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ABSTRACT. An element of a free Leibniz algebra is called Jordan if it belongs
to a free Leibniz-Jordan subalgebra. Elements of the Jordan commutant of
a free Leibniz algebra are called weak Jordan. We prove that an element of
a free Leibniz algebra over a field of characteristic 0 is weak Jordan if and
only if it is left-central. We show that free Leibniz algebra is an extension of
a free Lie algebra by left-center. We find the dimensions of the homogeneous
components of the Jordan commutant and the base of its multilinear part. We
find criterion for an element of free Leibniz algebra to be Jordan.

1. INTRODUCTION

Let K be a field of characteristic 0 and K = K (t1,ta,...) be a free magma, i.e.,
a space of non-associative non-commutative polynomials with generators t1,ts,. ...
An ideal I of K is called T-ideal if for any f(t1,...,tx) € I and for any endomor-
phism ¢ of IC,

f(o(tr),..., o(tr)) € I.

For non-associative, non-commutative polynomials fi,..., f; € K, denote by
J(f1,..., fi) the T-ideal of I generated by these elements.

Leibniz algebras were introduced by J.L. Loday [3]. They are defined by the
identity let = 0, where

lei = lei(tq,ta,t3) = (t1t2)ts — t1(tats) + ta(t1ts).

Let
acom = acom(tl, tg) =11 xtyg = t1ts + taty,
and
jac = jac(ti, ta, t3) = t1(tats) + ta(tsts) + t3(tita),
be anti-commutative and Jacobi polynomials, respectively.

Let (A, o) be an algebra with vector space A over a field K and multiplication
AxA — A, (a,b) — aob. Define the Lie and Jordan commutators (anti-commutator)
by

[a,bl =aob—boa, and axb=aob+boa.
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Call the algebras (4, [, ]) and (4, *) the minus- and plus-algebras, respectively, of
A.
Let

lq] ={1,2,...,q}.
Here ¢ might be infinite. Let F(X) be the free Leibniz algebra defined on a set
of generators X = {z;]i € [¢]}. Let F*(X) be the subalgebra of the plus-algebra
(F(X),*) generated by X. Let us introduce the following non-commutative, non-
associative polynomials
com = tltg — tgtl, leibjor = (tltz)(t3t4)

(commutativity and metabelian polynomials). We will see that F'*(X) is a free
algebra of the variety given by the polynomial identities com = 0 and leibjor = 0
(Theorem 1.2). If ¢ is infinite we will sometimes write F' and F'" instead of F(X)
and F*(X).
For ay,...,a, € F(X), denote by aj---ay, or aj..,, a right-bracketed element
aj o (- (ap—10ay)---). Note that
ap* (- (an—2 % (an-1%@an)) -+ ) =ar0 (- (an—20 (@n—1%*an)) ),

so, in fact, in an expression of the form ay * (- -+ (ap—2 * (an—1 * ay))---) one can
change all Jordan multiplications %, except the last one, to the Leibniz multiplica-
tion o.

In [3] it is proved that the following set of elements

def
V(X) = Un{xil...in éj Tiy oo LL‘in|JJi1 ooy Tg, € X}

forms a base of the free Leibniz algebra F(X). For v = x;, -+ @i, _,x;, € V(X), we
say that v has degree n and that x;, , is the pre-head and x;, is the head of v.
Let Py ,py,p— : F(X) — F(X) be linear maps defined on base elements by

Py(@iy o (- @i,y 0 (Tiyoy 0@i,)) -+ ) = iy * (- (T g * (Wi ) ¥ T3,)) ),
(changing all Leibniz mutiplications by anti-commutator)
P4(iy 0 (- (@i g 0 (Wi 0@, ) -+ ) = @iy 0 (- (Tiyy © (T, i) o+,
(changing a mutiplication between pre-head and head by anti-commutator)
p—(iy 0 (- (@i p 0 (Wi, 03,)) -+ ) =@y 0 (- (Tiyyp © [Ty 1, @i, ]) -+

(changing a multiplication between pre-head and head by commutator).
Call an element a € F(X) Jordan if a € F*(X) and weak Jordan if

a€ F(X)xF(X).
It is clear that any Jordan element is weak Jordan. For example, if ¢ > 1, then
a = 9% (x1 023)
is a Jordan element, since
a = x90 (xr10xe) + (21 022) 0 X9
=x90 (x10x9) + 21 0 (X2 0x9) — X9 0 (x1 0 2)
= x1 % (23 % x2)/2 € FT(X),
and b = (z1 o x3) o (x1 0 z3) is weak Jordan, since

b= (x10x2) % (x10m9)/2 € F(X) % F(X).
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However, by Theorem 1.2 given below, the element b is not Jordan:
b =211 0 (x20 (21 0x9)) — 229 0 (21 0 (%1 0 22)),
which implies that
p+(b) = 2z1 0 (22 0 (1 0 @2)) — 222 0 (w1 © (71 0 72))
+2x10 (220 (w2 0x1)) — 2230 (21 0 (2 021))
# 2b,
and hence, b & F(X) when ¢ > 1.

