JORDAN ELEMENTS AND LEFT-CENTER OF A FREE LEIBNIZ ALGEBRA

A. S. DZHUMADIL'DAEV

(Communicated by Alexander Olshanskii)

Abstract

An element of a free Leibniz algebra is called Jordan if it belongs to a free Leibniz-Jordan subalgebra. Elements of the Jordan commutant of a free Leibniz algebra are called weak Jordan. We prove that an element of a free Leibniz algebra over a field of characteristic 0 is weak Jordan if and only if it is left-central. We show that free Leibniz algebra is an extension of a free Lie algebra by left-center. We find the dimensions of the homogeneous components of the Jordan commutant and the base of its multilinear part. We find criterion for an element of free Leibniz algebra to be Jordan.

1. Introduction

Let K be a field of characteristic 0 and $\mathcal{K}=K\left\langle t_{1}, t_{2}, \ldots\right\rangle$ be a free magma, i.e., a space of non-associative non-commutative polynomials with generators t_{1}, t_{2}, \ldots. An ideal I of \mathcal{K} is called T-ideal if for any $f\left(t_{1}, \ldots, t_{k}\right) \in I$ and for any endomorphism ϕ of \mathcal{K},

$$
f\left(\phi\left(t_{1}\right), \ldots, \phi\left(t_{k}\right)\right) \in I
$$

For non-associative, non-commutative polynomials $f_{1}, \ldots, f_{l} \in \mathcal{K}$, denote by $J\left(f_{1}, \ldots, f_{l}\right)$ the T-ideal of \mathcal{K} generated by these elements.

Leibniz algebras were introduced by J.L. Loday [3]. They are defined by the identity lei $=0$, where

$$
l e i=l e i\left(t_{1}, t_{2}, t_{3}\right)=\left(t_{1} t_{2}\right) t_{3}-t_{1}\left(t_{2} t_{3}\right)+t_{2}\left(t_{1} t_{3}\right)
$$

Let

$$
\operatorname{acom}=\operatorname{acom}\left(t_{1}, t_{2}\right)=t_{1} \star t_{2}=t_{1} t_{2}+t_{2} t_{1}
$$

and

$$
j a c=j a c\left(t_{1}, t_{2}, t_{3}\right)=t_{1}\left(t_{2} t_{3}\right)+t_{2}\left(t_{3} t_{1}\right)+t_{3}\left(t_{1} t_{2}\right)
$$

be anti-commutative and Jacobi polynomials, respectively.
Let (A, \circ) be an algebra with vector space A over a field K and multiplication $A \times A \rightarrow A,(a, b) \mapsto a \circ b$. Define the Lie and Jordan commutators (anti-commutator) by

$$
[a, b]=a \circ b-b \circ a, \quad \text { and } \quad a \star b=a \circ b+b \circ a
$$

[^0]Call the algebras $(A,[]$,$) and (A, \star)$ the minus- and plus-algebras, respectively, of A.

Let

$$
[q]=\{1,2, \ldots, q\} .
$$

Here q might be infinite. Let $F(X)$ be the free Leibniz algebra defined on a set of generators $X=\left\{x_{i} \mid i \in[q]\right\}$. Let $F^{+}(X)$ be the subalgebra of the plus-algebra $(F(X), \star)$ generated by X. Let us introduce the following non-commutative, nonassociative polynomials

$$
\text { com }=t_{1} t_{2}-t_{2} t_{1}, \quad \text { leibjor }=\left(t_{1} t_{2}\right)\left(t_{3} t_{4}\right)
$$

(commutativity and metabelian polynomials). We will see that $F^{+}(X)$ is a free algebra of the variety given by the polynomial identities com $=0$ and leibjor $=0$ (Theorem 1.2). If q is infinite we will sometimes write F and F^{+}instead of $F(X)$ and $F^{+}(X)$.

For $a_{1}, \ldots, a_{n} \in F(X)$, denote by $a_{1} \cdots a_{n}$ or $a_{1 \cdots n}$ a right-bracketed element $a_{1} \circ\left(\cdots\left(a_{n-1} \circ a_{n}\right) \cdots\right)$. Note that

$$
a_{1} \star\left(\cdots\left(a_{n-2} \star\left(a_{n-1} \star a_{n}\right)\right) \cdots\right)=a_{1} \circ\left(\cdots\left(a_{n-2} \circ\left(a_{n-1} \star a_{n}\right)\right) \cdots\right),
$$

so, in fact, in an expression of the form $a_{1} \star\left(\cdots\left(a_{n-2} \star\left(a_{n-1} \star a_{n}\right)\right) \cdots\right)$ one can change all Jordan multiplications \star, except the last one, to the Leibniz multiplication \circ.

In [3] it is proved that the following set of elements

$$
\mathcal{V}(X)=\cup_{n}\left\{x_{i_{1} \ldots i_{n}} \stackrel{\text { def }}{=} x_{i_{1}} \cdots x_{i_{n}} \mid x_{i_{1}}, \ldots, x_{i_{n}} \in X\right\}
$$

forms a base of the free Leibniz algebra $F(X)$. For $v=x_{i_{1}} \cdots x_{i_{n-1}} x_{i_{n}} \in \mathcal{V}(X)$, we say that v has degree n and that $x_{i_{n-1}}$ is the pre-head and $x_{i_{n}}$ is the head of v.

Let $P_{+}, p_{+}, p_{-}: F(X) \rightarrow F(X)$ be linear maps defined on base elements by

$$
P_{+}\left(x_{i_{1}} \circ\left(\cdots\left(x_{i_{n-2}} \circ\left(x_{i_{n-1}} \circ x_{i_{n}}\right)\right) \cdots\right)=x_{i_{1}} \star\left(\cdots\left(x_{i_{n-2}} \star\left(x_{i_{n-1}} \star x_{i_{n}}\right)\right) \cdots\right),\right.
$$

(changing all Leibniz mutiplications by anti-commutator)

$$
p_{+}\left(x_{i_{1}} \circ\left(\cdots\left(x_{i_{n-2}} \circ\left(x_{i_{n-1}} \circ x_{i_{n}}\right)\right) \cdots\right)=x_{i_{1}} \circ\left(\cdots\left(x_{i_{n-2}} \circ\left(x_{i_{n-1}} \star x_{i_{n}}\right)\right) \cdots\right),\right.
$$

(changing a mutiplication between pre-head and head by anti-commutator)

$$
p_{-}\left(x_{i_{1}} \circ\left(\cdots\left(x_{i_{n-2}} \circ\left(x_{i_{n-1}} \circ x_{i_{n}}\right)\right) \cdots\right)=x_{i_{1}} \circ\left(\cdots\left(x_{i_{n-2}} \circ\left[x_{i_{n-1}}, x_{i_{n}}\right]\right) \cdots\right)\right.
$$

(changing a multiplication between pre-head and head by commutator).
Call an element $a \in F(X)$ Jordan if $a \in F^{+}(X)$ and weak Jordan if

$$
a \in F(X) \star F(X)
$$

It is clear that any Jordan element is weak Jordan. For example, if $q>1$, then

$$
a=x_{2} \star\left(x_{1} \circ x_{2}\right)
$$

is a Jordan element, since

$$
\begin{aligned}
a & =x_{2} \circ\left(x_{1} \circ x_{2}\right)+\left(x_{1} \circ x_{2}\right) \circ x_{2} \\
& =x_{2} \circ\left(x_{1} \circ x_{2}\right)+x_{1} \circ\left(x_{2} \circ x_{2}\right)-x_{2} \circ\left(x_{1} \circ x_{2}\right) \\
& =x_{1} \star\left(x_{2} \star x_{2}\right) / 2 \in F^{+}(X),
\end{aligned}
$$

and $b=\left(x_{1} \circ x_{2}\right) \circ\left(x_{1} \circ x_{2}\right)$ is weak Jordan, since

$$
b=\left(x_{1} \circ x_{2}\right) \star\left(x_{1} \circ x_{2}\right) / 2 \in F(X) \star F(X) .
$$

However, by Theorem 1.2 given below, the element b is not Jordan:

$$
b=2 x_{1} \circ\left(x_{2} \circ\left(x_{1} \circ x_{2}\right)\right)-2 x_{2} \circ\left(x_{1} \circ\left(x_{1} \circ x_{2}\right)\right),
$$

which implies that

$$
\begin{aligned}
p_{+}(b)= & 2 x_{1} \circ\left(x_{2} \circ\left(x_{1} \circ x_{2}\right)\right)-2 x_{2} \circ\left(x_{1} \circ\left(x_{1} \circ x_{2}\right)\right) \\
& +2 x_{1} \circ\left(x_{2} \circ\left(x_{2} \circ x_{1}\right)\right)-2 x_{2} \circ\left(x_{1} \circ\left(x_{2} \circ x_{1}\right)\right) \\
\neq & 2 b,
\end{aligned}
$$

and hence, $b \notin F^{+}(X)$ when $q>1$.
Note that the Jordan commutant $F(X) \star F(X)$ is an ideal of $F(X)$ with trivial right-action and left-action as a derivation,

$$
\begin{gathered}
a \circ(b \star c)=(a \circ b) \star c+b \star(a \circ c), \\
(b \star c) \circ a=0,
\end{gathered}
$$

for any $a, b, c \in F(X)$. Proofs of these facts are easy. See, for example, [1].
Call an element $z \in F(X)$ left-central if

$$
z \circ a=0
$$

for any $a \in F(X)$. Let $Z(X)$ be the left-center, i.e., the set of left-central elements of $F(X)$:

$$
Z(X)=\{z \in F(X) \mid z \circ a=0, \forall a \in F(X)\}
$$

Let

$$
Z_{1}(X)=\left\{z \in F(X) \mid z \circ x_{1}=0\right\}
$$

be the left-centralizer of the element $x_{1} \in X$ in $F(X)$.
If $z \in Z(X)$, then for any $y_{1}, y_{2} \in F(X)$,

$$
\left(z \circ y_{1}\right) \circ y_{2}=z \circ\left(y_{1} \circ y_{2}\right)-y_{1} \circ\left(z \circ y_{2}\right)=0 .
$$

Hence, $z \circ y_{1} \in Z(X)$. Similarly, $y_{1} \circ z \in Z(X)$, and so $Z(X)$ is an ideal of $F(X)$. Likewise, $Z_{1}(X)$ is also an ideal of $F(X)$, and

$$
Z(X) \subseteq Z_{1}(X)
$$

Since

$$
(a \circ b+b \circ a) \circ c=a \circ(b \circ c)-b \circ(a \circ c)+b \circ(a \circ c)-a \circ(b \circ c)=0,
$$

we have

$$
F(X) \star F(X) \subseteq Z(X)
$$

For the left-center $Z(X)$ of the free Leibniz algebra $F(X)$, denote by $Z(X)_{m_{1} \ldots m_{q}}$ the homogenous component of $Z(X)$ generated by m_{1} generators x_{1}, m_{2} generators x_{2}, etc, m_{q} generators x_{q}. Recall that a multinomial coefficient is defined by

$$
\binom{n}{m_{1} \cdots m_{q}}=\frac{n!}{m_{1}!\cdots m_{q}!} .
$$

We write $d \mid m_{i}$ if d is a divisor of m_{1}, \ldots, m_{q}. Recall that the Moebius function $\mu(d)$ is defined as $(-1)^{k}$ if d is a product of k different prime numbers and it equals 0 if d is divisible by greater than one.

