SHORT

COMMUNICATIONS

Worpitzky Identity for Multipermutations

A. S. Dzhumadil'daev*
Kazakh-British Technical University, Almaty, Kazakhstan
Received December 14, 2010

DOI: 10.1134/S0001434611090136
Keywords: Worpitzky's identity, multipermutation, Euler numbers, binomial polynomial, barred permutation, multiset.

Worpitzky's identity [1] (see also [2]) expresses x^{n} as a linear combination of binomial polynomials,

$$
x^{n}=\sum_{p=1}^{n}\binom{x+p-1}{n} a_{n, p} .
$$

The coefficients $a_{n, p}$ have an interesting combinatorial interpretation. For a permutation $\sigma \in S_{n}$, we say that i is an index of lowering if $i=n$ or $\sigma(i)>\sigma(i+1)$ for $i<n$. In this case, $a_{n, p}$ is equal to the number of permutations with p indices of lowering. For example, S_{3} has a single permutation with three indices of lowering (namely, 321), four permutations with two indices of lowering (132, 213, 231, 312), and a single permutation with one index of lowering (123). Thus, $a_{3,1}=1, a_{3,2}=4, a_{3,3}=1$, and

$$
x^{3}=\binom{x}{3}+4\binom{x+1}{3}+\binom{x+2}{3} .
$$

The numbers $a_{n, p}$ are referred to as the Euler numbers. The indices of lowering and the Euler numbers admit a natural generalization for permutations on multisets. Let $\mathbf{n}=1^{k_{1}} \ldots n^{k_{n}}$ be a multiset, i.e., a set with elements $1,2, \ldots, n$, where every element i is repeated k_{i} times. Let $S_{\mathbf{n}}$ be the set of permutations on a multiset \mathbf{n}. Note that

$$
\left|S_{\mathbf{n}}\right|=\binom{k_{1}+\cdots+k_{n}}{k_{1} \ldots k_{n}}=\frac{\left(k_{1}+\cdots+k_{n}\right)!}{k_{1}!\ldots k_{n}!} .
$$

As in the case of ordinary permutations, for $\sigma \in S_{\mathbf{n}}$, we say that i is an index of lowering if $i=n$ or $\sigma(i)>\sigma(i+1)$ for $i<n$. Denote by $\operatorname{des} \sigma$ the number of the indices of lowering,

$$
\operatorname{des} \sigma=\mid\{i \mid i=n \text { or } \sigma(i)>\sigma(i+1), 1 \leq i<n\} \mid .
$$

The Euler number $a_{\mathbf{n}, p}$ for a multiset \mathbf{n} is defined as the number of multipermutations with p indices of lowering,

$$
a_{\mathbf{n}, p}=\left|\left\{\sigma \in S_{\mathbf{n}} \mid \operatorname{des} \sigma=p\right\}\right| .
$$

Let $A_{\mathbf{n}}=\sum_{p>0} a_{\mathbf{n}, p} x^{p}$ be the Euler polynomial of the multiset \mathbf{n}.
Example. We have

$$
\begin{gathered}
S_{1^{2} 2^{3}, 1}=\{11222\}, \quad S_{1^{2} 2^{3}, 2}=\{12122,12212,12221,21122,22112,22211\}, \\
S_{1^{2} 2^{3}, 3}=\{21212,21221,22121\}, \\
A_{1^{2} 2^{3}}=x+6 x^{2}+3 x^{3} .
\end{gathered}
$$

[^0]Theorem 1. For any nonnegative integers k_{1}, \ldots, k_{n},

$$
\prod_{i=1}^{n}\binom{x+k_{i}-1}{k_{i}}=\sum_{p>0}\binom{x+k_{1}+\cdots+k_{n}-p}{k_{1}+\cdots+k_{n}} a_{\mathbf{n}, p},
$$

where the symbols $a_{\mathbf{n}, p}$ stand for the Euler numbers for the permutations of the multiset $\mathbf{n}=1^{k_{1}} \cdots n^{k_{n}}$.

This theorem follows from the results of [3]. The objective of this note is to give a simple proof of Worpitzky's identity for multipermutations.