Note that the Jordan commutant F'(X) = F(X) is an ideal of F(X) with trivial
right-action and left-action as a derivation,

ao(bxc)=(aob)xc+bx(aoc),

(bxc)oa=0,
for any a,b,c € F(X). Proofs of these facts are easy. See, for example, [1].
Call an element z € F(X) left-central if
zoa=10
for any a € F(X). Let Z(X) be the left-center, i.e., the set of left-central elements
of F(X):
Z(X)={z€ F(X)|zoa=0,Ya € F(X)}.
Let
Z1(X)={2€ F(X)|zox =0}
be the left-centralizer of the element 27 € X in F(X).
If z € Z(X), then for any y;,y2 € F(X),
(zoy1)oyz =zo(y10y2) —y10(20y2) =0.
Hence, z o y; € Z(X). Similarly, y1 0 z € Z(X), and so Z(X) is an ideal of F(X).
Likewise, Z1(X) is also an ideal of F(X), and
Z(X) C Z1(X).
Since
(aob+boa)oc=ao(boc)—bo(aoc)+bo(aoc)—ao(boc)=0,
we have
F(X)xF(X)C Z(X).

For the left-center Z(X) of the free Leibniz algebra F'(X'), denote by Z(X)m,...m,
the homogenous component of Z(X) generated by m; generators 21, ms generators
T3, etc, my generators x,. Recall that a multinomial coefficient is defined by

n n!
my My mql---mgl

We write d|m; if d is a divisor of my, ..., mq. Recall that the Moebius function u(d)
is defined as (—1)¥ if d is a product of k different prime numbers and it equals 0 if
d is divisible by greater than one.

The aim of this paper is to prove that the left-center of a free Leibniz algebra
F(X) is generated by the squares a o a,a € F(X).



34 A. S. DZHUMADIL’DAEV

Theorem 1.1. Let F(X) be a free Leibniz algebra over a field K of characteristic
0 generated by a set X = {x;|i € [q]}. Then, for any a € F(X) of degree greater
than one, the following conditions are equivalent:

e ac F(X)xF(X)

e acZ(X)

e ac Z(X).
In particular,

Z1(X) = Z(X) = F(X) * F(X),

and a € F(X) is weak Jordan if and only if a oz = 0.

The set of elements of the form x;, * xi, 4, , where x;,,...,z; € X, spans the
space of weak Jordan elements F(X)x F(X). The elements of the form x;, x4, ;,,
where i1 .. .14 are permutations of the set {1,...,q}, such that i1 # q, form a base
of the multilinear part of F(X)x F(X).

Homogeneous components of the left-center have dimension

dim Z(X)m;..om, = “— . (m1 ) mq) _% > nld) (ml/drf./fimq/d)’

d\mi,d>1

where n =my + - - - + mgq. In particular, multilinear part of the left center Z(X) of
degree q has dimension (¢ — 1)(¢g — 1)!.

The dimension of degree m part of the left-center generated by q generators is
equal to

. n—1, 1 "
dim Z(X)n = ——q" =~ > uld)g”.
dlm;,d>1

Theorem 1.2. Let K be a field of characteristic 0. Then FT(X), the subalgebra of
(F(X),*) generated by X = {x;|i € [q]}, is isomorphic to a free algebra generated
by X of the variety given by the commutativity and the metabelian identities.

For any a € F(X) of degree greater than one, the following conditions are equiv-
alent:

e a is Jordan element
e P (a)=2a
e pi(a) =2a
e p-(a) =0.
The dimension of the homogeneous part FJF(X)ml,,,mq7 i.e., the dimension of a
subspace of FT(X) generated by m; elements x;, where i =1,..., q, is equal to
1 2 m?2 n-2 n
di F+ X . = = i=1""" ,
i F (X .m, 2(n(n—1)+n—1> <m1-~-mq)
where n = ;.1:1 m;. In particular, the multilinear part of F*(X) has dimension

q'/2.

Let us give some applications of these theorems for small ¢ and n. If ¢ = 1 and
F5(X) is a space generated by elements of degree more than one, then

Fy(X) = F(X) % F(X).

If ¢ = 2 then any weak Jordan element of degree no more than 3 is Jordan.
Another application concerns tetrads. Call an element of the form

uleO("'(xnflOxn)"')+("'((Inoxnfl)Ox”*Q)'”)O‘Tl
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reversible of degree n. Reversible elements of degree 4 are called tetrads.

If A is a free associative algebra, then its Jordan elements are reversible, and
the space of reversible elements is generated by Jordan elements and tetrads, i.e.,
by elements of the form abed + dcba [2]. Tetrads are not Jordan elements. A
criterion for an element of the free associative algebra to be Jordan is not known.
For the case of Leibniz algebras, Theorem 1.1 gives us the following criterion for
weak Jordan elements: any element a € F(X) is weak Jordan if and only if z is
left-central. Opposite to the associative case, tetrads for Leibniz algebras are weak
Jordan elements. Let a,b,c,d € F(X). Then

ao(bo(cod))+ ((doc)ob)oa=(aob)o(cod)+bo(ao(cod))
doc)o(boa)—bo((doc)oa)
Jo(cod)+bo(ao(cod))
d)o(boa)+bo((cod)oa)
Jx(cod)+bo
)x(cod)+b*
€ F(X)*F(X).

+(
—(boa)o(co
—(C
—(boa (a*
—(boa (ax(cod

It is not true, however, that all reversible elements of Leibniz algebras are weak
Jordan. For example, take

R =R(a,b,c)=ao(boc)+ (cob)oa

Then
Rod=(ao(boc)+ (cob)oa)od

=(ao(boc))od+ ((cob)oa)od
=(ao(boc))od—(ao(cob))od
=2(ao(boc))od—(ao(cxb))od
=2(ao(boc))od—(ax(cxb))od
=2(ao(boc))od

=2(ao(bo(cod))—ao(co(bod

—bo(co(aod))4co(bo(aod)))

=2[a,boc]od

Note that [a,boc] € F(X)x F(X) if b and ¢ are linearly dependent, and R € Z(X)
in this case. If b and ¢ are linearly independent (it might happen if ¢ = |X| > 2),
then it is not necessary that R o d = 0. For example,

R({L’l,.’L'g,(Eg) =210 (.’L’g O,’Eg) + (.’IJ3 O,’Eg) o X g F(X) *F(X), q > 2.