The aim of this paper is to prove that the left-center of a free Leibniz algebra $F(X)$ is generated by the squares $a \circ a, a \in F(X)$.

Theorem 1.1. Let $F(X)$ be a free Leibniz algebra over a field K of characteristic 0 generated by a set $X=\left\{x_{i} \mid i \in[q]\right\}$. Then, for any $a \in F(X)$ of degree greater than one, the following conditions are equivalent:

- $a \in F(X) \star F(X)$
- $a \in Z(X)$
- $a \in Z_{1}(X)$.

In particular,

$$
Z_{1}(X)=Z(X)=F(X) \star F(X)
$$

and $a \in F(X)$ is weak Jordan if and only if $a \circ x_{1}=0$.
The set of elements of the form $x_{i_{1}} \star x_{i_{2} \ldots i_{n}}$, where $x_{i_{1}}, \ldots, x_{i_{n}} \in X$, spans the space of weak Jordan elements $F(X) \star F(X)$. The elements of the form $x_{i_{1}} \star x_{i_{2} \ldots i_{q}}$, where $i_{1} \ldots i_{q}$ are permutations of the set $\{1, \ldots, q\}$, such that $i_{1} \neq q$, form a base of the multilinear part of $F(X) \star F(X)$.

Homogeneous components of the left-center have dimension

$$
\operatorname{dim} Z(X)_{m_{1} \ldots m_{q}}=\frac{n-1}{n}\binom{n}{m_{1} \cdots m_{q}}-\frac{1}{n} \sum_{d \mid m_{i}, d>1} \mu(d)\binom{n / d}{m_{1} / d \cdots m_{q} / d}
$$

where $n=m_{1}+\cdots+m_{q}$. In particular, multilinear part of the left center $Z(X)$ of degree q has dimension $(q-1)(q-1)$!.

The dimension of degree n part of the left-center generated by q generators is equal to

$$
\operatorname{dim} Z(X)_{n}=\frac{n-1}{n} q^{n}-\frac{1}{n} \sum_{d \mid m_{i}, d>1} \mu(d) q^{n / d}
$$

Theorem 1.2. Let K be a field of characteristic 0 . Then $F^{+}(X)$, the subalgebra of $(F(X), \star)$ generated by $X=\left\{x_{i} \mid i \in[q]\right\}$, is isomorphic to a free algebra generated by X of the variety given by the commutativity and the metabelian identities.

For any $a \in F(X)$ of degree greater than one, the following conditions are equivalent:

- a is Jordan element
- $P_{+}(a)=2 a$
- $p_{+}(a)=2 a$
- $p_{-}(a)=0$.

The dimension of the homogeneous part $F^{+}(X)_{m_{1} \ldots m_{q}}$, i.e., the dimension of a subspace of $F^{+}(X)$ generated by m_{i} elements x_{i}, where $i=1, \ldots, q$, is equal to

$$
\operatorname{dim} F^{+}(X)_{m_{1} \ldots m_{q}}=\frac{1}{2}\left(\frac{\sum_{i=1}^{q} m_{i}^{2}}{n(n-1)}+\frac{n-2}{n-1}\right)\binom{n}{m_{1} \cdots m_{q}}
$$

where $n=\sum_{i=1}^{q} m_{i}$. In particular, the multilinear part of $F^{+}(X)$ has dimension $q!/ 2$.

Let us give some applications of these theorems for small q and n. If $q=1$ and $F_{2}(X)$ is a space generated by elements of degree more than one, then

$$
F_{2}(X)=F(X) \star F(X)
$$

If $q=2$ then any weak Jordan element of degree no more than 3 is Jordan.
Another application concerns tetrads. Call an element of the form

$$
u=x_{1} \circ\left(\cdots\left(x_{n-1} \circ x_{n}\right) \cdots\right)+\left(\cdots\left(\left(x_{n} \circ x_{n-1}\right) \circ x_{n-2}\right) \cdots\right) \circ x_{1}
$$

reversible of degree n. Reversible elements of degree 4 are called tetrads.
If A is a free associative algebra, then its Jordan elements are reversible, and the space of reversible elements is generated by Jordan elements and tetrads, i.e., by elements of the form $a b c d+d c b a[2]$. Tetrads are not Jordan elements. A criterion for an element of the free associative algebra to be Jordan is not known. For the case of Leibniz algebras, Theorem 1.1 gives us the following criterion for weak Jordan elements: any element $a \in F(X)$ is weak Jordan if and only if z is left-central. Opposite to the associative case, tetrads for Leibniz algebras are weak Jordan elements. Let $a, b, c, d \in F(X)$. Then

$$
\begin{aligned}
a \circ(b \circ(c \circ d))+((d \circ c) \circ b) \circ a= & (a \circ b) \circ(c \circ d)+b \circ(a \circ(c \circ d)) \\
& +(d \circ c) \circ(b \circ a)-b \circ((d \circ c) \circ a) \\
= & -(b \circ a) \circ(c \circ d)+b \circ(a \circ(c \circ d)) \\
& -(c \circ d) \circ(b \circ a)+b \circ((c \circ d) \circ a) \\
= & -(b \circ a) \star(c \circ d)+b \circ(a \star(c \circ d)) \\
= & -(b \circ a) \star(c \circ d)+b \star(a \star(c \circ d)) \\
\in & F(X) \star F(X) .
\end{aligned}
$$

It is not true, however, that all reversible elements of Leibniz algebras are weak Jordan. For example, take

$$
R=R(a, b, c)=a \circ(b \circ c)+(c \circ b) \circ a
$$

Then

$$
\begin{aligned}
R \circ d= & (a \circ(b \circ c)+(c \circ b) \circ a) \circ d \\
= & (a \circ(b \circ c)) \circ d+((c \circ b) \circ a) \circ d \\
= & (a \circ(b \circ c)) \circ d-(a \circ(c \circ b)) \circ d \\
= & 2(a \circ(b \circ c)) \circ d-(a \circ(c \star b)) \circ d \\
= & 2(a \circ(b \circ c)) \circ d-(a \star(c \star b)) \circ d \\
= & 2(a \circ(b \circ c)) \circ d \\
= & 2(a \circ(b \circ(c \circ d))-a \circ(c \circ(b \circ d)) \\
& -b \circ(c \circ(a \circ d))+c \circ(b \circ(a \circ d))) \\
= & 2[a, b \circ c] \circ d
\end{aligned}
$$

Note that $[a, b \circ c] \in F(X) \star F(X)$ if b and c are linearly dependent, and $R \in Z(X)$ in this case. If b and c are linearly independent (it might happen if $q=|X|>2$), then it is not necessary that $R \circ d=0$. For example,

$$
R\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \circ\left(x_{2} \circ x_{3}\right)+\left(x_{3} \circ x_{2}\right) \circ x_{1} \notin F(X) \star F(X), \quad q>2
$$

So, reversible elements of degree 3 might not be left-central. On the other hand, the Jacobian of three elements is left-central:

$$
\begin{aligned}
j a c(a, b, c) & =a \circ(b \circ c)+b \circ(c \circ a)+c \circ(a \circ b) \\
& =(a \circ b) \circ c+b \circ(a \circ c)+b \circ(c \circ a)+c \circ(a \circ b) \\
& =(a \circ b) \star c+b \circ(a \star c) \\
& =(a \circ b) \star c+b \star(a \star c) \\
& \in F(X) \star F(X) \subseteq Z(X) .
\end{aligned}
$$

Since,

$$
\begin{aligned}
{[[a, b], c]+[[b, c], a]+[[c, a], b] } & =(a \circ b) \circ c+(b \circ c) \circ a+(c \circ a) \circ b \\
& =a \circ[b, c]+b \circ[c, a]+c \circ[a, b] \\
& =j a c(a, b, c)-j a c(a, c, b) \\
& \in Z(X)
\end{aligned}
$$

any Leibniz algebra satisfies the following identity of degree 4 :

$$
([[a, b], c]+[[b, c], a]+[[c, a], b]) \circ d=0
$$

If one considers identities of Leibniz algebras under the Lie commutator, then there are no non-trivial identities for Leibniz-Lie algebras until degree 5 . When the degree is 5 , two identities appear for Leibniz algebras under the Lie commutator. These facts and other properties of left-central elements can be found in [3] and [1].

