
∑

σ∈Symq

σ(q)=q

λσxσ (modulo F (X) ? F (X))

for some λσ ∈ K.
Then by Lemma 2.7,

z ◦ xq+1 = (−1)q
∑

σ∈Symq

(−1)|l(σ)|+1




∑

τ∈l(σ)ttrev(r(σ))

λτ q



 xσ q+1.
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We see that the coefficient of z ◦ xq+1 at xσ, where σ(1) = q, σ(q + 1) = q + 1, is
equal to λrev(σ(2)...σ(q)). Example 2 given above demonstrates this fact in the case
of q = 4. Therefore,

z ◦ xq+1 = 0,

which implies that
λσ = 0, ∀σ ∈ Symq, σ(q) = q.

So, z ∈ F (X) ? F (X), which proves the main part of Theorem 1.1. The part of
Theorem 1.1 concerning dimensions is easy combinatorics.

As we have proved,

dimZ(X)m1...mq
+ dimL(X)m1...mq

= dimF (X)m1...mq
.

By the Witt theorem [5],

dimL(X)m1...mq
=

1

n

∑

d|mi

µ(d)

(
n/d

m1/d · · · mq/d

)

,

where n = m1 + · · ·+mq. By the Loday Theorem [4],

dimF (X)m1...mq
=

(
n

m1 · · · mq

)

.

Therefore,

dimZ(X)m1...mq
=

(n− 1)

n

(
n

m1 · · ·mq

)

−
∑

d|mi,d>1

µ(d)

(
n/d

m1/d · · · mq/d

)

.

In particular,
dimZ(X)1 ···1 = (q − 1)(q − 1)!.

It is easy to see that the number of 1-type multilinear elements is equal to (q −
1)(q− 1)!. Therefore, by Lemma 5.2, the set of multilinear 1-type elements forms a
base of the multilinear part of F (X) ? F (X).

In general, by Lemma 5.1, the set of 1-type elements generates the homogeneous
part of F (X) ? F (X).

7. Proof of Theorem 1.2

By the identity
a ◦ (b ? c) = a ? (b ? c),

it is clear that
P+ = p+.

By Lemmas 4.1, 4.2, 4.3 and 3.1, all statements of Theorem 1.2 except the part
concerning dimensions have been proven.

Let us calculate the dimension of the homogeneous part of G(X)m1...mq
. Let R

be the number of sequences of length n = m1 + · · · + mn with components in [q]
such that last two components are equal. Then

R = |{i1 . . . in−1in−1|i1, . . . in−1 ∈ [q]}|

=

q
∑

s=1

(m1 + · · ·+ms−1 +ms+1 + · · ·mq +ms − 2)!

m1! · · ·ms−1!(ms − 2)!ms+1! · · ·mq!

=

(
m1 + · · ·+mq − 2

m1 · · ·ms−1 ms − 2 ms+1 · · ·mq

) ∑q
s=1 m

2
s −ms

(m1 + · · ·+mq)(m1 + · · ·+mq − 1)
.



JORDAN ELEMENTS OF FREE LEIBNIZ ALGEBRAS 49

The number of sequences with components in [q] where each i ∈ [q] appears mi

times is

T =

(
m1 + · · ·+mq

m1 · · · mq

)

.

Therefore, the number of base elements of G(X)m1...mq
of degree n = m1+ · · ·+mq

where each xi, i ∈ [q] appears mi times is

|{i1 · · · in|i1, . . . , in ∈ [q], and in−1 ≤ in if n > 1}| = (R+ T )/2.

In other words,

dimG(X)m1...mq
=

1

2

(∑q
i=1 m

2
i

n(n− 1)
+

n− 2

n− 1

)(
n

m1 · · · mq

)

.

In particular, the dimension of the multilinear part of G(X)1...1 is q!/2.
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