So, reversible elements of degree 3 might not be left-central. On the other hand,
the Jacobian of three elements is left-central:

jac(a,b,c) =ao(boc)+bo(coa)+co(aob)
=(aob)oc+bo(aoc)+bo(coa)+co(aod)
=(aob)xc+bo(axc)
=(aob)xc+bx*(axc)
e F(X)xF(X)C Z(X).

oc
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Since,
[[a,b],c] +[[b,c],a] + [[¢,a],b] = (aob)oc+ (boc)oa+ (coa)ob
=aolbc+bolcal+cola,b
= jac(a, b, c) — jac(a, c,b)
€ Z(X),
any Leibniz algebra satisfies the following identity of degree 4:
([[a, b], ¢] + [[b, ], a] + [[¢, a],b]) o d = 0.

If one considers identities of Leibniz algebras under the Lie commutator, then there
are no non-trivial identities for Leibniz-Lie algebras until degree 5. When the degree
is 5, two identities appear for Leibniz algebras under the Lie commutator. These
facts and other properties of left-central elements can be found in [3] and [1].

Corollary 1.3. Any reversible element of even degree is weak Jordan.
Proof. By the identity (aob)oc = —(boa)oc, we have,

((-+-(zpoxp_1)0oxpn_2) --)oxr)oxy =—((((Tp—10xy)0Xp_2) --)ox1)0 X7

(( o (:En*Q o (:Enfl o xn)) < ) o Il) ox1

= (=1)"" a0 (- (Tn—z0@n) ) 0w
= (=) Yay )02,
Therefore, if n is even, then
u=x10((Tp-102pn) )+ (- ((xnoxp_1)0Tp_2) -)ox € Z1(X).
So, by Theorem 1.1 u € F(X)+ F(X) if n is even and ¢ > n.

Corollary 1.4. (char K = 0) The left-center of a free Leibniz algebra is abelian.
Moreover, the factor-algebra of a free Leibniz algebra F(X) over the left-center
Z(X) is isomorphic to a free Lie algebra L(X).

In other words, the free Leibniz algebra F'(X) is an extension of the free Lie
algebra L(X) by an anti-symmetric abelian module:
0—Z(X)— F(X)— L(X)—0.
Recall that modules of Lie algebras are usually considered as symmetric, i.e., left
and right-actions are connected by the relation

xm + mzx = 0,

for any = of the Lie algebra L and for any element m the of L-module M. Here,
we consider a Lie algebra L(X) as a skew-symmetric Leibniz algebra and consider
Z(L) as an anti-symmetric module over a Leibniz algebra, i.e., the left action is
induced by multiplication in the Leibniz algebra and the right-action is trivial:

zx=0, xzz=uzoz, re LX), ze Z(X).
So, in the realization of the free Leibniz algebra as an extension of free Lie algebra

F(X) = L(X)+ Z(X),
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the multiplication is given by
(a4 z1) 0 (b4 22) =[a,b] +aocze, a,be L(X), 2,2 € Z(X).

It would be interesting to find a criterion specifying when elements of free Leibniz
algebras are Lie elements. Note that any weak Jordan element of degree more than
2 is weak Lie,

a*x(boc)=la,cobl+ [byaoc]—[c,ao0d].
There are weak Lie elements that are not weak Jordan. For example, [a,bo c] is a
such element:
[a,boc]=ao(boc)—bo(coa)+co(boa),
which implies

pi(la,boc]) —2[a,boc] = —aob,cl+bolc,a] —co[b,a] #0.

2. THE LEFT-CENTER AND THE JORDAN COMMUTANT

Lemma 2.1. The condition z € Z(X), where X = {x1,..., 24}, is equivalent to
the condition zo x; =0 for anyi=1,2,...q.

Proof. If z0a = 0 for any a € F(X), then, in particular, z o x; = 0 for any
generator z; € X.

Conversely, suppose that z o x; = 0 for any generator z; € X. Let v be any
base element of the free Leibniz algebra F(X). By induction on the degree n of
v € V(X), let us prove that z o v = 0. The base of induction n = 1 is trivially
true by our assumption. Suppose that our statement is true for any base element
of length n — 1. Then any base element of length n can be presented in the form
v = x; o u, where u is a base element of length n — 1. Therefore,

zov=zo(x;ou)=(zom;)ou+mz;o(zou)=0.

So, our statement is true for n. [J
Consider the following set of permutations

S(k,n) ={o € Symplo(l) <---<olk—1)<o(k)=n
>o(k+1)>--->0(n)}.

Let S(n) = U?_,S(k,n). Note that |S(n)| =271
The following multiplication rule holds in free Leibniz algebras.

Lemma 2.2. For any a1, ...,an41 € F(X),
a1..n ©Ap41 = Z(_l)nik Z Qg n+1-
k=0 oceS(k,n)

In particular, for any u,v € V(X), the product wo v is a linear combination of
elements w € V(X)) whose heads coincide with a head of v.