Corollary 1.3. Any reversible element of even degree is weak Jordan.
Proof. By the identity $(a \circ b) \circ c=-(b \circ a) \circ c$, we have,

$$
\begin{aligned}
\left(\left(\cdots\left(\left(x_{n} \circ x_{n-1}\right) \circ x_{n-2}\right) \cdots\right) \circ x_{1}\right) \circ x_{1} & =-\left(\left(\cdots\left(\left(x_{n-1} \circ x_{n}\right) \circ x_{n-2}\right) \cdots\right) \circ x_{1}\right) \circ x_{1} \\
& =\left(\left(\cdots\left(x_{n-2} \circ\left(x_{n-1} \circ x_{n}\right)\right) \cdots\right) \circ x_{1}\right) \circ x_{1} \\
& \vdots \\
& =(-1)^{n-1}\left(x_{1} \circ\left(\cdots\left(x_{n-2} \circ x_{n}\right) \cdots\right)\right) \circ x_{1} \\
& =(-1)^{n-1}\left(x_{1} \cdots x_{n}\right) \circ x_{1} .
\end{aligned}
$$

Therefore, if n is even, then

$$
u=x_{1} \circ\left(\cdots\left(x_{n-1} \circ x_{n}\right) \cdots\right)+\left(\cdots\left(\left(x_{n} \circ x_{n-1}\right) \circ x_{n-2}\right) \cdots\right) \circ x_{1} \in Z_{1}(X) .
$$

So, by Theorem $1.1 u \in F(X) \star F(X)$ if n is even and $q \geq n$.
Corollary 1.4. (char $K=0$) The left-center of a free Leibniz algebra is abelian. Moreover, the factor-algebra of a free Leibniz algebra $F(X)$ over the left-center $Z(X)$ is isomorphic to a free Lie algebra $L(X)$.

In other words, the free Leibniz algebra $F(X)$ is an extension of the free Lie algebra $L(X)$ by an anti-symmetric abelian module:

$$
0 \rightarrow Z(X) \rightarrow F(X) \rightarrow L(X) \rightarrow 0 .
$$

Recall that modules of Lie algebras are usually considered as symmetric, i.e., left and right-actions are connected by the relation

$$
x m+m x=0,
$$

for any x of the Lie algebra L and for any element m the of L-module M. Here, we consider a Lie algebra $L(X)$ as a skew-symmetric Leibniz algebra and consider $Z(L)$ as an anti-symmetric module over a Leibniz algebra, i.e., the left action is induced by multiplication in the Leibniz algebra and the right-action is trivial:

$$
z x=0, \quad x z=x \circ z, \quad x \in L(X), z \in Z(X)
$$

So, in the realization of the free Leibniz algebra as an extension of free Lie algebra

$$
F(X)=L(X)+Z(X)
$$

the multiplication is given by

$$
\left(a+z_{1}\right) \circ\left(b+z_{2}\right)=[a, b]+a \circ z_{2}, \quad a, b \in L(X), z_{1}, z_{2} \in Z(X)
$$

It would be interesting to find a criterion specifying when elements of free Leibniz algebras are Lie elements. Note that any weak Jordan element of degree more than 2 is weak Lie,

$$
a \star(b \circ c)=[a, c \circ b]+[b, a \circ c]-[c, a \circ b] .
$$

There are weak Lie elements that are not weak Jordan. For example, $[a, b \circ c]$ is a such element:

$$
[a, b \circ c]=a \circ(b \circ c)-b \circ(c \circ a)+c \circ(b \circ a),
$$

which implies

$$
p_{+}([a, b \circ c])-2[a, b \circ c]=-a \circ[b, c]+b \circ[c, a]-c \circ[b, a] \neq 0
$$

2. The Left-center and the Jordan commutant

Lemma 2.1. The condition $z \in Z(X)$, where $X=\left\{x_{1}, \ldots, x_{q}\right\}$, is equivalent to the condition $z \circ x_{i}=0$ for any $i=1,2, \ldots q$.

Proof. If $z \circ a=0$ for any $a \in F(X)$, then, in particular, $z \circ x_{i}=0$ for any generator $x_{i} \in X$.

Conversely, suppose that $z \circ x_{i}=0$ for any generator $x_{i} \in X$. Let v be any base element of the free Leibniz algebra $F(X)$. By induction on the degree n of $v \in \mathcal{V}(X)$, let us prove that $z \circ v=0$. The base of induction $n=1$ is trivially true by our assumption. Suppose that our statement is true for any base element of length $n-1$. Then any base element of length n can be presented in the form $v=x_{i} \circ u$, where u is a base element of length $n-1$. Therefore,

$$
z \circ v=z \circ\left(x_{i} \circ u\right)=\left(z \circ x_{i}\right) \circ u+x_{i} \circ(z \circ u)=0 .
$$

So, our statement is true for n.
Consider the following set of permutations

$$
\begin{gathered}
S(k, n)=\left\{\sigma \in \operatorname{Sym}_{n} \mid \sigma(1)<\cdots<\sigma(k-1)<\sigma(k)=n\right. \\
>\sigma(k+1)>\cdots>\sigma(n)\} .
\end{gathered}
$$

Let $S(n)=\cup_{k=0}^{n} S(k, n)$. Note that $|S(n)|=2^{n-1}$.
The following multiplication rule holds in free Leibniz algebras.
Lemma 2.2. For any $a_{1}, \ldots, a_{n+1} \in F(X)$,

$$
a_{1 \ldots n} \circ a_{n+1}=\sum_{k=0}^{n}(-1)^{n-k} \sum_{\sigma \in S(k, n)} a_{\sigma n+1}
$$

In particular, for any $u, v \in \mathcal{V}(X)$, the product $u \circ v$ is a linear combination of elements $w \in \mathcal{V}(X)$ whose heads coincide with a head of v.

Proof. We will use induction on n. If $n=1$, then there is nothing to prove. Suppose that our statement is true for $n-1$. Then

$$
\begin{aligned}
a_{12 \ldots n} \circ a_{n+1} & =\left(a_{1} \circ a_{2 \ldots n}\right) \circ a_{n+1} \\
& =a_{1} \circ\left(a_{2 \ldots n} \circ a_{n+1}\right)-a_{2 \ldots n} \circ\left(a_{1} \circ a_{n+1}\right) \\
& =a_{1} \circ \sum_{\beta \in S^{\prime}}(-1)^{|\bar{\beta}|} a_{\beta \operatorname{rev}(\bar{\beta}) n+1}-\sum_{\beta \in S^{\prime}}(-1)^{|\bar{\beta}|} a_{\beta \operatorname{rev}(\bar{\beta}) 1 n+1},
\end{aligned}
$$

where S^{\prime} is a set of subsequences $\beta=\beta_{1} \ldots \beta_{k}$ of the sequence $2 \ldots n$ such that $\beta_{k}=n$ and $\beta_{1}<\ldots<\beta_{\underline{k}}$, and $\bar{\beta}=\bar{\beta}_{1} \ldots \bar{\beta}_{n-k-1}$ is the complement subsequence of β in $2 \ldots n$, such that $\bar{\beta}_{1}<\ldots<\bar{\beta}_{n-k-1}$. Hence,

$$
a_{12 \ldots n} \circ a_{n+1}=\sum_{\beta \in S^{\prime}}(-1)^{|\bar{\beta}|} a_{1 \beta \operatorname{rev}(\bar{\beta}) n+1}-\sum_{\beta \in S^{\prime}}(-1)^{|\bar{\beta}|} a_{\beta \operatorname{rev}(\bar{\beta}) 1 n+1} .
$$

Note that

$$
S(n)=S_{1} \cup S_{2}
$$

where S_{1} is a set of subsequences $\alpha=\alpha_{1} \ldots \alpha_{k}$ of the sequence $1 \ldots n$ such that $\alpha_{1}=1$ and $\alpha_{k}=n$, and S_{2} is a set of subsequences $\alpha=\alpha_{1} \ldots \alpha_{k}$ of the sequence $1 \ldots n$ such that $\alpha_{1}>1$ and $\alpha_{k}=n$. Then $\alpha=\alpha_{1} \ldots \alpha_{k} \in S_{1}$ implies that $\alpha=1 \beta$, where $\beta=\alpha_{2} \ldots \alpha_{k} \in S^{\prime}$. Furthermore, $\alpha=\alpha_{1} \ldots \alpha_{k} \in S_{2}$ implies that $\bar{\alpha}=1 \bar{\beta}$, where $\bar{\beta}=\bar{\alpha}_{2} \ldots \overline{\alpha_{n-k}}$ and $\beta=\beta_{1} \ldots \beta_{k} \in S^{\prime}$. Therefore,

$$
\begin{aligned}
a_{12 \ldots n} \circ a_{n+1} & =\sum_{\alpha \in S_{1}}(-1)^{|\bar{\alpha}|} a_{\alpha \operatorname{rev}(\bar{\alpha}) n+1}-\sum_{\alpha \in S_{2}}(-1)^{|\bar{\alpha}|-1} a_{\alpha \operatorname{rev}(\bar{\alpha}) n+1} \\
& =\sum_{\alpha \in S(n)}(-1)^{|\bar{\alpha}|} a_{\alpha \operatorname{rev}(\bar{\alpha}) n+1} .
\end{aligned}
$$

Thus, our statement is true for n as well.
Example 1. Lemma 2.2 allows us to construct a multiplication table for a free Leibniz algebra. For example,

$$
\begin{aligned}
a_{1} a_{2} a_{3} a_{4} \circ b= & a_{1} a_{2} a_{3} a_{4} b-a_{1} a_{2} a_{4} a_{3} b-a_{1} a_{3} a_{4} a_{2} b-a_{2} a_{3} a_{4} a_{1} b \\
& +a_{1} a_{4} a_{3} a_{2} b+a_{2} a_{4} a_{3} a_{1} b+a_{3} a_{4} a_{2} a_{1} b-a_{4} a_{3} a_{2} a_{1} b
\end{aligned}
$$

and the product of two base elements $u=x_{3} x_{1} x_{3} x_{2}$ and $v=x_{2} x_{1}$ is

$$
\begin{aligned}
x_{3} x_{1} x_{3} x_{2} \circ x_{2} x_{1}= & x_{3} x_{1} x_{3} x_{2} x_{2} x_{1}-x_{3} x_{1} x_{2} x_{3} x_{2} x_{1}-x_{3} x_{3} x_{2} x_{1} x_{2} x_{1} \\
& -x_{1} x_{3} x_{2} x_{3} x_{2} x_{1}+x_{3} x_{2} x_{3} x_{1} x_{2} x_{1}+x_{1} x_{2} x_{3} x_{3} x_{2} x_{1} \\
& +x_{3} x_{2} x_{1} x_{3} x_{2} x_{1}-x_{2} x_{3} x_{1} x_{3} x_{2} x_{1} .
\end{aligned}
$$

Lemma 2.3. Let $a \in F(X)$. Then z is left-central if and only if $z \circ x_{1}=0$. In particular, $Z(X)=Z \cap F(X)$, where Z is the left-center of $F=F\left(x_{1}, x_{2}, \ldots\right)$.