The proof uses the notion of barred permutations [4]. Let $\sigma \in S_{\mathbf{n}}$. A barred permutation with base σ is a permutation σ with bars between the components of σ such that every index of lowering has at least one bar. Let $B_{\mathbf{n}}$ be the set of barred permutations on a multiset $\mathbf{n}=1^{k_{1}} \cdots n^{k_{n}}$. Let $b_{\mathbf{n}, p}$ be the number of barred permutations with p bars. For example, $B_{1^{2} 2^{2}}$ has nine barred permutations with two bars, namely,

$$
\{1122 / /, 112 / 2 /, 11 / 22 /, 1 / 122 /, / 1122 /, 12 / 12 /, 122 / 1 /, 2 / 112 /, 22 / 11 /\}
$$

Thus, $b_{1^{2} 2^{2}, 2}=9$.
Lemma 2. The following equality holds:

$$
\sum_{p \geq 1} b_{\mathbf{n}, p} x^{p}=\frac{\sum_{i>0} a_{\mathbf{n}, i} x^{i}}{(1-x)^{k_{1}+\cdots+k_{n}+1}} .
$$

Proof. A barred permutation with p bars can be obtained from the permutations with $p-i$ indices of lowering by including i bars at $k_{1}+\cdots+k_{n}+1$ places. This can be done in $\left({ }_{i}^{k_{1}+\cdots+k_{n}+i}\right)$ ways. Therefore,

$$
b_{\mathbf{n}, p}=\sum_{i \geq 0}\binom{k_{1}+\cdots+k_{n}+i}{i} a_{\mathbf{n}, p-i} .
$$

Lemma 3. The following equality holds:

$$
b_{\mathbf{n}, p}=\prod_{i=1}^{n}\binom{p+k_{i}-1}{k_{i} .}
$$

Proof. Consider a barred permutation with p bars. Let us enumerate the bars from left to right, $1,2, \ldots, p$. Let $x_{i, j}$ be the number of components equal to i between the $(j-1)$ th and j th bars for $j>1$, and let $x_{i, 1}$ stand for the number of components equal to i before the first bar for $j=1$. Note that the components of the base permutation between the $(j-1)$ th and j th bars (if they exist) form a nondecreasing sequence. Therefore, every barred permutation with p bars satisfies the following system of n equations:

$$
\sum_{j=1}^{p} x_{i, j}=k_{i}, \quad i=1,2, \ldots, n
$$

and, conversely, every nonnegative integer solution of this system corresponds to a barred permutation with p bars, and this correspondence is one-to-one. These equations are independent, and every equation has $\binom{k_{i}+p-1}{k_{i}}$ nonnegative integer solutions. Therefore, the number of barred permutations with p bars is equal to $\prod_{i=1}^{n}\binom{k_{i}+p-1}{k_{i}}$.

Proof of Theorem 1. By Lemmas 2 and 3,

$$
\begin{aligned}
\prod_{i=1}^{n}\binom{p+k_{i}-1}{k_{i}} & =\sum_{i=0}^{p}\binom{k_{1}+\cdots+k_{n}+i}{i} a_{\mathbf{n}, p-i} \\
& =\sum_{i=0}^{p}\binom{k_{1}+\cdots+k_{n}+p-i}{p-i} a_{\mathbf{n}, p}=\sum_{i=0}^{p}\binom{p+k_{1}+\cdots+k_{n}-i}{k_{1}+\cdots+k_{n}} a_{\mathbf{n}, p}
\end{aligned}
$$

where p is an arbitrary integer. Therefore, we may replace p by a formal parameter x.
Corollary 4. Let $k_{1}=\cdots=k_{n}=k$. Then

$$
\binom{x+k-1}{k}^{n}=\sum_{p>0}\binom{x+k-2+p}{k n} a_{\mathbf{n}, p} .
$$

Proof. This follows from Theorem 1, because the relation $a_{\mathbf{n}, p}=a_{\mathbf{n},(n-1) k+2-p}$ holds for any $p=1,2, \ldots,(n-1) k+1$.

In particular, in the case of $k_{1}=\cdots=k_{n}=1$, we obtain Worpitzky's identity.

REFERENCES

1. J. Worpitzky, J. Reine Angew. Math. 94, 203 (1883).
2. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed. (Addison-Wesley Publ. Co., Reading, MA, 1994; Vil'yams, Moscow, 2009).
3. J. F. Dillon and D. P. Roselle, SIAM J. Appl. Math. 17 (6), 1086 (1969).
4. I. Gessel and R. P. Stanley, J. Combinatorial Theory Ser. A 24 (1), 24 (1978).

[^0]: *E-mail: askar56@hotmail.com