Proof. We will use induction on n. If n = 1, then there is nothing to prove.
Suppose that our statement is true for n — 1. Then
a12..n © A1 = (A1 0 G2..n) © Apt1
= a10(a2..n © Apt1) — 2.5, 0 (@1 0 App1)

=a10 Z (_1)‘B‘G’Brev(,§) n+1 = Z (_1)|'8|a,87‘ev(3) 1n+1>
Bes’ Bes’
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where S’ is a set of subsequences 5 = (... of the sequence 2...n such that
Br=mnand f1 <...< P, and B = P1...0,—k-1 is the complement subsequence
of Bin 2...n, such that 5 < ... < Bh_k—1. Hence,

a12...n O Qn+1 = Z (_1)‘ﬁ‘a1 Brev(B)nt+l — Z (—1)|B|CL5 rev(B) 1n+1-
pes’ Bes’
Note that
S(?’L) =51 U8,

where S is a set of subsequences a = «; ...y of the sequence 1...n such that
a1 = 1 and ap = n, and S is a set of subsequences o = « ...ay of the sequence
1...n such that a; > 1 and ap =n. Then a = 1 ... oy € Sy implies that a =14,
where @ = as...qa; € S'. Furthermore, o = a1 ...q) € Sg implies that a = 1/,
where 8 =asy... @, r and 8= f31...08, € S’. Therefore,

a al—1
a12..n © Apn41 = E (_1)‘ |aarev(6¢) n+1 — E (_1)‘ | aarev(&) n+1
a€eS, a€eS;

= Z (_1)‘E|aarev(6¢) n+1-
aeS(n)

Thus, our statement is true for n as well. [J
Example 1. Lemma 2.2 allows us to construct a multiplication table for a free
Leibniz algebra. For example,

arasaszag © b = ayasazash — ayasagasb — ayazasasb — asazasarb
+ aiagazash + asagazarb + asagasarb — agasasaq b,
and the product of two base elements u = x3x1x322 and v = xoxq is
L3X1X3L2 O XX — T3XL1X3L2XL2X1 — X3L1X2L3L2XL1 — XL3L3XL2XL1L2X1
— X1X3T2X3L2X1 + L3XL2X3X1L2X] + T1L2T3T3L2L
+ L3L2X1X3T2L] — X2X3L1X3L2TT] -

Lemma 2.3. Let a € F(X). Then z is left-central if and only if zox1 = 0. In
particular, Z(X) = Z N F(X), where Z is the left-center of F' = F(x1,2,...).

Proof. By Lemma 2.2 an element z oz is a linear combination of base elements
with head x1, and an element z o x; can be obtained from the element z o xy
by changing heads of base elements; that is, changing x; to zj.Therefore, the
conditions z o xp, = 0 and z o x1 = 0 are equivalent for any £ = 1,...,q. So, by
Lemma 2.1

z€Z(X) < z€ Z1(X).
(]

Lemma 2.4. Let z be a left-central element generated by x1, ..., x4,
z=2z(x1,...,2q) = ZAiln»inIil sy, € Z(X),

where the summation runs over iy ..., € [q]. Then z is left-central as an element
of the free Leibniz algebra F. Moreover, for any substitution of xz; by elements
a; € Fii=1,...,q, we once again obtain a left-central element

’
z = Z((Ll, .. .,aq) = E )\ilminail cey, € Z.

015000500 €[q]
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Proof. By Lemma 2.3, z € Z(X) implies that z € Z. By Lemma 2.2, for any
i1...iy € [q] and any v € F, we have

NE

(_1)n—k Z i, O (. .. (xiam) ou) . )

0 oceS(k,n)

(‘ril O(...(‘/Bin*l owin)...)Ou:

E
Il

Therefore, for any substitution x; — a;, we have

(aj, o(--+(ai,_,0a; ) )ou= Z(—l)"fk Z iy © (--- (aia(n) ou)---).

k=0 oeS(k,n)
So, the condition
Z = Z )\ilnjn‘ril o ( o (xinfl © xin) o ) E Z(X)
1.0 €[q]

implies the condition

Z(_l)nfk Z Z )\il...inxig(l) ° ( .. (xia(n) o u) .. ) = 0.

k=0 c€S(kn) ityeemrin€ld]

Now take u = z; and collect all coefficients of z o x; at base elements x;, . ;. 1,
where j1,...,jn € [¢], and denote their sum as 7;, ., 1- Note that v;, ;.1 = Vi .
does not depend on [. Therefore,

ZOT= D Vi sl
J1---Jn€ld]
By Lemma 2.2 the element z’ = z(a1,...,aq) constructed from z = z(z1,...,24)
by replacing x; with a; € F' has the same property:
Zdox =Y Y juaj o (- (aj, 0m) ),
Hence, the condition
z = Z )‘il---inxil c Ty, € Z(X)

il;nwine[‘ﬂ

implies that ~;,.;, =0 for all ji,...,j, € [¢]. Consequently,
dox= Y v juaj o (- (a, 0m)--) =0.

Jie-dn

In other words,
z=z2(z1,...,24) € Z(X) = 2 = 2(a1,...,aq) € Z.

O

Let F(X)m, ...m, be a subspace of F(X) generated by mg elements x, where
s=1,2,...,q. Let F,(X) be the subspace of F'(X) generated by the base elements
v € V(X) of length n. Then

Fo(X) = @21 Omy 4o tmg=n Fimy ...y
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Lemma 2.5. For any non-negative integers i1, ...,iq, ji,---,Jgs
F(X)iy . ig o F(X)jy, gy © F(X)iy b igtia-
In particular, for any positive integers n,m,
F(X)n o F(X)m C Frpm(X).