Proof. By Lemma 2.2 an element $z \circ x_{1}$ is a linear combination of base elements with head x_{1}, and an element $z \circ x_{k}$ can be obtained from the element $z \circ x_{1}$ by changing heads of base elements; that is, changing x_{1} to x_{k}.Therefore, the conditions $z \circ x_{k}=0$ and $z \circ x_{1}=0$ are equivalent for any $k=1, \ldots, q$. So, by Lemma 2.1

$$
z \in Z(X) \Longleftrightarrow z \in Z_{1}(X)
$$

Lemma 2.4. Let z be a left-central element generated by x_{1}, \ldots, x_{q},

$$
z=z\left(x_{1}, \ldots, x_{q}\right)=\sum \lambda_{i_{1} \ldots i_{n}} x_{i_{1}} \cdots x_{i_{n}} \in Z(X),
$$

where the summation runs over $i_{1} \ldots i_{n} \in[q]$. Then z is left-central as an element of the free Leibniz algebra F. Moreover, for any substitution of x_{i} by elements $a_{i} \in F, i=1, \ldots, q$, we once again obtain a left-central element

$$
z^{\prime}=z\left(a_{1}, \ldots, a_{q}\right)=\sum_{i_{1}, \ldots, i_{n} \in[q]} \lambda_{i_{1} \ldots i_{n}} a_{i_{1}} \cdots a_{i_{n}} \in Z .
$$

Proof. By Lemma 2.3, $z \in Z(X)$ implies that $z \in Z$. By Lemma 2.2, for any $i_{1} \ldots i_{n} \in[q]$ and any $u \in F$, we have

$$
\left(x_{i_{1}} \circ\left(\cdots\left(x_{i_{n-1}} \circ x_{i_{n}}\right) \cdots\right) \circ u=\sum_{k=0}^{n}(-1)^{n-k} \sum_{\sigma \in S(k, n)} x_{i_{\sigma(1)}} \circ\left(\cdots\left(x_{i_{\sigma(n)}} \circ u\right) \cdots\right)\right.
$$

Therefore, for any substitution $x_{i} \mapsto a_{i}$, we have

$$
\left(a_{i_{1}} \circ\left(\cdots\left(a_{i_{n-1}} \circ a_{i_{n}}\right) \cdots\right) \circ u=\sum_{k=0}^{n}(-1)^{n-k} \sum_{\sigma \in S(k, n)} a_{i_{\sigma(1)}} \circ\left(\cdots\left(a_{i_{\sigma(n)}} \circ u\right) \cdots\right) .\right.
$$

So, the condition

$$
z=\sum_{i_{1}, \ldots, i_{n} \in[q]} \lambda_{i_{1} \ldots i_{n}} x_{i_{1}} \circ\left(\cdots\left(x_{i_{n-1}} \circ x_{i_{n}}\right) \cdots\right) \in Z(X)
$$

implies the condition

$$
\sum_{k=0}^{n}(-1)^{n-k} \sum_{\sigma \in S(k, n)} \sum_{i_{1}, \ldots, i_{n} \in[q]} \lambda_{i_{1} \ldots i_{n}} x_{i_{\sigma(1)}} \circ\left(\cdots\left(x_{i_{\sigma(n)}} \circ u\right) \cdots\right)=0
$$

Now take $u=x_{l}$ and collect all coefficients of $z \circ x_{l}$ at base elements $x_{j_{1} \ldots j_{n} l}$, where $j_{1}, \ldots, j_{n} \in[q]$, and denote their sum as $\gamma_{j_{1} \ldots j_{n} l}$. Note that $\gamma_{j_{1} \ldots j_{n} l}=\gamma_{j_{1} \ldots j_{n}}$ does not depend on l. Therefore,

$$
z \circ x_{l}=\sum_{j_{1} \ldots j_{n} \in[q]} \gamma_{j_{1} \ldots j_{n}} x_{j_{1} \ldots j_{n} l}
$$

By Lemma 2.2 the element $z^{\prime}=z\left(a_{1}, \ldots, a_{q}\right)$ constructed from $z=z\left(x_{1}, \ldots, x_{q}\right)$ by replacing x_{i} with $a_{i} \in F$ has the same property:

$$
z^{\prime} \circ x_{l}=\sum_{j_{1} \ldots j_{n}} \gamma_{j_{1} \ldots j_{n}} a_{j_{1}} \circ\left(\cdots\left(a_{j_{n}} \circ x_{l}\right) \cdots\right)
$$

Hence, the condition

$$
z=\sum_{i_{1}, \ldots, i_{n} \in[q]} \lambda_{i_{1} \ldots i_{n}} x_{i_{1}} \cdots x_{i_{n}} \in Z(X)
$$

implies that $\gamma_{j_{1} \ldots j_{n}}=0$ for all $j_{1}, \ldots, j_{n} \in[q]$. Consequently,

$$
z^{\prime} \circ x_{l}=\sum_{j_{1} \ldots j_{n}} \gamma_{j_{1} \ldots j_{n}} a_{j_{1}} \circ\left(\cdots\left(a_{j_{n}} \circ x_{l}\right) \cdots\right)=0 .
$$

In other words,

$$
z=z\left(x_{1}, \ldots, x_{q}\right) \in Z(X) \Rightarrow z^{\prime}=z\left(a_{1}, \ldots, a_{q}\right) \in Z
$$

Let $F(X)_{m_{1} \ldots m_{q}}$ be a subspace of $F(X)$ generated by m_{s} elements x_{s}, where $s=1,2, \ldots, q$. Let $F_{n}(X)$ be the subspace of $F(X)$ generated by the base elements $v \in \mathcal{V}(X)$ of length n. Then

$$
F_{n}(X)=\oplus_{k \geq 1} \oplus_{m_{1}+\cdots+m_{q}=n} F_{m_{1} \ldots m_{q}} .
$$

Lemma 2.5. For any non-negative integers $i_{1}, \ldots, i_{q}, j_{1}, \ldots, j_{q}$,

$$
F(X)_{i_{1} \ldots i_{q}} \circ F(X)_{j_{1}, \ldots, j_{q}} \subseteq F(X)_{i_{1}+j_{1}, \ldots, i_{q}+j_{q}}
$$

In particular, for any positive integers n, m,

$$
F(X)_{n} \circ F(X)_{m} \subseteq F_{n+m}(X)
$$

Proof. Follows from Lemma 2.2.
Let \mathbf{Z}_{0} be the set of non-negative integers and

$$
\mathbf{Z}_{0}^{n}=\underbrace{\mathbf{Z}_{0} \times \cdots \times \mathbf{Z}_{0}}_{n \text { times }} .
$$

Let $\pi_{m_{1}, \ldots, m_{q}}: F(X) \rightarrow F(X)_{m_{1}, \ldots, m_{q}}$ be a projection map.
Lemma 2.6. Let $z=z\left(x_{1}, \ldots, x_{q}\right) \in Z(X)$. Then for any $\alpha \in \mathbf{Z}_{0}^{q}, \pi_{\alpha} z \in Z(X)$.
Proof. For any $\lambda_{1}, \ldots, \lambda_{q} \in K$ by Lemma 2.4

$$
z^{\prime}=z\left(\lambda_{1} x_{1}, \ldots, \lambda_{q} x_{q}\right) \in Z(X)
$$

Present z as a sum of homogeneous components:

$$
z=z\left(x_{1}, \ldots, x_{q}\right)=\sum_{i_{1} \ldots i_{q} \in \mathbf{Z}_{0}^{q}} \pi_{i_{1} \ldots i_{q}} z
$$

Then,

$$
z^{\prime}=\sum_{i_{1} \ldots i_{q} \in \mathbf{Z}_{0}^{q}} \lambda_{1}^{i_{1}} \cdots \lambda_{q}^{i_{q}} \pi_{i_{1} \ldots i_{q}} z \in Z(X) .
$$

Since $\lambda_{1}, \ldots, \lambda_{q} \in K$ are arbitrary elements of the infinite field K, standard reasonings based on the Vandermonde determinant shows that

$$
\pi_{i_{1} \ldots i_{q}} z \in Z(X)
$$

for any non-negative integers i_{1}, \ldots, i_{q}.
For a permutation $\sigma \in \operatorname{Sym}_{q}$ written in one-line form, denote by $l(\sigma)$ and $r(\sigma)$ the parts of σ to the left and to the right of q, respectively. Denote by $\operatorname{rev}(\sigma)$ the sequence σ written in reverse order. For example, if $\sigma=3264751$, then $l(\sigma)=3264$, $r(\sigma)=51$ and $\operatorname{rev}(\sigma)=1574623$.