Proof. Follows from Lemma 2.2. [J
Let Zg be the set of non-negative integers and

Zi =Zox---x1Zy.
e
Let Ty ,...omy + F'(X) = F(X)m,,....m, be a projection map.
Lemma 2.6. Let z = z(z1,...,24) € Z(X). Then for any a € Z}, w2z € Z(X).
Proof. For any \i,...,\; € K by Lemma 2.4
2 =z(Mx1, .., Ng) € Z(X).

Present z as a sum of homogeneous components:

z=2z2(x1,...,24) = Z Ty i %

i1..iq €2
Then,
2 = Z A e Nam, i,z € Z(X).
i1...ig€Z3
Since A1,..., A\ € K are arbitrary elements of the infinite field K, standard rea-

sonings based on the Vandermonde determinant shows that
Tiy..ig? S Z(X)

for any non-negative integers i1,...,74. U

For a permutation o € Sym, written in one-line form, denote by I(c) and (o)
the parts of o to the left and to the right of g, respectively. Denote by rev(o) the
sequence o written in reverse order. For example, if 0 = 3264751, then [(0) = 3264,
r(o) =51 and rev(o) = 1574623.

Recall that a shuffle product al LI of sequences « = a1 ... and = (1 ... 5, is
defined as a sum of sequences v = 1 ... Yk, such that v; € {aq,...,ax, B1,... 51},
for any ¢ = 1,...,k +{. Moreover, if v;, = ou,... v, = ok, YV = B1,---575 = B,
then i1 < -+- < i and j; < -+ < j;. We will write 7 € allIf if 7 is one such
summands. For example, if o = 14, = 32, then

allB = 1432 + 1342 + 1324 + 3142 + 3124 + 3214,
1342 € alllB, 3421 ¢ alLIB.

Lemma 2.7. Ifb=> n Ay, then

RESyMman,p(n)=

boanis=(-1)" D (-l > e asnn

oc€Symn T€l(o)Wrev(r(o))
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Proof. By Lemma 2.2

boant1 = E Al © Qpgl

HESYMy,pu(n)=n

S D MY (au) - Gugath-1)ugat)) - -

neSymyn k=0 aeS(k,n)
p(n)=n

“Qu(a(k+1) -+ Qu(a(n)) An+1)

oD D MY (@) - - Gpath-1) Gu(n) -

pneSymyn k=0 aeS(k,n)
p(n)=n

“Qu(a(k1)) - - Qu(a(n) Gn+1)

= D 2 D MY Maueay - Guga-1)an -

neSymy k=0 acS(k,n)
p(n)=n

“Qp(a(k+1)) - - Up(a(n) nt1)

= (_1)77, Z Z Afn(_l)k(aa(l) <o Qo (k—1)0n -

oceSym, t€l(o)rev(r(o))

Qo (k1) - - - aa(n)a'nJrl)

:(—1)” Z (—1)”(0)'—’_1 Z )\‘rn Ao n+1-

o€Symn Tel(o)rev(r(o))

O
Example 2. If n =4 and

2 = M234T10223T4 + A\1324%1 730224 + A2134T221 T374

+ A2314T223T104 + A3124T3T 1204 + A321403T201 %4,
then

2 0T5 = A\1234T1T2T3T4T5 + (—/\1234 — A1324 — >\3124)I1$2I4I3$5
+ 1324103220425 + (—A1234 — A1324 — A2134) 0123242205
+ (Ai324 + Az124 + A3214) 2124222325 + (A1234 + A2134 + Aaz14)T1 24232225
+ A21340221 237405 + (—A2184 — A2314 — A3214)T221 X423T5
+ A2314022321 2405 + (—A1234 — A2134 — A2314)T2232401T5
+ (A2314 + Az124 + A3214)T22421 2325 + (A1234 + Ai324 + Aa134) Toza 321 25
+ A3124 301220425 + (—A2314 — A3124 — A3214) 0321242205
+ A321403%221 2405 + (—A1324 — A3124 — A3214)T3T22401T5
+ (A2134 + A2314 + A3214) 324010225 + (A1234 + Ai324 + A3124) 2324222175
— A3214T4T1T2T3T5 — A2314T4T1T3T2T5 — A3124T4T2T1T3T5

— AM324T4T2T3T1 05 — A2134T4T3T1T2L5 — A1234T4TL3T2T1 L.
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3. BASE FOR LEIBNIZ-JORDAN ALGEBRAS

Let [q] ={1,2,...,q} and X = {x;|i € [q]}. Let vi, .4, i, _1i,, Where iy, ...0, €
[q], denote symbols that satisfy the conditions
Yir.iin—nin_1in = Yir.in_2inin_1>  Vily-+sin—2,9n—1,0n € [q].

Let G(X) be the linear span of the elements y;, ;. , where iy, ..., i, € [q]. Take the
set of elements {y;,. i, |i1,.-.,in € [¢], and i,—1 <, if n > 1} as a base of G(X).
Define a multiplication on G(X) by

Yiv.inYj1..jm = 0, ifn>1and m > 1,

YirYjrojm = Yirgrojms L1 =1,
Yir.inYjs = Yjrir.ins if m=1
If n=m =1, then
YirYjn = Yirgr = Yjuin = Y1 Yiy
If n=1,m > 1, then
YirYj1..m = Yirjr...jm = Yj1...im Yis-
Similarly, if n > 1,m = 1, then

Yiv.inYin = Yjrir.in = YjirYir.ins

If n>1,m > 1, then

YireinYitegm = 0= Yjr. i Yir iy, -
So, the multiplication of the algebra G(X) is well-defined. It is easy to see that the
algebra G(X) is commutative and metabelian:

(ab)(ed) =0, Va,b,c,d € G(X).

Moreover, G(X) is isomorphic to a free algebra of the variety of metabelian com-
mutative algebras generated on the set X = {;|i € [¢]}. An isomorphism can be
given by the rule

Yir.ovin vin 7 Tiy (o (T 23,) o).
It is easy to check that this assignment yields an isomorphism. By the metabelian
identity, any non right-bracketed and any non left-bracketed element should vanish.
By the commutativity identity,

Tiy (@i o (@, 1 03,)) ) = @iy (- (@4, (@, Ti, 1)) ),
and hence, any left-bracketed element can be reduced to a right-bracketed element.
In [1] it was established that the free Leibniz algebra F(X) under Jordan multi-

plication a x b = a o b + b o b satisfies the commutativity and metabelian identities.
Set

7:1~~~7:n727;71717:n -

. a0 (e (wiy 0 (@i x T, ) )i S, ifn > 1,
T4y ifn=1.

Let us prove that set of elements
VIX) = {a] ; liv,... in € [q], and in_1 <in if n > 1}
forms a base of F'7(X).
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First, note that V(X)) C F(X):
x =24, * (o (@4, % (T4, *13,)) ) € FH(X).

7:1~~~7;71727;71717:n

Suppose that the elements xz are linearly dependent:

An

+ _
E Niyovin®iy 4 =0,

i1 )~~~)ine[q]7in71 <in

for some A;,. 5, € K,n > 1. Then,

0 - § )\i1~~~7:n727;71717;n ("Ei1~~~in72inflin + xil---ianininfl)
i1, €[g) in—1<in
= > Ay ciin—nin—vin (Tiy o oin—gin_vin + Tiyin_ainin_1)

i17~~~)i716[q];i7171<in

+ z 2)\7:1~~~7;71717:n71x7;1~~~7:n72in717;7171

i1...0n—1€[q]

= E iy vin_2in1inTi1.in_2in_1in

i17~~~)i716[q];i7171<in

+ z )\7;1~~~7;7172in7:n71x7;1~~~7:n727:n717;n

01,y in €[q) in—1>0n

+ E 2>\i1»»»in—linflxil---in72in71in—l'

7;1~~~7:n716[Q]

Since elements x;, ;, are base elements of F(X), this means that \;, ; = 0 for
all i1,...4, € [g]. In other words, elements azzg___in, where i,_1 < i,, if n > 1, are
linearly independent.

Now let us prove that any element a € F(X) can be presented as a linear
combination of elements v € V*(X). We can assume that a is a homogeneous
element. Let n be the degree of a. We proceed by induction on n. If n = 1 our
statement is evident. Suppose that for n — 1 our statement is true and n > 1.
Since any element of degree n is a linear combination of anti-commutators of two
base elements of degree < mn, we have to prove that a::; ’

i Ty, ., 1s a linear

combination of base elements of the form zf € V*(X). This fact is easy to

establish. If k£ > 1, then

+ + _
Tiy g *zjlnjn—k =0.
If k=1 and n > 2 then
+ o+ o + + R + _ o+
Ty ¥ TG ey =T OLjy oy T & OFin =Ty OFy, G =g Gy
If k=1 and n =2, then
+ ot o
T xR T = @y *x Ty = Ty

So, we have proved that the set V*(X) forms base of F*(X). Note that the map
G(X) _>F+(X)7 Yiy..in l—>$:§

is a homomorphism of algebras and is one-to-one.

ceeln
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So, we have established the following result.

Lemma 3.1. Let X = {x;i € [¢]}. Let G(X) be a free algebra generated by X of
the variety given by the commutativity identity com = 0 and the metabelian identity
leibjor = 0, where
com = tltg — tgtl, leibjor = (tltg)(t3t4).
Then F*(X), the subalgebra of (F(X),%) generated by X = {x;|i € [q]}, is isomor-
phic to G(X). An isomorphism is given by
G(X) = FT(X),

+ def
Yiroin ™ T3\ i ™ LTigeip_oin_1in T Titip_oinin_1

where i1, ..., 1, € [q].

4. CRITERION FOR JORDAN ELEMENTS
Lemma 4.1. a € F(X) if and only if a = pyb for some b € F(X).

Proof. If a=piband b=}, iy iy Tiy i, , then by the rule

ceeln

»»»»» in€ld]
ao(bxc)=ax*(bxc),

we have

a=pib= > Niyin(@irininrin + Tiroinsinin_1)

= iy x (o (Wi * (Wi *i,)) )
€ FH(X).
Conversely, if a € FT(X), then by Lemma 3.1 a is a linear combination of
elements of a form

+ — ) ) o o ; ;
X, i = Liq .y _oin_1in + Liy i —2inin_1 11y---5ln € [Q]

i1..0p
Since
T = DTy,
this means that a is a linear combination of elements of a form pyx;, ., . So,
a = p4b for some b € F(X). O
Lemma 4.2. p? =2p,.
Proof. For any base element v = ;. ;, € V(X) we have

D4V = PyTiy iy = Tiyoin—nin_1in T Litoin_2ipin_1-
Thus,

piv =2(iy innin_1in T+ Tivoin inin_1) = 2D40.
Therefore p?.a = 2pa, for any a € F(X). O
Lemma 4.3. For any a € F(X) the following conditions are equivalent

e pia=2a
ep.a=0
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Proof. It is evident that p_p; = 0. Therefore, if p;a = 2a, then