Recall that a shuffle product $\alpha \amalg \beta$ of sequences $\alpha=\alpha_{1} \ldots \alpha_{k}$ and $\beta=\beta_{1} \ldots \beta_{l}$ is defined as a sum of sequences $\gamma=\gamma_{1} \ldots \gamma_{k+l}$, such that $\gamma_{i} \in\left\{\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots \beta_{l}\right\}$, for any $i=1, \ldots, k+l$. Moreover, if $\gamma_{i_{1}}=\alpha_{1}, \ldots \gamma_{i_{k}}=\alpha_{k}, \gamma_{j_{1}}=\beta_{1}, \ldots, \gamma_{j_{l}}=\beta_{l}$, then $i_{1}<\cdots<i_{k}$ and $j_{1}<\cdots<j_{l}$. We will write $\tau \in \alpha \amalg \beta$ if τ is one such summands. For example, if $\alpha=14, \beta=32$, then

$$
\begin{gathered}
\alpha \sqcup \beta=1432+1342+1324+3142+3124+3214, \\
1342 \in \alpha \sqcup \beta, \quad 3421 \notin \alpha \sqcup \beta .
\end{gathered}
$$

Lemma 2.7. If $b=\sum_{\mu \in \operatorname{Sym}_{n}, \mu(n)=n} \lambda_{\mu} a_{\mu}$, then

$$
b \circ a_{n+1}=(-1)^{n} \sum_{\sigma \in \operatorname{Sym}_{n}}(-1)^{|l(\sigma)|+1}\left(\sum_{\tau \in l(\sigma) \uplus r e v(r(\sigma))} \lambda_{\tau n}\right) a_{\sigma n+1} .
$$

Proof. By Lemma 2.2

$$
\begin{aligned}
& b \circ a_{n+1}=\sum_{\mu \in \operatorname{Sym}_{n}, \mu(n)=n} \lambda_{\mu} a_{\mu} \circ a_{n+1} \\
& =\sum_{\substack{\mu \in S y m_{n} \\
\mu(n)=n}} \sum_{k=0}^{n} \sum_{\alpha \in S(k, n)} \lambda_{\mu}(-1)^{n-k}\left(a_{\mu(\alpha(1))} \ldots a_{\mu(\alpha(k-1))} a_{\mu(\alpha(k))} \ldots\right. \\
& \text { - } a_{\mu(\alpha(k+1))} \ldots a_{\mu(\alpha(n))} a_{n+1)} \\
& =\sum_{\substack{\mu \in S y m_{n} \\
\mu(n)=n}} \sum_{k=0}^{n} \sum_{\alpha \in S(k, n)} \lambda_{\mu}(-1)^{n-k}\left(a_{\mu(\alpha(1))} \ldots a_{\mu(\alpha(k-1))} a_{\mu(n)} \ldots\right. \\
& \text { - } \left.a_{\mu(\alpha(k+1))} \ldots a_{\mu(\alpha(n))} a_{n+1}\right) \\
& =\sum_{\substack{\mu \in S y m_{n} \\
\mu(n)=n}} \sum_{k=0}^{n} \sum_{\alpha \in S(k, n)} \lambda_{\mu}(-1)^{n-k}\left(a_{\mu(\alpha(1))} \ldots a_{\mu(\alpha(k-1))} a_{n} \ldots\right. \\
& \cdot a_{\mu(\alpha(k+1))} \ldots a_{\mu(\alpha(n))} a_{n+1)} \\
& =(-1)^{n} \sum_{\sigma \in \operatorname{Sym}_{n}} \sum_{\tau \in l(\sigma) \sqcup \operatorname{rev}(r(\sigma))} \lambda_{\tau n}(-1)^{k}\left(a_{\sigma(1)} \ldots a_{\sigma(k-1)} a_{n} \cdot \ldots\right. \\
& \left.\cdot a_{\sigma(k+1)} \ldots a_{\sigma(n)} a_{n+1}\right) \\
& =(-1)^{n} \sum_{\sigma \in \operatorname{Sym}_{n}}(-1)^{|l(\sigma)|+1}\left(\sum_{\tau \in l(\sigma) \sqcup \operatorname{rev}(r(\sigma))} \lambda_{\tau n}\right) a_{\sigma n+1} .
\end{aligned}
$$

Example 2. If $n=4$ and

$$
\begin{aligned}
z= & \lambda_{1234} x_{1} x_{2} x_{3} x_{4}+\lambda_{1324} x_{1} x_{3} x_{2} x_{4}+\lambda_{2134} x_{2} x_{1} x_{3} x_{4} \\
& +\lambda_{2314} x_{2} x_{3} x_{1} x_{4}+\lambda_{3124} x_{3} x_{1} x_{2} x_{4}+\lambda_{3214} x_{3} x_{2} x_{1} x_{4}
\end{aligned}
$$

then

$$
\begin{aligned}
z \circ x_{5}= & \lambda_{1234} x_{1} x_{2} x_{3} x_{4} x_{5}+\left(-\lambda_{1234}-\lambda_{1324}-\lambda_{3124}\right) x_{1} x_{2} x_{4} x_{3} x_{5} \\
& +\lambda_{1324} x_{1} x_{3} x_{2} x_{4} x_{5}+\left(-\lambda_{1234}-\lambda_{1324}-\lambda_{2134}\right) x_{1} x_{3} x_{4} x_{2} x_{5} \\
& +\left(\lambda_{1324}+\lambda_{3124}+\lambda_{3214}\right) x_{1} x_{4} x_{2} x_{3} x_{5}+\left(\lambda_{1234}+\lambda_{2134}+\lambda_{2314}\right) x_{1} x_{4} x_{3} x_{2} x_{5} \\
& +\lambda_{2134} x_{2} x_{1} x_{3} x_{4} x_{5}+\left(-\lambda_{2134}-\lambda_{2314}-\lambda_{3214}\right) x_{2} x_{1} x_{4} x_{3} x_{5} \\
& +\lambda_{2314} x_{2} x_{3} x_{1} x_{4} x_{5}+\left(-\lambda_{1234}-\lambda_{2134}-\lambda_{2314}\right) x_{2} x_{3} x_{4} x_{1} x_{5} \\
& +\left(\lambda_{2314}+\lambda_{3124}+\lambda_{3214}\right) x_{2} x_{4} x_{1} x_{3} x_{5}+\left(\lambda_{1234}+\lambda_{1324}+\lambda_{2134}\right) x_{2} x_{4} x_{3} x_{1} x_{5} \\
& +\lambda_{3124} x_{3} x_{1} x_{2} x_{4} x_{5}+\left(-\lambda_{2314}-\lambda_{3124}-\lambda_{3214}\right) x_{3} x_{1} x_{4} x_{2} x_{5} \\
& +\lambda_{3214} x_{3} x_{2} x_{1} x_{4} x_{5}+\left(-\lambda_{1324}-\lambda_{3124}-\lambda_{3214}\right) x_{3} x_{2} x_{4} x_{1} x_{5} \\
& +\left(\lambda_{2134}+\lambda_{2314}+\lambda_{3214}\right) x_{3} x_{4} x_{1} x_{2} x_{5}+\left(\lambda_{1234}+\lambda_{1324}+\lambda_{3124}\right) x_{3} x_{4} x_{2} x_{1} x_{5} \\
& -\lambda_{3214} x_{4} x_{1} x_{2} x_{3} x_{5}-\lambda_{2314} x_{4} x_{1} x_{3} x_{2} x_{5}-\lambda_{3124} x_{4} x_{2} x_{1} x_{3} x_{5} \\
& -\lambda_{1324} x_{4} x_{2} x_{3} x_{1} x_{5}-\lambda_{2134} x_{4} x_{3} x_{1} x_{2} x_{5}-\lambda_{1234} x_{4} x_{3} x_{2} x_{1} x_{5} .
\end{aligned}
$$

3. Base for Leibniz-Jordan algebras

Let $[q]=\{1,2, \ldots, q\}$ and $X=\left\{x_{i} \mid i \in[q]\right\}$. Let $y_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}$, where $i_{1}, \ldots i_{n} \in$ [q], denote symbols that satisfy the conditions

$$
y_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}=y_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}}, \quad \forall i_{1}, \ldots, i_{n-2}, i_{n-1}, i_{n} \in[q] .
$$

Let $G(X)$ be the linear span of the elements $y_{i_{1} \ldots i_{n}}$, where $i_{1}, \ldots, i_{n} \in[q]$. Take the set of elements $\left\{y_{i_{1} \ldots i_{n}} \mid i_{1}, \ldots, i_{n} \in[q]\right.$, and $i_{n-1} \leq i_{n}$ if $\left.n>1\right\}$ as a base of $G(X)$. Define a multiplication on $G(X)$ by

$$
\begin{aligned}
y_{i_{1} \ldots i_{n}} y_{j_{1} \ldots j_{m}} & =0, \text { if } n>1 \text { and } m>1, \\
y_{i_{1}} y_{j_{1} \ldots j_{m}} & =y_{i_{1} j_{1} \ldots j_{m}}, \text { if } n=1, \\
y_{i_{1} \ldots i_{n}} y_{j_{1}} & =y_{j_{1} i_{1} \ldots i_{n}}, \text { if } m=1
\end{aligned}
$$

If $n=m=1$, then

$$
y_{i_{1}} y_{j_{1}}=y_{i_{1} j_{1}}=y_{j_{1} i_{1}}=y_{j_{1}} y_{i_{1}}
$$

If $n=1, m>1$, then

$$
y_{i_{1}} y_{j_{1} \ldots j_{m}}=y_{i_{1} j_{1} \ldots j_{m}}=y_{j_{1} \ldots j_{m}} y_{i_{1}} .
$$

Similarly, if $n>1, m=1$, then

$$
y_{i_{1} \ldots i_{n}} y_{j_{1}}=y_{j_{1} i_{1} \ldots i_{n}}=y_{j_{1}} y_{i_{1} \ldots i_{n}},
$$

If $n>1, m>1$, then

$$
y_{i_{1} \ldots i_{n}} y_{j_{1} \ldots j_{m}}=0=y_{j_{1} \ldots j_{m}} y_{i_{1} \ldots i_{n}} .
$$

So, the multiplication of the algebra $G(X)$ is well-defined. It is easy to see that the algebra $G(X)$ is commutative and metabelian:

$$
(a b)(c d)=0, \quad \forall a, b, c, d \in G(X)
$$

Moreover, $G(X)$ is isomorphic to a free algebra of the variety of metabelian commutative algebras generated on the set $X=\left\{x_{i} \mid i \in[q]\right\}$. An isomorphism can be given by the rule

$$
y_{i_{1} \ldots i_{n-1} i_{n}} \mapsto x_{i_{1}}\left(\cdots\left(x_{i_{n-1}} x_{i_{n}}\right) \cdots\right)
$$

It is easy to check that this assignment yields an isomorphism. By the metabelian identity, any non right-bracketed and any non left-bracketed element should vanish. By the commutativity identity,

$$
x_{i_{1}}\left(\cdots\left(x_{i_{n-2}}\left(x_{i_{n-1}} x_{i_{n}}\right)\right) \cdots\right)=x_{i_{1}}\left(\cdots\left(x_{i_{n-2}}\left(x_{i_{n}} x_{i_{n-1}}\right)\right) \cdots\right),
$$

and hence, any left-bracketed element can be reduced to a right-bracketed element.
In [1] it was established that the free Leibniz algebra $F(X)$ under Jordan multiplication $a \star b=a \circ b+b \circ b$ satisfies the commutativity and metabelian identities. Set

$$
x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}^{+}= \begin{cases}x_{i_{1}} \circ\left(\cdots\left(x_{i_{n-2}} \circ\left(x_{i_{n-1}} \star x_{i_{n}}\right)\right) \cdots\right), i_{n-1} \leq i_{n}, & \text { if } n>1 \\ x_{i_{1}} & \text { if } n=1\end{cases}
$$

Let us prove that set of elements

$$
\mathcal{V}^{+}(X)=\left\{x_{i_{1} \ldots i_{n}}^{+} \mid i_{1}, \ldots, i_{n} \in[q], \text { and } i_{n-1} \leq i_{n} \text { if } n>1\right\}
$$

forms a base of $F^{+}(X)$.

First, note that $\mathcal{V}^{+}(X) \subset F(X):$

$$
x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}^{+}=x_{i_{1}} \star\left(\cdots\left(x_{i_{n-2}} \star\left(x_{i_{n-1}} \star x_{i_{n}}\right)\right) \cdots\right) \in F^{+}(X) .
$$

Suppose that the elements $x_{i_{1} \ldots i_{n}}^{+}$are linearly dependent:

$$
\sum_{i_{1}, \ldots, i_{n} \in[q], i_{n-1} \leq i_{n}} \lambda_{i_{1} \ldots i_{n}} x_{i_{1} \ldots i_{n}}^{+}=0
$$

for some $\lambda_{i_{1} \ldots i_{n}} \in K, n>1$. Then,

$$
\begin{aligned}
0= & \sum_{i_{1}, \ldots, i_{n} \in[q], i_{n-1} \leq i_{n}} \lambda_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}\left(x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}+x_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}}\right) \\
= & \sum_{i_{1}, \ldots, i_{n} \in[q], i_{n-1}<i_{n}} \lambda_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}\left(x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}+x_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}}\right) \\
& +\sum_{i_{1} \ldots i_{n-1} \in[q]} 2 \lambda_{i_{1} \ldots i_{n-1} i_{n-1}} x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n-1}} \\
= & \sum_{i_{1}, \ldots, i_{n} \in[q], i_{n-1}<i_{n}} \lambda_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}} x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}} \\
& +\sum_{i_{1}, \ldots, i_{n} \in[q], i_{n-1}>i_{n}} \lambda_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}} x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}} \\
& +\sum_{i_{1} \ldots i_{n-1} \in[q]} 2 \lambda_{i_{1} \ldots i_{n-1} i_{n-1}} x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n-1}} .
\end{aligned}
$$

Since elements $x_{i_{1} \ldots i_{n}}$ are base elements of $F(X)$, this means that $\lambda_{i_{1} \ldots i_{n}}=0$ for all $i_{1}, \ldots i_{n} \in[q]$. In other words, elements $x_{i_{1} \ldots i_{n}}^{+}$, where $i_{n-1} \leq i_{n}$, if $n>1$, are linearly independent.

Now let us prove that any element $a \in F^{+}(X)$ can be presented as a linear combination of elements $v \in \mathcal{V}^{+}(X)$. We can assume that a is a homogeneous element. Let n be the degree of a. We proceed by induction on n. If $n=1$ our statement is evident. Suppose that for $n-1$ our statement is true and $n>1$. Since any element of degree n is a linear combination of anti-commutators of two base elements of degree $<n$, we have to prove that $x_{i_{1} \ldots i_{k}}^{+} \star x_{j_{1} \ldots j_{n-k}}^{+}$is a linear combination of base elements of the form $x_{s_{1} \ldots s_{n}}^{+} \in \mathcal{V}^{+}(X)$. This fact is easy to establish. If $k>1$, then

$$
x_{i_{1} \ldots i_{k}}^{+} \star x_{j_{1} \ldots j_{n-k}}^{+}=0 .
$$

If $k=1$ and $n>2$ then

$$
x_{i_{1}}^{+} \star x_{j_{1} \ldots j_{n-1}}^{+}=x_{i_{1}} \circ x_{j_{1} \ldots j_{n-1}}^{+}+x_{j_{1} \ldots j_{n-1}}^{+} \circ x_{i_{1}}=x_{i_{1}} \circ x_{j_{1} \ldots j_{n-1}}^{+}=x_{i_{1} j_{1} \ldots j_{n-1}}^{+}
$$

If $k=1$ and $n=2$, then

$$
x_{i_{1}}^{+} \star x_{j_{1}}^{+}=x_{i_{1}} \star x_{j_{1}}=x_{i_{1} j_{1}} .
$$

So, we have proved that the set $\mathcal{V}^{+}(X)$ forms base of $F^{+}(X)$. Note that the map

$$
G(X) \rightarrow F^{+}(X), \quad y_{i_{1} \ldots i_{n}} \mapsto x_{i_{1} \ldots i_{n}}^{+}
$$

is a homomorphism of algebras and is one-to-one.

So, we have established the following result.
Lemma 3.1. Let $X=\left\{x_{i} \mid i \in[q]\right\}$. Let $G(X)$ be a free algebra generated by X of the variety given by the commutativity identity com $=0$ and the metabelian identity leibjor $=0$, where

$$
c o m=t_{1} t_{2}-t_{2} t_{1}, \quad \text { leibjor }=\left(t_{1} t_{2}\right)\left(t_{3} t_{4}\right)
$$

Then $F^{+}(X)$, the subalgebra of $(F(X), \star)$ generated by $X=\left\{x_{i} \mid i \in[q]\right\}$, is isomorphic to $G(X)$. An isomorphism is given by

$$
\begin{gathered}
G(X) \rightarrow F^{+}(X), \\
y_{i_{1} \ldots i_{n}} \mapsto x_{i_{1} \ldots i_{n}}^{+} \stackrel{\text { def }}{=} x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}+x_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}},
\end{gathered}
$$

where $i_{1}, \ldots, i_{n} \in[q]$.

4. Criterion for Jordan elements

Lemma 4.1. $a \in F^{+}(X)$ if and only if $a=p_{+} b$ for some $b \in F(X)$.
Proof. If $a=p_{+} b$ and $b=\sum_{i_{1}, \ldots, i_{n} \in[q]} \lambda_{i_{1} \ldots i_{n}} x_{i_{1} \ldots i_{n}}$, then by the rule

$$
a \circ(b \star c)=a \star(b \star c),
$$

we have

$$
\begin{aligned}
a=p_{+} b & =\sum_{i_{1}, \ldots, i_{n} \in[q]} \lambda_{i_{1} \ldots i_{n}}\left(x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}+x_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}}\right) \\
& =x_{i_{1}} \star\left(\cdots\left(x_{i_{n-2}} \star\left(x_{i_{n-1}} \star x_{i_{n}}\right)\right) \cdots\right) \\
& \in F^{+}(X) .
\end{aligned}
$$

Conversely, if $a \in F^{+}(X)$, then by Lemma $3.1 a$ is a linear combination of elements of a form

$$
x_{i_{1} \ldots i_{n}}^{+}=x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}+x_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}}, \quad i_{1}, \ldots, i_{n} \in[q] .
$$

Since

$$
x_{i_{1} \ldots i_{n}}^{+}=p_{+} x_{i_{1} \ldots i_{n}},
$$

this means that a is a linear combination of elements of a form $p_{+} x_{i_{1} \ldots i_{n}}$. So, $a=p_{+} b$ for some $b \in F(X)$.

Lemma 4.2. $p_{+}^{2}=2 p_{+}$.
Proof. For any base element $v=x_{i_{1} \ldots i_{n}} \in \mathcal{V}(X)$ we have

$$
p_{+} v=p_{+} x_{i_{1} \ldots i_{n}}=x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}+x_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}}
$$

Thus,

$$
p_{+}^{2} v=2\left(x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}+x_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}}\right)=2 p_{+} v
$$

Therefore $p_{+}^{2} a=2 p_{+} a$, for any $a \in F(X)$.
Lemma 4.3. For any $a \in F(X)$ the following conditions are equivalent

- $p_{+} a=2 a$
- $p_{-} a=0$

Proof. It is evident that $p_{-} p_{+}=0$. Therefore, if $p_{+} a=2 a$, then

$$
p_{a}=p_{-}\left(\left(p_{+} a\right) / 2\right)=p_{-} p_{+}(a) / 2=0
$$

Conversely, suppose that $p_{a}=0$ for $a=\sum_{i_{1}, \ldots, i_{n} \in[q]} \lambda_{i_{1} \ldots i_{n}} x_{i_{1} \ldots i_{n}} \in F(X)$. Since

$$
\begin{aligned}
p_{-} a & =\sum_{i_{1}, \ldots, i_{n} \in[q]} \lambda_{i_{1} \ldots i_{n}}\left(x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}-x_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}}\right) \\
& =\sum_{i_{1}, \ldots, i_{n} \in[q], i_{n-1}<i_{n}}\left(\lambda_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}-\lambda_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}}\right) x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}
\end{aligned}
$$

the condition $p_{-} a=0$ gives us that

$$
\lambda_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}=\lambda_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}}, \quad \forall i_{1}, \ldots i_{n} \in[q] .
$$

Therefore,

$$
\begin{aligned}
a= & \sum_{i_{1}, \ldots, i_{n} \in[q], i_{n-1}<i_{n}} \lambda_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}\left(x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}+x_{i_{1} \ldots i_{n-2} i_{n} i_{n-1}}\right) \\
& +\sum_{i_{1}, \ldots, i_{n-1} \in[q]} \lambda_{i_{1} \ldots i_{n-2} i_{n-1} i_{n-1}} x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n-1}} \\
= & \sum_{i_{1}, \ldots, i_{n} \in[q], i_{n-1}<i_{n}} \lambda_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}} p_{+}\left(x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}}\right) \\
& +\sum_{i_{1}, \ldots, i_{n-1} \in[q]} \lambda_{i_{1} \ldots i_{n-2} i_{n-1} i_{n-1}} p_{+}\left(x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n-1}} / 2\right) .
\end{aligned}
$$