Pa =p-((p+a)/2) = p-p4+(a)/2 =0.
Conversely, suppose that p, = 0 fora =

i1, yin€ld] Xy oin iy 4y, € F(X). Since
p-a= Z )\il"'i" (Iil---in72in—1in - I’L'l...infginin,l)
01,00 €[q]
= Z ()\il---infzinfﬂln - )\il"'ianinin—l)xil...infgin,lin

i15eenyin €[qlyin—1<in

the condition p_a = 0 gives us that
)\i1~~~7;71727;7171in = )\7;1~~~7;71727:n7:n717 VZ]J s 277/ € [q]'
Therefore,

a= E Niy ovvin—ain—vin (Tiy . oin —in_1in T Tiy.oin_inin_1)
7;1)~~~77:n€[q];7;7171<7:n

+ z )\7;1~~~7;71727:n717:n71‘r7:1~~~in727;71717;7171

0150ensin—1€[q]

= E Niyvin—ain—1in P+ (Tiy i gin_1in)

i1 ,...77:7@6[(]],7;”71 <ip
+ ) Niy ovvin—in—vin—1 P+ (Tiy o inin_yin_1/2)
i1,.0in—1€[q]

In other words, a = pb, for b € F(X) given by

b= E Ais.in—in1in T in_2in_1in

i15ensin €lg)in -1 <in
+ § )\7:1~~~7;71727;71717:n71x7;1~~~7:n72in717;7171/2'
i1,000yin—1€[q]

Therefore, by Lemma 4.2

pra = pib = 2p,b = 2a.
O

5. DIMENSION AND BASE OF LEFT-CENTER

Consider elements of F(X) x F(X). Call elements of the form u® =

7:1~~~7;s7:s+1 Zn
(€]

11,00

Tiy .., * Tiyy,..q, as s-type elements. For 1-type elements, u = Ti; * Tiy..ins

where n > 2, call x;, the leader. If n = 2, call x;, the leader of uEfZQ = Ti, * Ty, if
11 < io.

Lemma 5.1. The degree n part of F(X)x F(X) is generated by 1-type elements of
the form x;, x i, 4, , where i, ..., x; € X.

Proof. Since F(X ) F(X) is generated by elements of the form ul®) =

i1eeialisg 1o in

Tiy..i, * Ti,,..i,, it is enough to prove that any s-type element uz(‘f.)..isis+1...in can
be presented as a linear combination of 1-type elements of the form UEBQM
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We will use induction on s =1,2,...,n — 1. If s = 1, there nothing is to prove.
Suppose that the statement is true for s — 1.Then

(s)

i, = (Tiy 0 Tiy i) ¥ Ty i,
(Tiy © Tiy.iy) © Tigyyin + Tigyr.iy © (Tiy © Tiy. i)
=iy 0 (Tiy..iy © Tigys.in) = Tig.iy © (Tiy O Tigyy.iy)

+ (Tig 1 in O Tiy) © Ty iy + Tiy O (Tiy (4. iy © Tiy..i,)

u

= i © (5171'2,”1'5 *xis+l---in) — Ljy..ig © (Iil o I’is+1---’in)
- (:Eil o xis+1~~~in) o xi2~~.i3
=4, © (Tig.iy * Tigyin) — Tigoiig * (Tiy iysrnin)-

Now, we have
Tiy O (Tiy.iy * Tigyy.in) = Tiy ¥ (Tig.iy X Tiyy i )-

Therefore, the element x;, o (xi,. i, * i, ,...i, ) can be presented as a linear combi-

nation of 1-type elements. By induction, the element x;,. ;, * 2, 4..,..4, iS also a
(s)

linear combination of 1-type elements. Thus, the element u; " ,

1)

as a linear combination of elements of the form uj,” ;.. Hence, our statement is
true for s. O

can be presented

Lemma 5.2. Any multilinear 1-type element “lez?l...in,l of degree n with leader x,,

is a linear combination of multilinear 1-type elements with leader x;,, with i1 < n.

Proof. If n = 2 this statement is evident: w9 = 22 x 21 = 21 * 292 = uglz)

Suppose that our statement is true for n — 1 > 1. We then have
1)

Upy iy oty 1

= Tn * Ty . ip_q

= Tn © xil cln—1 + xil cln—1 ©Tn

(Tn 0 @41) © Tiy.iy + Tiy © (Tn © Tig.ify )
+ 4, 0 (Tiy..ipy_y O Tn) — Tiy. iy_y © (T4, 0 Ty)

= —(@4, 0Tp) © Tiy..i,y_y + Tiy © (Tr O Tiy. ipy_,)

+ 2y 0 (xi2~~~7;nfl © ‘T") — Lig.ip_y © (xil © xﬂ)

= —Tiyn X Tiy.ipy 1 T Tiy O (Tn * Tig iy )

= —Tiyn * Tig. iy + Tiy % (T * iy 4, _, ).
By induction, the element z;,_; xx; .+, where we set 7} = z;,,,,i=1,...,n—2,
and z, = x;,n, is a linear combination of 1-type elements with leader x], where
I <n—2.Since 27 = x;,, and i;y1 < n, this means that the element x; x4, 4, ,
is a linear combination of elements of 1-type of degree n with leader z;, where i < n.