In other words, $a=p_{+} b$, for $b \in F(X)$ given by

$$
\begin{aligned}
b= & \sum_{i_{1}, \ldots, i_{n} \in[q], i_{n-1}<i_{n}} \lambda_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}} x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n}} \\
& +\sum_{i_{1}, \ldots, i_{n-1} \in[q]} \lambda_{i_{1} \ldots i_{n-2} i_{n-1} i_{n-1}} x_{i_{1} \ldots i_{n-2} i_{n-1} i_{n-1}} / 2
\end{aligned}
$$

Therefore, by Lemma 4.2

$$
p_{+} a=p_{+}^{2} b=2 p_{+} b=2 a
$$

5. Dimension and base of left-Center

Consider elements of $F(X) \star F(X)$. Call elements of the form $u_{i_{1} \ldots i_{s} i_{s+1} \ldots i_{n}}^{(s)}=$ $x_{i_{1} \ldots i_{s}} \star x_{i_{s+1} \ldots i_{n}}$ as s-type elements. For 1-type elements, $u_{i_{1} \ldots i_{n}}^{(1)}=x_{i_{1}} \star x_{i_{2} \ldots i_{n}}$, where $n>2$, call $x_{i_{1}}$ the leader. If $n=2$, call $x_{i_{1}}$ the leader of $u_{i_{1} i_{2}}^{(1)}=x_{i_{1}} \star x_{i_{2}}$ if $i_{1} \leq i_{2}$.

Lemma 5.1. The degree n part of $F(X) \star F(X)$ is generated by 1-type elements of the form $x_{i_{1}} \star x_{i_{2} \ldots i_{n}}$, where $x_{i_{1}}, \ldots, x_{i_{n}} \in X$.

Proof. Since $F(X) \star F(X)$ is generated by elements of the form $u_{i_{1} \ldots i_{s} i_{s+1} \ldots i_{n}}^{(s)}=$ $x_{i_{1} \ldots i_{s}} \star x_{i_{s+1} \ldots i_{n}}$, it is enough to prove that any s-type element $u_{i_{1} \ldots i_{s} i_{s+1} \ldots i_{n}}^{(s)}$ can be presented as a linear combination of 1-type elements of the form $u_{i_{1} i_{2} \ldots i_{n}}^{(1)}$.

We will use induction on $s=1,2, \ldots, n-1$. If $s=1$, there nothing is to prove. Suppose that the statement is true for $s-1$.Then

$$
\begin{aligned}
u_{i_{1} \ldots i_{n}}^{(s)}= & \left(x_{i_{1}} \circ x_{i_{2} \ldots i_{s}}\right) \star x_{i_{s+1} \ldots i_{n}} \\
= & \left(x_{i_{1}} \circ x_{i_{2} \ldots i_{s}}\right) \circ x_{i_{s+1} \ldots i_{n}}+x_{i_{s+1} \ldots i_{n}} \circ\left(x_{i_{1}} \circ x_{i_{2} \ldots i_{s}}\right) \\
= & x_{i_{1}} \circ\left(x_{i_{2} \ldots i_{s}} \circ x_{i_{s+1} \ldots i_{n}}\right)-x_{i_{2} \ldots i_{s}} \circ\left(x_{i_{1}} \circ x_{i_{s+1} \ldots i_{n}}\right) \\
& +\left(x_{i_{s+1} \ldots i_{n}} \circ x_{i_{1}}\right) \circ x_{i_{2} \ldots i_{s}}+x_{i_{1}} \circ\left(x_{i_{s+1} \ldots i_{n}} \circ x_{i_{2} \ldots i_{s}}\right) \\
= & x_{i_{1}} \circ\left(x_{i_{2} \ldots i_{s}} \star x_{i_{s+1} \ldots i_{n}}\right)-x_{i_{2} \ldots i_{s}} \circ\left(x_{i_{1}} \circ x_{i_{s+1} \ldots i_{n}}\right) \\
& -\left(x_{i_{1}} \circ x_{i_{s+1} \ldots i_{n}}\right) \circ x_{i_{2} \ldots i_{s}} \\
= & x_{i_{1}} \circ\left(x_{i_{2} \ldots i_{s}} \star x_{i_{s+1} \ldots i_{n}}\right)-x_{i_{2} \ldots i_{s}} \star\left(x_{i_{1} i_{s+1} \ldots i_{n}}\right) .
\end{aligned}
$$

Now, we have

$$
x_{i_{1}} \circ\left(x_{i_{2} \ldots i_{s}} \star x_{i_{s+1} \ldots i_{n}}\right)=x_{i_{1}} \star\left(x_{i_{2} \ldots i_{s}} \star x_{i_{s+1} \ldots i_{n}}\right) .
$$

Therefore, the element $x_{i_{1}} \circ\left(x_{i_{2} \ldots i_{s}} \star x_{i_{s+1} \ldots i_{n}}\right)$ can be presented as a linear combination of 1 -type elements. By induction, the element $x_{i_{2} \ldots i_{s}} \star x_{i_{1} i_{s+1} \ldots i_{n}}$ is also a linear combination of 1-type elements. Thus, the element $u_{i_{1} \ldots i_{n}}^{(s)}$ can be presented as a linear combination of elements of the form $u_{j_{1} \ldots j_{n}}^{(1)}$. Hence, our statement is true for s.
Lemma 5.2. Any multilinear 1-type element $u_{n i_{1} \ldots i_{n-1}}^{(1)}$ of degree n with leader x_{n} is a linear combination of multilinear 1-type elements with leader $x_{i_{1}}$, with $i_{1}<n$.

Proof. If $n=2$ this statement is evident: $u_{21}=x_{2} \star x_{1}=x_{1} \star x_{2}=u_{12}^{(1)}$. Suppose that our statement is true for $n-1>1$. We then have

$$
\begin{aligned}
u_{n i_{1} \ldots i_{n-1}}^{(1)}= & x_{n} \star x_{i_{1} \ldots i_{n-1}} \\
= & x_{n} \circ x_{i_{1} \ldots i_{n-1}}+x_{i_{1} \ldots i_{n-1}} \circ x_{n} \\
= & \left(x_{n} \circ x_{i_{1}}\right) \circ x_{i_{2} \ldots i_{n-1}}+x_{i_{1}} \circ\left(x_{n} \circ x_{i_{2} \ldots i_{n-1}}\right) \\
& +x_{i_{1}} \circ\left(x_{i_{2} \ldots i_{n-1}} \circ x_{n}\right)-x_{i_{2} \ldots i_{n-1}} \circ\left(x_{i_{1}} \circ x_{n}\right) \\
= & -\left(x_{i_{1}} \circ x_{n}\right) \circ x_{i_{2} \ldots i_{n-1}}+x_{i_{1}} \circ\left(x_{n} \circ x_{i_{2} \ldots i_{n-1}}\right) \\
& +x_{i_{1}} \circ\left(x_{i_{2} \ldots i_{n-1}} \circ x_{n}\right)-x_{i_{2} \ldots i_{n-1}} \circ\left(x_{i_{1}} \circ x_{n}\right) \\
= & -x_{i_{1} n} \star x_{i_{2} \ldots i_{n-1}}+x_{i_{1}} \circ\left(x_{n} \star x_{i_{2} \ldots i_{n-1}}\right) \\
= & -x_{i_{1} n} \star x_{i_{2} \ldots i_{n-1}}+x_{i_{1}} \star\left(x_{n} \star x_{i_{2} \ldots i_{n-1}}\right) .
\end{aligned}
$$

By induction, the element $x_{n-1}^{\prime} \star x_{1 \ldots x_{n-2}^{\prime}}$, where we set $x_{l}^{\prime}=x_{i_{l+1}}, i=1, \ldots, n-2$, and $x_{n}^{\prime}=x_{i_{1} n}$, is a linear combination of 1-type elements with leader x_{l}^{\prime}, where $l \leq n-2$. Since $x_{l}^{\prime}=x_{i_{l+1}}$ and $i_{l+1}<n$, this means that the element $x_{i_{1} n} \star x_{i_{2} \ldots i_{n-1}}$ is a linear combination of elements of 1-type of degree n with leader x_{i}, where $i<n$. It is evident that the element $x_{i_{1}} \star\left(x_{n} \star x_{i_{2} \ldots i_{n-1}}\right)$ is a linear combniation of 1-type elements with leader $x_{i_{1}}$, where $i_{1}<n$. Therefore, any 1-type element of the form $u_{n i_{1} \ldots i_{n-1}}^{(1)}$ is a linear combination of 1-type elements with leader $x_{i_{1}}$, with $i_{1}<n$. Our statement is proved for n.