It is evident that the element x;, * (x5, * 2;,. i, ,) is a linear combniation of 1-type
elements with leader x;,, where i; < n. Therefore, any 1-type element of the form
uflll-)l___i%l is a linear combination of 1-type elements with leader z;,, with iy < n.
Our statement is proved for n. [J
Example 3.
T3 *T12 = T1 * (1'2 *1'3) — T2 *xT13,
T4 x 123 = X1 K (T3 * T4) — T2 % (T14 % T3) + T3 % T214,

T5 *x L1234 = L1 * (565 * 96234) — T2 * (51015 * 5634) + x3 % (964 * 96215) — T4 * X3215-
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6. PROOF OF THEOREM 1.1

We know that F(X) = F(X) C Z(X), and by Lemma 2.3, Z(X) = Z1(X). So,
to prove Theorem 1.1 it is enough to prove that
z=2z(x1,...,29) € Z(X) =z € F(X) x F(X).
By Lemma 2.6 we can assume that the element z € Z(X) is homogeneous.
Denote by v1(2) = z1 (2], 27, z2,...,24) € F(X'), where X' = {2/, 27, 22,..., 24},
the element
v1(z) = z2(2) + 2, 2o, .. y) — 2(2), 20, . xg) — 2(2], T2, ..., 1y).

For a homogeneous element z = z(z1,...,2¢) € Z(X)m,..om, = Z NV F(X)imy..my»
define the degree deg,,z = m; if the entrance of z; in each component of z is m;.
If deg,,z = 1, then vz = 0. By Lemma 2.4

nz)ez
and
degy, z =mq > 1,
which implies
dege,, (v1(z)) <my and deg , (vi(2)) < mi.
Conversely, if v1(z) = z1(z1/, 17, 22, ..., 24) € Z(X'), then
2(xy, . 1) = (27 = 2) uy (2) (21, 21, T2, - 1) € Z(X).
Moreover, if v1(z) = z1(z1/, 217, 22, ..., 24) € F(X') x F(X'), then
2(zy, . xg) = (2™ = 2) v (2) (21, 21, T2, - -y 2g) € F(X) % F(X).

Repeat this procedure m; times for each i = 1, ..., q. We see that we can assume
the element z € Z(X) C Z is not only homogeneous, but is also multilinear, i.e.,
m; = 1, for any i = 1,...,q. Therefore, it is enough to prove that any multilinear
left-central element is a Jordan element.

Consider the multilinear left-central element z = z(x1,...,24) € Z(X). We must
demonstrate that z € F'(X) » F(X).

Let L(X) be the free Lie algebra with generators X = {z1,z2,...,24}. The
multilinear part of the free Lie algebra of degree ¢ has a base generated by elements

of the form [2,(1),[ -, [To(g—1), Z¢] - - -]], where o runs through the permutations
of Symy such that o(q) = ¢ (see [5]). Since

L(X) = K(X)/J(acom, jac) = K(X)/J(acom,lei) = F(X)/J(acom),
we can present z € F'(X) in the form
2= Y Aty (modulo F(X)x F(X))

oc€Symy
o(q)=q

for some A\, € K.
Then by Lemma 2.7,

zoxgr = (—1) Z (_1)\l(o)|+1 Z Arg | Zogrt.

ocE€Symy Tel(o)rev(r(o))
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We see that the coefficient of z o x441 at z,, where o(1) = ¢q,0(¢ +1) = ¢ +1, is
equal t0 Arey(0(2)...0(q))- Example 2 given above demonstrates this fact in the case
of ¢ = 4. Therefore,
z20xg41 =0,
which implies that
Ao =0, Yo € Symg, o(q) =q.
So, z € F(X) « F(X), which proves the main part of Theorem 1.1. The part of
Theorem 1.1 concerning dimensions is easy combinatorics.
As we have proved,

dim Z(X )y, + A0 LX)y gy, = dim F(X )y,
By the Witt theorem [5],

dim L(X )y m, = % > u(d) (ml/dﬁ(flmq/d)’

where n =my + - - - + m,. By the Loday Theorem [4],

dlmF(X)mlmq = <m1 n m >
q

Therefore,

dim Z(X)m,..m, = (nT_l)<m1 .T.L.mq> B Z ud) (ml/dy'qu/d)

dlm;,d>1
In particular,
dimZ(X);1..1=(¢g—1)(¢g— 1)L
It is easy to see that the number of 1-type multilinear elements is equal to (¢ —
1)(¢ — 1)!. Therefore, by Lemma 5.2, the set of multilinear 1-type elements forms a
base of the multilinear part of F/(X) x F(X).

In general, by Lemma 5.1, the set of 1-type elements generates the homogeneous
part of F(X)x F(X).

7. PROOF OF THEOREM 1.2

By the identity
ao(bxc)=ax*(bxc),
it is clear that
Py =py.

By Lemmas 4.1, 4.2, 4.3 and 3.1, all statements of Theorem 1.2 except the part
concerning dimensions have been proven.

Let us calculate the dimension of the homogeneous part of G(X)m,...m,- Let R
be the number of sequences of length n = my + - -+ + m,, with components in [g]
such that last two components are equal. Then

R = |{’Ll .. .’L'nfll.n,1|i1, .. .’L'nfl S [q]}|

L(my 4 My Mg + o omyg M — 2)!

p— ma!- - meil(ms — 2)!mgi!---myg!
< e > gzlmg—ms
My M1 Mg —2Mgp1 - Mmg) (M1 + -+ +mg)(my+ - +mg—1)°
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The number of sequences with components in [¢] where each i € [¢] appears m;

times is
T— <m1—|—~-~—|—mq>.
ml e mq
Therefore, the number of base elements of G(X ), ...m, of degree n = my +---+mq
where each x;,4 € [q] appears m; times is

[{i1- - inlit, ... in € [q], and 41 <ip if n>1} = (R+1T)/2.

In other words,

1 4 m?2 n-2 n
dim G(X)m,..m, = = =l .
im G(X)m,...m, 2<n(n—1)+n—1) (ml"'mq)

In particular, the dimension of the multilinear part of G(X); 1 is ¢!/2.
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