Example 3.

$$
\begin{gathered}
x_{3} \star x_{12}=x_{1} \star\left(x_{2} \star x_{3}\right)-x_{2} \star x_{13} \\
x_{4 \star} x_{123}=x_{1} \star\left(x_{23} \star x_{4}\right)-x_{2} \star\left(x_{14} \star x_{3}\right)+x_{3} \star x_{214} \\
x_{5} \star x_{1234}=x_{1} \star\left(x_{5} \star x_{234}\right)-x_{2} \star\left(x_{15} \star x_{34}\right)+x_{3} \star\left(x_{4} \star x_{215}\right)-x_{4} \star x_{3215}
\end{gathered}
$$

6. Proof of Theorem 1.1

We know that $F(X) \star F(X) \subseteq Z(X)$, and by Lemma 2.3, $Z(X)=Z_{1}(X)$. So, to prove Theorem 1.1 it is enough to prove that

$$
z=z\left(x_{1}, \ldots, x_{q}\right) \in Z(X) \Rightarrow z \in F(X) \star F(X)
$$

By Lemma 2.6 we can assume that the element $z \in Z(X)$ is homogeneous.
Denote by $\nu_{1}(z)=z_{1}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}, \ldots, x_{q}\right) \in F\left(X^{\prime}\right)$, where $X^{\prime}=\left\{x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}, \ldots, x_{q}\right\}$, the element

$$
\nu_{1}(z)=z\left(x_{1}^{\prime}+x_{1}^{\prime \prime}, x_{2}, \ldots, x_{q}\right)-z\left(x_{1}^{\prime}, x_{2}, \ldots, x_{q}\right)-z\left(x_{1}^{\prime \prime}, x_{2}, \ldots, x_{q}\right)
$$

For a homogeneous element $z=z\left(x_{1}, \ldots, x_{q}\right) \in Z(X)_{m_{1} \ldots m_{q}}=Z \cap F(X)_{m_{1} \ldots m_{q}}$, define the degree $\operatorname{deg}_{x_{i}} z=m_{i}$ if the entrance of x_{i} in each component of z is m_{i}. If $\operatorname{deg}_{x_{1}} z=1$, then $\nu_{1} z=0$. By Lemma 2.4

$$
\nu_{1}(z) \in Z
$$

and

$$
d e g_{x_{1}} z=m_{1}>1
$$

which implies

$$
\operatorname{deg}_{x_{1^{\prime}}}\left(\nu_{1}(z)\right)<m_{1} \quad \text { and } \quad \operatorname{deg}_{x_{1^{\prime \prime}}}\left(\nu_{1}(z)\right)<m_{1}
$$

Conversely, if $\nu_{1}(z)=z_{1}\left(x_{1^{\prime}}, x_{1^{\prime \prime}}, x_{2}, \ldots, x_{q}\right) \in Z\left(X^{\prime}\right)$, then

$$
z\left(x_{1}, \ldots, x_{q}\right)=\left(2^{m_{1}}-2\right)^{-1} \nu_{1}(z)\left(x_{1}, x_{1}, x_{2}, \ldots, x_{q}\right) \in Z(X)
$$

Moreover, if $\nu_{1}(z)=z_{1}\left(x_{1^{\prime}}, x_{1^{\prime \prime}}, x_{2}, \ldots, x_{q}\right) \in F\left(X^{\prime}\right) \star F\left(X^{\prime}\right)$, then

$$
z\left(x_{1}, \ldots, x_{q}\right)=\left(2^{m_{1}}-2\right)^{-1} \nu_{1}(z)\left(x_{1}, x_{1}, x_{2}, \ldots, x_{q}\right) \in F(X) \star F(X)
$$

Repeat this procedure m_{i} times for each $i=1, \ldots, q$. We see that we can assume the element $z \in Z(X) \subset Z$ is not only homogeneous, but is also multilinear, i.e., $m_{i}=1$, for any $i=1, \ldots, q$. Therefore, it is enough to prove that any multilinear left-central element is a Jordan element.

Consider the multilinear left-central element $z=z\left(x_{1}, \ldots, x_{q}\right) \in Z(X)$. We must demonstrate that $z \in F(X) \star F(X)$.

Let $L(X)$ be the free Lie algebra with generators $X=\left\{x_{1}, x_{2}, \ldots, x_{q}\right\}$. The multilinear part of the free Lie algebra of degree q has a base generated by elements of the form $\left[x_{\sigma(1)},\left[\cdots,\left[x_{\sigma(q-1)}, x_{q}\right] \cdots\right]\right.$, where σ runs through the permutations of $S_{y m}$ such that $\sigma(q)=q$ (see [5]). Since

$$
L(X) \cong K\langle X\rangle / J(\text { acom }, j a c) \cong K\langle X\rangle / J(\text { acom }, \text { lei }) \cong F(X) / J(\text { acom })
$$

we can present $z \in F(X)$ in the form

$$
z=\sum_{\substack{\sigma \in S y m_{q} \\ \sigma(q)=q}} \lambda_{\sigma} x_{\sigma}(\text { modulo } F(X) \star F(X))
$$

for some $\lambda_{\sigma} \in K$.
Then by Lemma 2.7,

$$
z \circ x_{q+1}=(-1)^{q} \sum_{\sigma \in \operatorname{Sym}_{q}}(-1)^{|l(\sigma)|+1}\left(\sum_{\tau \in l(\sigma) \amalg \operatorname{rev}(r(\sigma))} \lambda_{\tau q}\right) x_{\sigma q+1} .
$$

We see that the coefficient of $z \circ x_{q+1}$ at x_{σ}, where $\sigma(1)=q, \sigma(q+1)=q+1$, is equal to $\lambda_{\operatorname{rev}(\sigma(2) \ldots \sigma(q))}$. Example 2 given above demonstrates this fact in the case of $q=4$. Therefore,

$$
z \circ x_{q+1}=0
$$

which implies that

$$
\lambda_{\sigma}=0, \forall \sigma \in \operatorname{Sym}_{q}, \sigma(q)=q
$$

So, $z \in F(X) \star F(X)$, which proves the main part of Theorem 1.1. The part of Theorem 1.1 concerning dimensions is easy combinatorics.

As we have proved,

$$
\operatorname{dim} Z(X)_{m_{1} \ldots m_{q}}+\operatorname{dim} L(X)_{m_{1} \ldots m_{q}}=\operatorname{dim} F(X)_{m_{1} \ldots m_{q}}
$$

By the Witt theorem [5],

$$
\operatorname{dim} L(X)_{m_{1} \ldots m_{q}}=\frac{1}{n} \sum_{d \mid m_{i}} \mu(d)\binom{n / d}{m_{1} / d \cdots m_{q} / d}
$$

where $n=m_{1}+\cdots+m_{q}$. By the Loday Theorem [4],

$$
\operatorname{dim} F(X)_{m_{1} \ldots m_{q}}=\binom{n}{m_{1} \cdots m_{q}}
$$

Therefore,

$$
\operatorname{dim} Z(X)_{m_{1} \ldots m_{q}}=\frac{(n-1)}{n}\binom{n}{m_{1} \cdots m_{q}}-\sum_{d \mid m_{i}, d>1} \mu(d)\binom{n / d}{m_{1} / d \cdots m_{q} / d}
$$

In particular,

$$
\operatorname{dim} Z(X)_{1 \cdots 1}=(q-1)(q-1)!
$$

It is easy to see that the number of 1-type multilinear elements is equal to ($q-$ 1) $(q-1)$!. Therefore, by Lemma 5.2, the set of multilinear 1-type elements forms a base of the multilinear part of $F(X) \star F(X)$.

In general, by Lemma 5.1, the set of 1-type elements generates the homogeneous part of $F(X) \star F(X)$.

7. Proof of Theorem 1.2

By the identity

$$
a \circ(b \star c)=a \star(b \star c),
$$

it is clear that

$$
P_{+}=p_{+}
$$

By Lemmas 4.1, 4.2, 4.3 and 3.1, all statements of Theorem 1.2 except the part concerning dimensions have been proven.

Let us calculate the dimension of the homogeneous part of $G(X)_{m_{1} \ldots m_{q}}$. Let R be the number of sequences of length $n=m_{1}+\cdots+m_{n}$ with components in $[q]$ such that last two components are equal. Then

$$
\begin{aligned}
R & =\left|\left\{i_{1} \ldots i_{n-1} i_{n-1} \mid i_{1}, \ldots i_{n-1} \in[q]\right\}\right| \\
& =\sum_{s=1}^{q} \frac{\left(m_{1}+\cdots+m_{s-1}+m_{s+1}+\cdots m_{q}+m_{s}-2\right)!}{m_{1}!\cdots m_{s-1}!\left(m_{s}-2\right)!m_{s+1}!\cdots m_{q}!} \\
& =\binom{m_{1}+\cdots+m_{q}-2}{m_{1} \cdots m_{s-1} m_{s}-2 m_{s+1} \cdots m_{q}} \frac{\sum_{s=1}^{q} m_{s}^{2}-m_{s}}{\left(m_{1}+\cdots+m_{q}\right)\left(m_{1}+\cdots+m_{q}-1\right)} .
\end{aligned}
$$

The number of sequences with components in $[q]$ where each $i \in[q]$ appears m_{i} times is

$$
T=\binom{m_{1}+\cdots+m_{q}}{m_{1} \cdots m_{q}}
$$

Therefore, the number of base elements of $G(X)_{m_{1} \ldots m_{q}}$ of degree $n=m_{1}+\cdots+m_{q}$ where each $x_{i}, i \in[q]$ appears m_{i} times is

$$
\mid\left\{i_{1} \cdots i_{n} \mid i_{1}, \ldots, i_{n} \in[q], \text { and } i_{n-1} \leq i_{n} \text { if } n>1\right\} \mid=(R+T) / 2
$$

In other words,

$$
\operatorname{dim} G(X)_{m_{1} \ldots m_{q}}=\frac{1}{2}\left(\frac{\sum_{i=1}^{q} m_{i}^{2}}{n(n-1)}+\frac{n-2}{n-1}\right)\binom{n}{m_{1} \cdots}
$$

In particular, the dimension of the multilinear part of $G(X)_{1 \ldots 1}$ is $q!/ 2$.

References

[1] A. S. Dzhumadil'daev, q-Leibniz algebras, Serdica Math., 34 (2008), 415-440. MR 2424655
[2] N. Jacobson, "Structure and Representations of Jordan Algebras," AMS Colloq. Publ., 39, Mathematical Society, Providence, RI, 1968. MR 0251099
[3] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Liebniz algebras and (co)homology, Math. Ann., 296 (1993), 139-158. MR 1213376
[4] J.-L. Loday, Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand., 77 (1995), 189-196. MR 1379265
[5] C. Reutenauer, "Free Lie Algebras," London Mathematical Society Monographs, New Series, 7, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. MR 1231799

Kazakh-British University, Almaty, Kazakhstan
E-mail address: dzhuma@hotmail.com

[^0]: Received by the editors February 9, 2011 and, in revised form, April 22, 2011.
 2010 Mathematics Subject Classification. Primary 17A32; Secondary 17D25.
 Key words and phrases. Leibniz algebras, Jordan elements, left-center.
 I am grateful to anonymous referee for essential remarks that allows to improve Theorems 1.1 and 1.2.

